Chapter 8
Exercise Solutions

EX8.1




a.      VCC = 30 V, VCE = 30 − I C RC , I CVCE = 10
                         1
Maximum power at VCE = VCC = 15
                         2
     10 10 2
IC =    =    =
     VCE 15 3
             2
So 15 = 30 − RL ⇒ RL = 22.5 Ω ⇒ Maximum Power = 10 W
             3
b.
VCC = 15 V, I C ,max = 2 A
VCE = 15 − I C RL
0 = 15 − 2 RL ⇒ RL = 7.5 Ω ⇒ Maximum Power = (1)( 7.5 ) = 7.5 W

EX8.2
(a)       ΔT = Pθ = ( 8 )( 2.4 )
          ΔT = 19.2° C
(b)       ΔT = Pθ
               ΔT 85
           P=      =
                θ     3.7
           P = 23.0 W

EX8.3
Power = iD ⋅ vDS = (1)(12 ) = 12 watts
c.        Tsink = Tamb + P ⋅θ snk − amb
          Tsink = 25 + (12 )( 4 ) ⇒ Tsink = 73°C
b.        Tcase = Tsink + P ⋅θ case − snk
          Tcase = 73 + (12 )(1) ⇒ Tcase = 85°C
a.        Tdev = Tcase + P ⋅θ dev − case
          Tdev = 85 + (12 )( 3) ⇒ Tdev = 121°C

EX8.4
TJ ,max − Tamb          200 − 25
θ dev − case =                        =            = 3.5°C/W
                       PD,rated             50
                            TJ ,max − Tamb
 PD ,max =
                 θ dev − case + θ case −snk + θ snk − amb
                 200 − 25
             =                 ⇒ PD ,max = 29.2 W
               3.5 + 0.5 + 2
     Tcase   = Tamb + PD ,max (θ case −snk + θ snk − amb )
             = 25 + ( 29.2 )( 0.5 + 2 ) ⇒ Tcase = 98°C

EX8.5
                          10 − 4
a.               I DQ =          ⇒ I DQ = 60 mA
                           0.1
b.




        ⎛9⎞
vds = − ⎜ ⎟ ( 60 )( 0.050 ) = −2.7 V ⇒ vDS ( min ) = 4 − 2.7 = 1.3 V
        ⎝ 10 ⎠
So maximum swing is determined by drain-to-source voltage.
VPP = 2 × ( 2.5 ) = 5.0 V
c.
         1 VP2 1 ( 2.5 )
                                      2

PL =      ⋅   = ⋅        ⇒ PL = 31.25 mW
         2 RL 2 0.1
PS = VDD ⋅ I DQ = (10 )( 60 ) = 600 mW
         PL          31.25
 η=              =         ⇒ η = 5.2%
         PS           600

EX8.6 Computer Analysis

EX8.7 No Exercise Problem

EX8.8
a.
                          VBB
vI = v0 + vGSn −
                           2
dvI      dv
    = 1 + GSn
dv0       dv0
iDn = K n ( vGSn − VTN )
                                  2



                 iDn
vGSn =               + VTN
                 Kn
dvGSn dvGSn diDn
     =     ⋅
 dvo   diDn dvo
dvGSn       1   1 1
So          =        ⋅ ⋅
      diDn        K n 2 iDn
At v0 = 0, iDn = 0.050 A
      dvGSn      1 1     1
So           =       ⋅ ⋅      =5
       diDn      0.2  2 0.050
iDn   = iL + iDp
For a small change in v0 → Δ iL = Δ iDn − ( −Δ iDp )
        1
So Δ iDn =Δ iL
        2
  di   1 di    1 1 1 1
or Dn = ⋅ L = ⋅   = ⋅  = 0.025
   dv0 2 dv0 2 RL 2 20
         dvGSn
Then           = ( 5 )( 0.025 ) = 0.125
          dv0
         dvI                             dv    1
Then         = 1 + 0.125 = 1.125 and Av = 0 =      ⇒ Av = 0.889
         dv0                             dvI 1.125
b.           For v0 = 5 V, iL = 0.25 A = iDn , and iDp = 0
dvGSn dvGSn diDn
     =     ⋅
 dv0   diDn dv0
dvGSn         1   1 1     1 1    1
      =          ⋅ ⋅    =    ⋅ ⋅     = 2.24
diDn          K n 2 iDn   0.2 2 0.25
 diDn diL   1
     =    =   = 0.05
 dv0 dv0 20
dvGSn
      = ( 2.24 )( 0.05 ) = 0.112
 dv0
     dvI
         = 1 + 0.112 = 1.112
     dv0
             dv0   1
      Av =       =     ⇒ Av = 0.899
             dvI 1.112

EX8.9
a.
Rb = rπ + (1 + β ) RE and RE = a 2 RL = (10 ) ( 8 ) = 800 Ω
                                             2
                    ′      ′
Ri = 1.5 kΩ = RTH Rb
      V         18
I Q = 2CC =             = 22.5 mA
      a RL (10 )2 ( 8 )
       (100 )( 0.026 )
rπ =              = 0.116 kΩ
         22.5
Rb = 0.116 + (101)( 0.8 ) = 80.9 kΩ
                         RTH ( 80.9 )
1.5 = RTH 80.9 =                        ⇒ ( 80.9 − 1.5 ) RTH = (1.5 )( 80.9 ) ⇒ RTH = 1.53 kΩ
                      RTH + ( 80.9 )
      ⎛ R2 ⎞           1
VTH = ⎜         ⎟ VCC = ⋅ RTH ⋅ VCC
      ⎝ R1 + R2 ⎠      R1
IQ   22.5
I BQ =        =    = 0.225 mA
         β 100
        V − 0.7       1
I BQ   = TH       ⇒ (1.53)(18 ) = ( 0.225 )(1.53) + 0.7 ⇒ R1 = 26.4 kΩ
           RTH       R1
 26.4 R2
          = 1.53
26.4 + R2
( 26.4 − 1.53) R2 = (1.53)( 26.4 ) ⇒ R2 = 1.62 kΩ
b.
vE = 0.9VCC = ( 0.9 )(18 ) = 16.2 V
 iE = 0.9 I CQ = ( 0.9 )( 22.5 ) = 20.25 mA
      v      16.2
 v0 = E =          ⇒ VP = 1.62 V
       a      10
 i0 = aiE = (10 )( 20.25 ) ⇒ I P = 203 mA
        1
PL =      (1.62 )( 0.203) ⇒ PL = 0.164 W
        2

EX8.10
a.
               ⎛V       ⎞                ⎛ IC ⎞
I C = I SQ exp ⎜ BE     ⎟ ⇒ VBE = VT ln ⎜⎜      ⎟
                                                ⎟
               ⎝ VT     ⎠                ⎝ I SQ ⎠
                      ⎛ 5 × 10−3 ⎞
VBE    = ( 0.026 ) ln ⎜       −13 ⎟
                                    = 0.6225 V ⇒ VD1 = VD 2 = 0.6225
                      ⎝ 2 × 10 ⎠
                         ⎛ 0.6225 ⎞
I Bias = I D = I SD exp ⎜          ⎟
                         ⎝ 0.026 ⎠
                              ⎛ 0.6225 ⎞
              = 5 × 10−13 exp ⎜        ⎟
                              ⎝ 0.026 ⎠
       I Bias = 12.5 mA
                                 2
b.            V0 = 2 V, iL =         = 26.7 mA
                               0.075
1st approximation:
  iCn ≅ 26.7 mA, iBn = 0.444 mA
                   ⎛ 26.7 × 10−3 ⎞
VBE = ( 0.026 ) ln ⎜         −13 ⎟
                                   = 0.6661
                   ⎝ 2 × 10      ⎠
 I D = 12.5 − 0.444 = 12.056 mA
                   ⎛ 12.056 × 10−3 ⎞
 VD = ( 0.026 ) ln ⎜         −13   ⎟ = 0.6216
                   ⎝ 5 × 10        ⎠
2VD = 1.243 V
VEB = 2VD − VBE = 0.5769
                     ⎛ 0.5769 ⎞
 icP = 2 × 10−13 exp ⎜        ⎟ = 0.866 mA
                     ⎝ 0.026 ⎠
2nd approximation:
iEn = iL + iCP = 26.7 + 0.866 ≅ 27.6 mA = iEn
      ⎛ 60 ⎞
iCn = ⎜ ⎟ ( 27.6 ) ⇒ iCn = 27.1 mA
      ⎝ 61 ⎠
iBn = 0.452 mA
I D = 12.5 − 0.452 ⇒ I D = 12.05 mA
⎛ 27.1× 10−3 ⎞
 VBEn = ( 0.026 ) ln ⎜        −13 ⎟
                                    ⇒ VBEn = 0.6664 V
                     ⎝ 2 × 10     ⎠
                    ⎛ 12.05 × 10−3 ⎞
  VD = ( 0.026 ) ln ⎜         −13  ⎟ = 0.6215 V
                    ⎝ 5 × 10       ⎠
2VDD = 1.243 V
     VEB = 1.243 − 0.6664 ⇒ VEBp = 0.5766 V
                         ⎛ 0.5766 ⎞
     iCP = 2 × 10−13 exp ⎜        ⎟ ⇒ iCP = 0.856 mA
                         ⎝ 0.026 ⎠
c.
                        10
      V0 = 10 V, iL =        = 133 mA
                       0.075
     iEn   ≅ iL = 133 mA ⇒ iCN = 131 mA
     iBn = 2.18 mA ⇒ I D = 12.5 − 2.18 ⇒ I D = 10.3 mA
                    ⎛ 10.3 × 10−3 ⎞
  VD = ( 0.026 ) ln ⎜         −13 ⎟
                                    = 0.6175
                    ⎝ 5 × 10      ⎠
2VDD = 1.235 V
                     ⎛ 131× 10−3 ⎞
 VBEn = ( 0.026 ) ln ⎜       −13 ⎟
                                   ⇒ VBEn = 0.7074 V
                     ⎝ 2 × 10 ⎠
 VEBp = 1.235 − 0.7074 ⇒ VEBp = 0.5276 V
                         ⎛ 0.5276 ⎞
     iCP = 2 × 10−13 exp ⎜        ⎟ ⇒ iCP = 0.130 mA
                         ⎝ 0.026 ⎠

EX8.11 No Exercise Problem

EX8.12
a.
 vI = 0 = v0 , vB 3 = 0.7 V
       12 − 0.7 11.3
I R1 =            =        ⇒ I R1 = 45.2 mA
           R1        0.25
If transistors are matched, then
iE1 = iE 3
                          i
iR1 = iE1 + iB 3 = iE1 + E 3
                        1+ β
          ⎛       1 ⎞         ⎛    1⎞
iR1 = iE1 ⎜ 1 +       ⎟ = iE1 ⎜ 1 + ⎟
          ⎝      1+ β ⎠       ⎝    41 ⎠
       45.2
iE1 =          ⇒ iE1 = iE 2 = 44.1 mA
      1.024
                i      44.1
iB1 = iB 2 = E1 =            ⇒ iB1 = iB 2 = 1.08 mA
              1+ β      41
b.
For vI = 5 V ⇒ v0 = 5 V
       5
     i0 =⇒ i0 = 0.625 A
       8
                       0.625
iE 3 ≅ 0.625 A, iB 3 =        ⇒ iB 3 = 15.2 mA
                         41
                      12 − 5.7
vB 3 = 5.7 V ⇒ iR1 =           = 25.2 mA
                        0.25
                                             10
 iE1 = 25.2 − 15.2 ⇒ iE1 = 10.0 mA ⇒ iB1 =      = 0.244 mA
                                             41
vB 4 = 5 − 0.7 = 4.3 V
            4.3 − ( −12 )
I R2 =                      = 65.2 mA ≅ iE 2
               0.25
                    65.2
                 iB 2 =   = 1.59 mA
                     41
iI = iB 2 − iB1 = 1.59 − 0.244 ⇒ iI = 1.35 mA
               i0 625
c.             AI =
                  =     ⇒ AI = 463
               iI 1.35
From Equation (8.54)
     (1 + β ) R ( 41)( 250 )
AI =            =            = 641
        2 RL        2 (8)

TYU8.1
                          24
For VDS = 0, I D ( max ) =   = 1.2 A = I D ( max )
                          20
For I D = 0 ⇒ VDS ( max ) = 24 V
Maximum power when
            VDS ( max )
VDS =                       = 12 V and
                  2
            I D ( max )
 ID =                     = 0.6 A ⇒ PD ( max ) = (12 )( 0.6 ) = 7.2 Watts
                2

TYU8.2




Maximum power at center of load line
Pmax = ( 0.05 )(10 ) ⇒ Pmax = 0.5 W

TYU8.3
a.       PQ = VCEQ ⋅ I CQ = ( 7.5 )( 7.5 )
         PQ = 56.3 mW

                1 VP2 1 ( 6.5 )
                                         2

b.       PL =    ⋅   = ⋅        ⇒ PL = 21.1 mW
                2 RL 2     1
         PS = (15 )( 7.5 ) ⇒ PS = 113 mW
              PL       21.1
         η=        =        ⇒ η = 18.7%
              PS       113
         PQ = 56.3 − 21.1 = 35.2 mW

TYU8.4
                1 VP2                                                    20
a.       PL =    ⋅    ⇒ VP = 2 RL PL = 2 ( 8 )( 25 ) ⇒ VP = 20 V ⇒ VCC =     ⇒ VCC = 25 V
                2 RL                                                     0.8
                VP 20
b.       IP =      =   ⇒ I P = 2.5 A
                RL   8
                VCCVP VP2
c.       PQ =        −
                 π RL 4 RL
              ( 25 )( 20 ) ( 20 )
                                         2

         PQ =             −                  = 19.9 − 12.5 ⇒ PQ = 7.4 W
                 π (8)      4 (8)
              π VP π 20
d.       η=       = ⋅ ⇒ η = 62.8%
              4VCC 4 25

TYU8.5
                        ( 4)
                                 2
                1 VP2
a.       PL =    ⋅    =       ⇒ PL = 80 mW
                2 RL 2 ( 0.1)
                VP   4
b.       IP =      =   ⇒ I P = 40 mA
                RL 0.1
                VCCVP VP2
c.       PQ =        −
                 π RL 4 RL
                ( 5 )( 4 ) ( 4 )
                                     2

         PQ =             −       = 63.7 − 40 ⇒ PQ = 23.7 mW
                π ( 0.1) 4 ( 0.1)
                π VP       π 4
d.       η=            =    ⋅ ⇒ η = 62.8%
              4VCC         4 5

TYU8.6
a.
      1 ⎛ 2V       ⎞ VCC 12
I CQ ≅ ⋅ ⎜ CC      ⎟=   =   = 8 mA
      2 ⎝ RL       ⎠ RL 1.5
RTH = R1 R2
       ⎛ R2 ⎞            1
VTH = ⎜          ⎟ VCC = ⋅ RTH ⋅ VCC
       ⎝ R1 + R2 ⎠       R1
       I CQ    8                   VTH − VBE
I BQ =      =     = 0.107 mA =
        β     75               RTH + (1 + β ) RE
Let RTH = (1 + β ) RE = ( 76 )( 0.1) = 7.6 kΩ
           1
              ⋅ ( 7.6 )(12 ) − 0.7
           R1
0.107 =
                  7.6 + 7.6
 1
   ⋅ ( 91.2 ) = 2.33 ⇒ R1 = 39.1 kΩ
R1
  39.1R2
            = 7.6 ⇒ ( 39.1 − 7.6 ) R2 = ( 7.6 )( 39.1) ⇒ R2 = 9.43 kΩ
39.1 + R2
b.
      1                     1
PL = ⋅ ( 0.9 I CQ ) RL = ⎡( 0.9 )( 8 ) ⎤ (1.5 ) ⇒ PL = 38.9 mW
                   2                     2

      2                     2⎣         ⎦
PS = VCC I CQ = (12 )( 8 ) = 96 mW
PQ = PS − PL = 96 − 38.9 ⇒ PQ = 57.1 mW

      PL       38.9
η=         =        ⇒ η = 40.5%
      PS        96

TYU8.7




I E = I E 3 + IC 4 + IC 5
    = I E 3 + IC 4 + β5 I B5
    = I E 3 + β 4 I B 4 + β 5 (1 + β 4 ) I B 4
I E = (1 + β 3 ) I B 3 + β 4 β 3 I B 3 + β 5 (1 + β 4 ) β 3 I B 3
If β 4 and β 5 are large, then I E ≅ β 3 β 4 β 5 I B 3
So that composite current gain is β ≅ β 3 β 4 β 5

Ch08p

  • 1.
    Chapter 8 Exercise Solutions EX8.1 a. VCC = 30 V, VCE = 30 − I C RC , I CVCE = 10 1 Maximum power at VCE = VCC = 15 2 10 10 2 IC = = = VCE 15 3 2 So 15 = 30 − RL ⇒ RL = 22.5 Ω ⇒ Maximum Power = 10 W 3 b. VCC = 15 V, I C ,max = 2 A VCE = 15 − I C RL 0 = 15 − 2 RL ⇒ RL = 7.5 Ω ⇒ Maximum Power = (1)( 7.5 ) = 7.5 W EX8.2 (a) ΔT = Pθ = ( 8 )( 2.4 ) ΔT = 19.2° C (b) ΔT = Pθ ΔT 85 P= = θ 3.7 P = 23.0 W EX8.3 Power = iD ⋅ vDS = (1)(12 ) = 12 watts c. Tsink = Tamb + P ⋅θ snk − amb Tsink = 25 + (12 )( 4 ) ⇒ Tsink = 73°C b. Tcase = Tsink + P ⋅θ case − snk Tcase = 73 + (12 )(1) ⇒ Tcase = 85°C a. Tdev = Tcase + P ⋅θ dev − case Tdev = 85 + (12 )( 3) ⇒ Tdev = 121°C EX8.4
  • 2.
    TJ ,max −Tamb 200 − 25 θ dev − case = = = 3.5°C/W PD,rated 50 TJ ,max − Tamb PD ,max = θ dev − case + θ case −snk + θ snk − amb 200 − 25 = ⇒ PD ,max = 29.2 W 3.5 + 0.5 + 2 Tcase = Tamb + PD ,max (θ case −snk + θ snk − amb ) = 25 + ( 29.2 )( 0.5 + 2 ) ⇒ Tcase = 98°C EX8.5 10 − 4 a. I DQ = ⇒ I DQ = 60 mA 0.1 b. ⎛9⎞ vds = − ⎜ ⎟ ( 60 )( 0.050 ) = −2.7 V ⇒ vDS ( min ) = 4 − 2.7 = 1.3 V ⎝ 10 ⎠ So maximum swing is determined by drain-to-source voltage. VPP = 2 × ( 2.5 ) = 5.0 V c. 1 VP2 1 ( 2.5 ) 2 PL = ⋅ = ⋅ ⇒ PL = 31.25 mW 2 RL 2 0.1 PS = VDD ⋅ I DQ = (10 )( 60 ) = 600 mW PL 31.25 η= = ⇒ η = 5.2% PS 600 EX8.6 Computer Analysis EX8.7 No Exercise Problem EX8.8 a. VBB vI = v0 + vGSn − 2 dvI dv = 1 + GSn dv0 dv0 iDn = K n ( vGSn − VTN ) 2 iDn vGSn = + VTN Kn dvGSn dvGSn diDn = ⋅ dvo diDn dvo
  • 3.
    dvGSn 1 1 1 So = ⋅ ⋅ diDn K n 2 iDn At v0 = 0, iDn = 0.050 A dvGSn 1 1 1 So = ⋅ ⋅ =5 diDn 0.2 2 0.050 iDn = iL + iDp For a small change in v0 → Δ iL = Δ iDn − ( −Δ iDp ) 1 So Δ iDn =Δ iL 2 di 1 di 1 1 1 1 or Dn = ⋅ L = ⋅ = ⋅ = 0.025 dv0 2 dv0 2 RL 2 20 dvGSn Then = ( 5 )( 0.025 ) = 0.125 dv0 dvI dv 1 Then = 1 + 0.125 = 1.125 and Av = 0 = ⇒ Av = 0.889 dv0 dvI 1.125 b. For v0 = 5 V, iL = 0.25 A = iDn , and iDp = 0 dvGSn dvGSn diDn = ⋅ dv0 diDn dv0 dvGSn 1 1 1 1 1 1 = ⋅ ⋅ = ⋅ ⋅ = 2.24 diDn K n 2 iDn 0.2 2 0.25 diDn diL 1 = = = 0.05 dv0 dv0 20 dvGSn = ( 2.24 )( 0.05 ) = 0.112 dv0 dvI = 1 + 0.112 = 1.112 dv0 dv0 1 Av = = ⇒ Av = 0.899 dvI 1.112 EX8.9 a. Rb = rπ + (1 + β ) RE and RE = a 2 RL = (10 ) ( 8 ) = 800 Ω 2 ′ ′ Ri = 1.5 kΩ = RTH Rb V 18 I Q = 2CC = = 22.5 mA a RL (10 )2 ( 8 ) (100 )( 0.026 ) rπ = = 0.116 kΩ 22.5 Rb = 0.116 + (101)( 0.8 ) = 80.9 kΩ RTH ( 80.9 ) 1.5 = RTH 80.9 = ⇒ ( 80.9 − 1.5 ) RTH = (1.5 )( 80.9 ) ⇒ RTH = 1.53 kΩ RTH + ( 80.9 ) ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ VCC = ⋅ RTH ⋅ VCC ⎝ R1 + R2 ⎠ R1
  • 4.
    IQ 22.5 I BQ = = = 0.225 mA β 100 V − 0.7 1 I BQ = TH ⇒ (1.53)(18 ) = ( 0.225 )(1.53) + 0.7 ⇒ R1 = 26.4 kΩ RTH R1 26.4 R2 = 1.53 26.4 + R2 ( 26.4 − 1.53) R2 = (1.53)( 26.4 ) ⇒ R2 = 1.62 kΩ b. vE = 0.9VCC = ( 0.9 )(18 ) = 16.2 V iE = 0.9 I CQ = ( 0.9 )( 22.5 ) = 20.25 mA v 16.2 v0 = E = ⇒ VP = 1.62 V a 10 i0 = aiE = (10 )( 20.25 ) ⇒ I P = 203 mA 1 PL = (1.62 )( 0.203) ⇒ PL = 0.164 W 2 EX8.10 a. ⎛V ⎞ ⎛ IC ⎞ I C = I SQ exp ⎜ BE ⎟ ⇒ VBE = VT ln ⎜⎜ ⎟ ⎟ ⎝ VT ⎠ ⎝ I SQ ⎠ ⎛ 5 × 10−3 ⎞ VBE = ( 0.026 ) ln ⎜ −13 ⎟ = 0.6225 V ⇒ VD1 = VD 2 = 0.6225 ⎝ 2 × 10 ⎠ ⎛ 0.6225 ⎞ I Bias = I D = I SD exp ⎜ ⎟ ⎝ 0.026 ⎠ ⎛ 0.6225 ⎞ = 5 × 10−13 exp ⎜ ⎟ ⎝ 0.026 ⎠ I Bias = 12.5 mA 2 b. V0 = 2 V, iL = = 26.7 mA 0.075 1st approximation: iCn ≅ 26.7 mA, iBn = 0.444 mA ⎛ 26.7 × 10−3 ⎞ VBE = ( 0.026 ) ln ⎜ −13 ⎟ = 0.6661 ⎝ 2 × 10 ⎠ I D = 12.5 − 0.444 = 12.056 mA ⎛ 12.056 × 10−3 ⎞ VD = ( 0.026 ) ln ⎜ −13 ⎟ = 0.6216 ⎝ 5 × 10 ⎠ 2VD = 1.243 V VEB = 2VD − VBE = 0.5769 ⎛ 0.5769 ⎞ icP = 2 × 10−13 exp ⎜ ⎟ = 0.866 mA ⎝ 0.026 ⎠ 2nd approximation: iEn = iL + iCP = 26.7 + 0.866 ≅ 27.6 mA = iEn ⎛ 60 ⎞ iCn = ⎜ ⎟ ( 27.6 ) ⇒ iCn = 27.1 mA ⎝ 61 ⎠ iBn = 0.452 mA I D = 12.5 − 0.452 ⇒ I D = 12.05 mA
  • 5.
    ⎛ 27.1× 10−3⎞ VBEn = ( 0.026 ) ln ⎜ −13 ⎟ ⇒ VBEn = 0.6664 V ⎝ 2 × 10 ⎠ ⎛ 12.05 × 10−3 ⎞ VD = ( 0.026 ) ln ⎜ −13 ⎟ = 0.6215 V ⎝ 5 × 10 ⎠ 2VDD = 1.243 V VEB = 1.243 − 0.6664 ⇒ VEBp = 0.5766 V ⎛ 0.5766 ⎞ iCP = 2 × 10−13 exp ⎜ ⎟ ⇒ iCP = 0.856 mA ⎝ 0.026 ⎠ c. 10 V0 = 10 V, iL = = 133 mA 0.075 iEn ≅ iL = 133 mA ⇒ iCN = 131 mA iBn = 2.18 mA ⇒ I D = 12.5 − 2.18 ⇒ I D = 10.3 mA ⎛ 10.3 × 10−3 ⎞ VD = ( 0.026 ) ln ⎜ −13 ⎟ = 0.6175 ⎝ 5 × 10 ⎠ 2VDD = 1.235 V ⎛ 131× 10−3 ⎞ VBEn = ( 0.026 ) ln ⎜ −13 ⎟ ⇒ VBEn = 0.7074 V ⎝ 2 × 10 ⎠ VEBp = 1.235 − 0.7074 ⇒ VEBp = 0.5276 V ⎛ 0.5276 ⎞ iCP = 2 × 10−13 exp ⎜ ⎟ ⇒ iCP = 0.130 mA ⎝ 0.026 ⎠ EX8.11 No Exercise Problem EX8.12 a. vI = 0 = v0 , vB 3 = 0.7 V 12 − 0.7 11.3 I R1 = = ⇒ I R1 = 45.2 mA R1 0.25 If transistors are matched, then iE1 = iE 3 i iR1 = iE1 + iB 3 = iE1 + E 3 1+ β ⎛ 1 ⎞ ⎛ 1⎞ iR1 = iE1 ⎜ 1 + ⎟ = iE1 ⎜ 1 + ⎟ ⎝ 1+ β ⎠ ⎝ 41 ⎠ 45.2 iE1 = ⇒ iE1 = iE 2 = 44.1 mA 1.024 i 44.1 iB1 = iB 2 = E1 = ⇒ iB1 = iB 2 = 1.08 mA 1+ β 41 b.
  • 6.
    For vI =5 V ⇒ v0 = 5 V 5 i0 =⇒ i0 = 0.625 A 8 0.625 iE 3 ≅ 0.625 A, iB 3 = ⇒ iB 3 = 15.2 mA 41 12 − 5.7 vB 3 = 5.7 V ⇒ iR1 = = 25.2 mA 0.25 10 iE1 = 25.2 − 15.2 ⇒ iE1 = 10.0 mA ⇒ iB1 = = 0.244 mA 41 vB 4 = 5 − 0.7 = 4.3 V 4.3 − ( −12 ) I R2 = = 65.2 mA ≅ iE 2 0.25 65.2 iB 2 = = 1.59 mA 41 iI = iB 2 − iB1 = 1.59 − 0.244 ⇒ iI = 1.35 mA i0 625 c. AI = = ⇒ AI = 463 iI 1.35 From Equation (8.54) (1 + β ) R ( 41)( 250 ) AI = = = 641 2 RL 2 (8) TYU8.1 24 For VDS = 0, I D ( max ) = = 1.2 A = I D ( max ) 20 For I D = 0 ⇒ VDS ( max ) = 24 V Maximum power when VDS ( max ) VDS = = 12 V and 2 I D ( max ) ID = = 0.6 A ⇒ PD ( max ) = (12 )( 0.6 ) = 7.2 Watts 2 TYU8.2 Maximum power at center of load line Pmax = ( 0.05 )(10 ) ⇒ Pmax = 0.5 W TYU8.3
  • 7.
    a. PQ = VCEQ ⋅ I CQ = ( 7.5 )( 7.5 ) PQ = 56.3 mW 1 VP2 1 ( 6.5 ) 2 b. PL = ⋅ = ⋅ ⇒ PL = 21.1 mW 2 RL 2 1 PS = (15 )( 7.5 ) ⇒ PS = 113 mW PL 21.1 η= = ⇒ η = 18.7% PS 113 PQ = 56.3 − 21.1 = 35.2 mW TYU8.4 1 VP2 20 a. PL = ⋅ ⇒ VP = 2 RL PL = 2 ( 8 )( 25 ) ⇒ VP = 20 V ⇒ VCC = ⇒ VCC = 25 V 2 RL 0.8 VP 20 b. IP = = ⇒ I P = 2.5 A RL 8 VCCVP VP2 c. PQ = − π RL 4 RL ( 25 )( 20 ) ( 20 ) 2 PQ = − = 19.9 − 12.5 ⇒ PQ = 7.4 W π (8) 4 (8) π VP π 20 d. η= = ⋅ ⇒ η = 62.8% 4VCC 4 25 TYU8.5 ( 4) 2 1 VP2 a. PL = ⋅ = ⇒ PL = 80 mW 2 RL 2 ( 0.1) VP 4 b. IP = = ⇒ I P = 40 mA RL 0.1 VCCVP VP2 c. PQ = − π RL 4 RL ( 5 )( 4 ) ( 4 ) 2 PQ = − = 63.7 − 40 ⇒ PQ = 23.7 mW π ( 0.1) 4 ( 0.1) π VP π 4 d. η= = ⋅ ⇒ η = 62.8% 4VCC 4 5 TYU8.6 a. 1 ⎛ 2V ⎞ VCC 12 I CQ ≅ ⋅ ⎜ CC ⎟= = = 8 mA 2 ⎝ RL ⎠ RL 1.5 RTH = R1 R2 ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ VCC = ⋅ RTH ⋅ VCC ⎝ R1 + R2 ⎠ R1 I CQ 8 VTH − VBE I BQ = = = 0.107 mA = β 75 RTH + (1 + β ) RE
  • 8.
    Let RTH =(1 + β ) RE = ( 76 )( 0.1) = 7.6 kΩ 1 ⋅ ( 7.6 )(12 ) − 0.7 R1 0.107 = 7.6 + 7.6 1 ⋅ ( 91.2 ) = 2.33 ⇒ R1 = 39.1 kΩ R1 39.1R2 = 7.6 ⇒ ( 39.1 − 7.6 ) R2 = ( 7.6 )( 39.1) ⇒ R2 = 9.43 kΩ 39.1 + R2 b. 1 1 PL = ⋅ ( 0.9 I CQ ) RL = ⎡( 0.9 )( 8 ) ⎤ (1.5 ) ⇒ PL = 38.9 mW 2 2 2 2⎣ ⎦ PS = VCC I CQ = (12 )( 8 ) = 96 mW PQ = PS − PL = 96 − 38.9 ⇒ PQ = 57.1 mW PL 38.9 η= = ⇒ η = 40.5% PS 96 TYU8.7 I E = I E 3 + IC 4 + IC 5 = I E 3 + IC 4 + β5 I B5 = I E 3 + β 4 I B 4 + β 5 (1 + β 4 ) I B 4 I E = (1 + β 3 ) I B 3 + β 4 β 3 I B 3 + β 5 (1 + β 4 ) β 3 I B 3 If β 4 and β 5 are large, then I E ≅ β 3 β 4 β 5 I B 3 So that composite current gain is β ≅ β 3 β 4 β 5