SlideShare a Scribd company logo
1 of 25
Download to read offline
Chapter 13
Problem Solutions

13.1        Computer Simulation

13.2        Computer Simulation

13.3
(a)                       (
             Ad = g m1 ro 2 ro 4 Ri 6      )
          I C1   20
g m1 =         =    β‡’ 0.769 mA / V
          VT 0.026
          VA 2 80
 ro 2 =        =   = 4 MΞ©
          I C 2 20
          VA 4 80
 ro 4 =        =   = 4 MΞ©
          I C 2 20
 Ri 6 = rΟ€ 6 + (1 + Ξ² n ) ⎑ R1 rΟ€ 7 ⎀
                          ⎣         ⎦
        (120)(0.026)
 rΟ€ 7 =                    = 15.6 k Ξ©
               0.2
        V (on) 0.6
 I C 6 β‰… BE        =         = 0.030 mA
             R1        20
          (120)(0.026)
 rΟ€ 6 =                = 104 k Ξ©
             0.030
Then
Ri 6 = 104 + (121) ⎑ 20 15.6 ⎀ β‡’ 1.16 M Ξ©
                   ⎣         ⎦
Then
             (
Ad = 769 4 4 1.16 β‡’ Ad = 565  )
Now
                                                    βŽ› R1          ⎞
Vo = βˆ’ I c 7 ro 7 = βˆ’( Ξ² n I b 7 )ro 7 = βˆ’ Ξ² n ro 7 ⎜             ⎟ Ic6
                                                    ⎝ R1 + rΟ€ 7   ⎠
                       βŽ› R1 ⎞                          Vo1
= βˆ’ Ξ² n (1 + Ξ² n )ro 7 ⎜           ⎟ I b 6 and I b 6 =
                       ⎝ R1 + rΟ€ 7 ⎠                   Ri 6
Then
        V      βˆ’ Ξ² n (1 + Ξ² n )ro 7 βŽ› R1 ⎞
Av 2 = o =                          ⎜             ⎟
       Vo1               Ri 6       ⎝ R1 + rΟ€ 7 ⎠
          VA     80
ro 7 =         =    = 400 k Ξ©
          I C 7 0.2
So
          βˆ’(120)(121)(400) βŽ› 20 ⎞
Av 2 =                     ⎜           ⎟ β‡’ Av 2 = βˆ’2813
               1160        ⎝ 20 + 15.6 ⎠
Overall gain = Ad β‹… Av 2 = (565)(βˆ’2813) β‡’ A = βˆ’1.59 Γ—106
                                          (80)(0.026)
(b)          Rid = 2rΟ€ 1 and rΟ€ 1 =                   = 104 k Ξ©
                                             0.020
Rid = 208 k Ξ©
                          1
(c)          f PD =             and CM = (10)(1 + 2813) = 28,140 pF
                      2Ο€ Req CM
 Req = ro 2 ro 4 Ri 6 = 4 4 1.16 = 0.734 M Ξ©
                         1
 f PD =                                     = 7.71 Hz
          2Ο€ (0.734 Γ— 10 )(28,140 Γ— 10βˆ’12 )
                                  6
Gain-Bandwidth Product = (7.71)(1.59 Γ— 106 ) β‡’ 12.3 MHz

13.4
a.        Q3 acts as the protection device.
b.        Same as part (a).

13.5
If we assume VBE (on) = 0.7 V, then Vin = 0.7 + 0.7 + 50 + 5
So breakdown voltage β‰ˆ 56.4 V.

13.6
                    15 βˆ’ 0.6 βˆ’ 0.6 βˆ’ (βˆ’15)
(a)       I REF =                          = 0.50 β‡’ R5 = 57.6 k Ξ©
                              R5
                 βŽ›I ⎞
I C10 R4 = VT ln ⎜ REF ⎟
                 ⎝ I C10 ⎠
       0.026 βŽ› 0.50 ⎞
R4 =          ln ⎜         ⎟ β‡’ R4 = 2.44 k Ξ©
       0.030 ⎝ 0.030 ⎠
                   5 βˆ’ 0.6 βˆ’ 0.6 βˆ’ (βˆ’5)
(b)       I REF =                       β‡’ I REF = 0.153 mA
                           57.6
                          βŽ› 0.153 ⎞
I C10 (2.44) = (0.026) ln ⎜        ⎟
                          ⎝ I C10 ⎠
By trial and error, I C10 β‰… 21.1 ΞΌ A

13.7
(a)       I REF β‰… 0.50 mA
            βŽ›I ⎞                   βŽ› 0.50 Γ— 10βˆ’3 ⎞
VBE = VT ln ⎜ REF ⎟ = (0.026) ln ⎜        βˆ’14    ⎟ β‡’ VBE11 = 0.641V = VEB12
            ⎝ IS ⎠                 ⎝ 10          ⎠
Then
      15 βˆ’ 0.641 βˆ’ 0.641 βˆ’ (βˆ’15)
R5 =                                β‡’ R5 = 57.4 k Ξ©
                  0.50
      0.026 βŽ› 0.50 ⎞
R4 =         ln ⎜       ⎟ β‡’ R4 = 2.44 k Ξ©
      0.030 ⎝ 0.030 ⎠
                  βŽ› 0.030 Γ— 10βˆ’3 ⎞
VBE10 = 0.026 ln ⎜        βˆ’14    ⎟ β‡’ VBE10 = 0.567 V
                  ⎝ 10           ⎠
(b)       From Problem 13.6, I REF β‰… 0.15 mA
                         βŽ› 0.15 Γ— 10βˆ’3 ⎞
VBE11 = VEB12 = 0.026 ln ⎜      βˆ’14    ⎟ = 0.609 V
                         ⎝ 10          ⎠
              5 βˆ’ 0.609 βˆ’ 0.609 βˆ’ (βˆ’5)
Then I REF =                             β‡’ I REF = 0.153 mA
                        57.4
Then I C10 β‰… 21.1 ΞΌ A from Problem 13.6

13.8
                   5 βˆ’ 0.6 βˆ’ 0.6 βˆ’ (βˆ’5)
a.        I REF =                       β‡’ I REF = 0.22 mA
                            40
                 βŽ›I ⎞
I C10 R4 = VT ln ⎜ REF ⎟
                 ⎝ I C10 ⎠
                       βŽ› 0.22 ⎞
I C10 (5) = (0.026) ln ⎜       ⎟
                       ⎝ I C10 ⎠
By trial and error;
I C10 β‰… 14.2 ΞΌ A
          I C10
IC 6 β‰…          β‡’ I C 6 = 7.10 ΞΌ A
            2
I C17   = 0.75 I REF β‡’ I C17 = 0.165 mA
I C13 A = 0.25I REF β‡’ I C13 A = 0.055 mA
(b)        Using Example 13.4
 rΟ€ 17 = 31.5 kΞ©
     β€²
  RE = 50 [31.5 + (201)(0.1)] = 50 51.6 = 25.4 kΞ©
           Ξ² nVT
 rΟ€ 16 =           and
           I C16
         0.165 (0.165)(0.1) + 0.6
I C16 =         +                   = 0.0132 mA
           200            50
 rΟ€ 16 = 394 kΞ©
Then
 Ri 2 = 394 + (201)(25.4) β‡’ 5.5 MΞ©
  rΟ€ 6 = 732 kΞ©
         0.00710
gm6 =              = 0.273 mA / V
           0.026
            50
  r06 =          = 7.04 MΞ©
         0.0071
Then
Ract1 = 7.04[1 + (0.273)(1 732)] = 8.96 MΞ©
            50
   r04 =          = 7.04 MΞ©
          0.0071
Then
          βŽ› 7.1 ⎞
 Ad = βˆ’ ⎜         ⎟ (7.04 8.96 5.5)
          ⎝ 0.026 ⎠
or
 Ad = βˆ’627 Gain of differential amp stage
Using Example 13.5, and neglecting the input resistance to the output stage:
         V       50
Ract 2 = A =          = 303 kΞ©
        I C13 B 0.165
            βˆ’(200)(201)(50)(303) (303)
  Av 2 =
         (5500)[50 + 31.5 + (201)(0.1)]
or
 Av 2 = βˆ’545 Gain of second stage

13.9
I C10 = 19 ΞΌ A
From Equation (13.6)
            ⎑ β 2 + 2β P + 2 ⎀      ⎑ (10) 2 + 2(10) + 2 ⎀
I C10 = 2 I ⎒ P              βŽ₯ = 2I ⎒                    βŽ₯
            ⎣ β P + 3β P + 2 ⎦      ⎣ (10) + 3(10) + 2 ⎦
                2                          2


             ⎑122 ⎀
        = 2I ⎒    βŽ₯
             ⎣132 ⎦
So
            βŽ› 132 ⎞
2 I = (19) ⎜      ⎟ = 20.56 μ A
            ⎝ 122 ⎠
I C 2 = I = 10.28 ΞΌ A
2I             20.56
IC 9 =               =           β‡’ I C 9 = 17.13 ΞΌ A
        βŽ›    2 ⎞         βŽ›    2⎞
        ⎜1 +    ⎟        ⎜ 1+ ⎟
        ⎝    βP ⎠        ⎝ 10 ⎠
        I     17.13
I B9   = C9 =       β‡’ I B 9 = 1.713 ΞΌ A
         Ξ²P     10
             I        10.28
IB4 =               =       β‡’ I B 4 = 0.9345 ΞΌ A
         (1 + Ξ² P )    11
         βŽ› Ξ²       ⎞           βŽ› 10 ⎞
IC 4 = I ⎜ P       ⎟ = (10.28) ⎜ ⎟ β‡’ I C 4 = 9.345 ΞΌ A
         ⎝1+ βP    ⎠           ⎝ 11 ⎠

13.10
VB 5 βˆ’ V βˆ’ = VBE (on) + I C 5 (1)
             = 0.6 + (0.0095)(1) = 0.6095
        0.6095
IC 7 =            β‡’ I C 7 = 12.2 ΞΌ A
            50
I C 8 = I C 9 = 19 ΞΌ A
I REF = 0.72 mA
I E13 = I REF = 0.72 mA
I C14 = 138 ΞΌ A
Power = (V + βˆ’ V βˆ’ ) [ I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 ]
= 30[0.0122 + 0.019 + 0.019 + 0.72 + 0.72 + 0.138]
β‡’ Power = 48.8 mW
Current supplied by V + and V βˆ’ = I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14
                                        = 1.63 mA

13.11
(a)         vcm (min) = βˆ’15 + 0.6 + 0.6 + 0.6 + 0.6 = βˆ’12.6 V
vcm (max) = +15 βˆ’ .6 = 14.4 V
So βˆ’ 12.6 ≀ vcm ≀ 14.4 V
(b)         vcm (min) = βˆ’5 + 4(0.6) = βˆ’2.6 V
vcm (max) = 5 βˆ’ 0.6 = 4.4 V
So βˆ’ 2.6 ≀ vcm ≀ 4.4 V

13.12
If v0 = V βˆ’ = βˆ’15 V , the base voltage of Q14 is pulled low, and Q18 and Q19 are effectively cut off. As
a first approximation
           0.6
 I C14 =           = 22.2 mA
         0.027
         22.2
 I B14 =         = 0.111 mA
         200
Then
 I C15 = I C13 A βˆ’ I B14 = 0.18 βˆ’ 0.111 = 0.069 mA
Now
                  βŽ›I ⎞
VBE15 = VT ln ⎜ C15 ⎟
                  ⎝ 15 ⎠
                        βŽ› 0.069 Γ— 10βˆ’3 ⎞
        = (0.026) ln ⎜          βˆ’14    ⎟
                        ⎝ 10           ⎠
         = 0.589 V
As a second approximation
         0.589
I C14 =        β‡’ I C14 = 21.8 mA
         0.027
         21.8
 I B14 =      = 0.109 mA
         200
and
I C15 = 0.18 βˆ’ 0.109 β‡’ I C15 = 0.071 mA

13.13
a.         Neglecting base currents:
I D = I BIAS
Then
                      βŽ›I ⎞
VBB = 2VD = 2VT ln ⎜ D ⎟
                      ⎝ IS ⎠
                              βŽ› 0.25 Γ— 10βˆ’3 ⎞
                = 2(0.026) ln ⎜         βˆ’14 ⎟
                              ⎝ 2 Γ— 10      ⎠
or
VBB = 1.2089 V
                      βŽ›V / 2⎞
I CN = I CP = I S exp ⎜ BB ⎟
                      ⎝ VT ⎠
                     βŽ› 1.2089 ⎞
     = 5 Γ— 10βˆ’14 exp ⎜          ⎟
                     ⎝ 2(0.026) ⎠
So
I CN = I CP = 0.625 mA
b.         For vI = 5 V, v0 β‰… 5 V
     5
iL β‰…    = 1.25 mA
     4
As a first approximation
I CN β‰ˆ iL = 1.25 mA
                  βŽ› 1.25 Γ— 10βˆ’3 ⎞
VBEN = (0.026) ln ⎜         βˆ’14 ⎟
                                  = 0.6225 V
                  ⎝ 5 Γ— 10      ⎠
Neglecting base currents,
VBB = 1.2089 V
Then VEBP = 1.2089 βˆ’ 0.6225 = 0.5864 V
                     βŽ› 0.5864 ⎞
I CP = 5 Γ— 10βˆ’14 exp ⎜        ⎟ β‡’ I CP = 0.312 mA
                     ⎝ 0.026 ⎠
As a second approximation,
I CN = iL + I CP = 1.25 + 0.31 β‡’ I CN β‰… 1.56 mA

13.14
                VBB        1.157
R1 + R2 =                =       = 64.28 kΞ©
             (0.1) I BIAS 0.018
            βŽ›I     ⎞              βŽ› (0.9) I BIAS ⎞
VBE = VT ln ⎜ C    ⎟ = (0.026) ln ⎜              ⎟
            ⎝ IS   ⎠              ⎝     IS       ⎠
                    βŽ› 0.162 Γ— 10βˆ’3 ⎞
       = (0.026) ln ⎜      βˆ’14     ⎟
                    ⎝ 10           ⎠
VBE = 0.6112 V
      βŽ› R2 ⎞
VBE = ⎜         ⎟ VBB
      ⎝ R1 + R2 ⎠
          βŽ› R ⎞
0.6112 = ⎜ 2 ⎟ (1.157)
          ⎝ 64.28 ⎠
So
R2 = 33.96 kΞ©
Then
R1 = 30.32 kΞ©

13.15
(a)                        (
            Ad = βˆ’ g m ro 4 ro 6 Ri 2    )
From example 13.4
          9.5
gm =            = 365 ΞΌ A / V , ro 4 = 5.26 M Ξ©
        0.026
Now
ro 6 = ro 4 = 5.26 M Ξ©
Assuming R8 = 0, we find
                           β€²
Ri 2 = rΟ€ 16 + (1 + Ξ² n ) RE
      = 329 + (201) ( 50 9.63) β‡’ 1.95 M Ξ©
Then
                  (                  )
Ad = βˆ’(365) 5.26 5.26 1.95 β‡’ Ad = βˆ’409
(b)         From Equation (13.20),

Av 2 =
                               (
         βˆ’ Ξ² n (1 + Ξ² n ) R9 Ract 2 Ri 3 R017    )
              {
          Ri 2 R9 + ⎑ rΟ€ 17 + (1 + Ξ² n ) Rg ⎀
                    ⎣                       ⎦}
For Rg = 0, Ri 2 = 1.95 M Ξ©
Using the results of Example 13.5

Av 2 =
                               (
         βˆ’200(201)(50) 92.6 4050 92.6                )β‡’A    = βˆ’792
                      (1950){50 + 9.63}
                                                       v2




13.16
Let I C10 = 40 ΞΌ A, then I C1 = I C 2 = 20 ΞΌ A. Using Example 13.5,
Ri 2 = 4.07 MΞ©
       (200)(0.026)
rΟ€ 6 =               = 260 kΞ©
           0.020
        0.020
gm6 =          = 0.769 mA/V
        0.026
        50
r06 =       β‡’ 2.5 MΞ©
      0.02
Then
Ract1 = 2.5[1 + (0.769)(1 260)] = 4.42 MΞ©
        50
r06 =       β‡’ 2.5 MΞ©
      0.02
Then
βŽ› I CQ ⎞
Ad = βˆ’ ⎜      ⎟ (r04 Ract1 Ri 2 )
       ⎝ VT ⎠
       βŽ› 20 ⎞
   = βˆ’βŽœ          ⎟ (2.5 4.42 4.07)
       ⎝ 0.026 ⎠
So
Ad = βˆ’882

13.17
From Problem 13.8
I1 = I 2 = 7.10 ΞΌ A, I C17 = 0.165 mA, I C13 A = 0.055 mA
                  I E17 R8 + VBE17        0.165 (0.165)(0.1) + 0.6
I C16 β‰ˆ I B17 +                       =        +
                         R9                200         50
                                      = 0.000825 + 0.01233
I C16 = 0.0132 mA
      (200)(0.026)
rΟ€ 17 =                 = 31.5 K
         0.165
 RE = R9 [ rΟ€ 17 + (1 + Ξ² ) R8 ] = 50 [31.5 + (201)(0.1)]
  1


     = 50 51.6 = 25.4 K
          (200)(0.026)
rΟ€ 16 =                = 394 K
             0.0132
Then
Ri 2 = rΟ€ 16 + (1 + Ξ² ) RE = 394 + (201)(25.4) β‡’ 5.50 MΞ©
                           1


Now
         (200)(0.026)
  rΟ€ 6 =                     = 732 K
              0.0071
         0.0071
 gm6 =             = 0.273 mA/V
          0.026
            50
  ro 6 =           β‡’ 7.04 MΞ©
         0.0071
Ract1 = ro 6 [1 + g m 6 ( R rΟ€ 6 )]
       = 7.04[1 + (0.273)(1 732)] = 8.96 MΞ©
            50
  ro 4 =           β‡’ 7.04 MΞ©
         0.0071
Then
Ad = βˆ’ g m1 (ro 4 Ract1 Ri 2 )
      βŽ› 7.10 ⎞
   = βˆ’βŽœ       ⎟ (7.04 8.96 5.5)
      ⎝ 0.026 ⎠
Ad = βˆ’627
             50                      50
Now Ract 2 =       β‡’ 303 K Ro17 =         = 303 K
            0.165                   0.165
From Eq. (13.20), assuming Ri 3 β†’ ∞
              Ξ² (1 + Ξ² ) R9 ( Ract 2 R017 )
Av 2 β‰… βˆ’
           Ri 2 { R9 + [rΟ€ 17 + (1 + Ξ² ) R8 ]}
           βˆ’(200)(201)(50)(303 303)                  βˆ’3.045 Γ— 108
    =                                            =
       (5500)[50 + 31.5 + (201)(0.1)]                5.588 Γ— 105
Av 2 = βˆ’545
Overall gain Av = (βˆ’627)(βˆ’545) = 341, 715
13.18
Using results from 13.17
                         βŽ› 100 ⎞
Ri 2 = 5.50 MΞ©, Ract1 ⎜           ⎟ [1 + (0.273)(1 732)] β‡’ 17.93 MΞ©
                         ⎝ 0.0071 ⎠
          100
ro 4 =          β‡’ 14.08 MΞ©
        0.0071
          βŽ› 7.10 ⎞
 Ad = βˆ’ ⎜         ⎟ (14.08 17.93 5.50)
          ⎝ 0.026 ⎠
 Ad = βˆ’885
Now
           100                        100
Ract 2 =         = 606 K Ro17 =             = 606 K
          0.165                      0.165
           βˆ’(200)(201)(50)(606 606)          βˆ’6.09 Γ— 108
 Av 2 =                                    =
         (5500)[50 + 31.5 + (201)(0.1)] 5.588 Γ— 105
 Av 2 = βˆ’1090
Overall gain
 Av = (βˆ’885)(βˆ’1090) = 964, 650

13.19
Now
         rΟ€ 14 + R01
Re14 =               and R0 = R6 + Re14
           1+ Ξ²P
Assume series resistance of Q18 and Q19 is small. Then
R01 = r013 A Re 22
                 rΟ€ 22 + R017 r013 B
where Re 22 =
                      1+ Ξ²P
and R017 = r017 [1 + g m17 ( R8 rΟ€ 17 )]
Using results from Example 13.6,
rΟ€ 17 = 9.63 kΞ©         rΟ€ 22 = 7.22 kΞ©
g m17 = 20.8 mA/V r017 = 92.6 kΞ©
Then
R017 = 92.6[1 + (20.8)(0.1 9.63)] = 283 kΞ©
          50
r013 B =       = 92.6 kΞ©
         0.54
Then
         7.22 + 283 92.6
Re 22 =                     = 1.51 kΞ©
                51
R01 = r013 A Re 22 = 278 1.51 = 1.50 kΞ©
        (50)(0.026)
rΟ€ 14 =               = 0.65 kΞ©
              2
Then
         0.65 + 1.50
Re14 =               = 0.0422 kΞ©
             51
or
Re14 = 42.2 Ξ©
Then
R0 = 42.2 + 27 β‡’ R0 = 69.2 Ξ©

13.20
⎑                  βŽ› r       ⎞⎀
 Rid = 2 ⎒ rΟ€ 1 + (1 + Ξ² n ) ⎜ Ο€ 3     ⎟βŽ₯
          ⎣                  ⎝ 1+ βP   ⎠⎦
 Ξ² n = 200, Ξ² P = 10
(a)
 I C1 = 9.5 ΞΌ A
       (200)(0.026)
rΟ€ 1 =              = 547 K
           0.0095
       (10)(0.026)
rΟ€ 3 =             = 27.4 K
         0.0095
Then
         ⎑      (201)(27.4) ⎀
Rid = 2 ⎒547 +              βŽ₯
         ⎣          11      ⎦
Rid β‡’ 2.095 MΞ©
(b)
 I C1 = 7.10 ΞΌ A
        (200)(0.026)
 rΟ€ 1 =              = 732 K
            0.0071
        (10)(0.026)
 rΟ€ 3 =             = 36.6 K
           0.0071
          ⎑      (201)(36.6) ⎀
 Rid = 2 ⎒ 732 +             βŽ₯
          ⎣          11      ⎦
 Rid β‡’ 2.80 MΞ©

13.21
We can write
                     A0
A( f ) =
        βŽ›          f βŽžβŽ›          f ⎞
        ⎜1 + j        ⎟⎜ 1 + j ⎟
        ⎝        f PD ⎠⎝         f1 ⎠
                 181, 260
      =
        βŽ›          f βŽžβŽ›           f ⎞
        ⎜1 + j         ⎟ ⎜1 + j ⎟
        ⎝       10.7 ⎠ ⎝          f1 ⎠
Phase:
             βŽ› f ⎞           βˆ’1 βŽ› f ⎞
Ο† = βˆ’ tan βˆ’1 ⎜       ⎟ βˆ’ tan ⎜ ⎟
             ⎝ 10.7 ⎠           ⎝ f1 ⎠
For a Phase margin = 70Β°, Ο† = βˆ’110Β°
So
                 βŽ› f ⎞         βˆ’1 βŽ› f ⎞
βˆ’110Β° = βˆ’ tan βˆ’1 ⎜      ⎟ βˆ’ tan ⎜ ⎟
                 ⎝ 10.7 ⎠         ⎝ f1 ⎠
Assuming f          10.7, we have
       βŽ› f ⎞        f
tan βˆ’1 ⎜ ⎟ = 20Β° β‡’ = 0.364
       ⎝ f1 ⎠       f1
At this frequency, A( f ) = 1, so
181, 260
1=
                    2
          βŽ› f ⎞
       1+ ⎜      ⎟ β‹… 1 + (0.364)
                                 2

          ⎝ 10.7 ⎠
        170,327
  =
                    2
           βŽ› f ⎞
       1+ ⎜       ⎟
           ⎝ 10.7 ⎠
      f
or        = 170,327 β‡’ f = 1.82 MHz
    10.7
Then, second pole at
         f
 f1 =         β‡’ f1 = 5 MHz
      0.364

13.22
a.        Original g m1 and g m 2
               βŽ›W βŽžβŽ› ΞΌ C ⎞
K p1 = K p 2 = ⎜ ⎟⎜ P ox ⎟ = (12.5)(10)
               ⎝ L ⎠⎝ 2 ⎠
                           = 125 ΞΌ A / V 2
So
                      βŽ› IQ ⎞
g m1 = g m 2 = 2 K p1 ⎜ ⎟      = 2 (0.125)(10)
                      ⎝ 2⎠
                               = 0.09975 mA/V
   βŽ›W ⎞
If ⎜ ⎟ is increased to 50, then
   ⎝L⎠
 K p1 = K p 2 = (50)(10) = 500 ΞΌ A / V 2
So
g m1 = g m 2 = 2 (0.5)(0.0199) = 0.1995 mA/V
b.        Gain of first stage
 Ad = g m1 (r02 r04 ) = (0.1995)(5025 5025)
or
 Ad = 501
Voltage gain of second stage remains the same, or
 Av 2 = 251
Then Av = Ad β‹… Av 2 = (501)(251)
or
 Ad = 125, 751

13.24
a.          K p = (10)(20) = 200 ΞΌ A / V 2 = 0.2 mA / V 2
                  10 βˆ’ VSG βˆ’ (βˆ’10)
I REF = I SET   =
                          200
                = k P (VSG βˆ’ 1.5) 2
20 βˆ’ VSG = (0.2)(200)(VSG βˆ’ 3VSG + 2.25)
                        2


40VSG βˆ’ 119VSG + 70 = 0
    2


        119 Β± (119) 2 βˆ’ 4(40)(70)
VSG =                             β‡’ VSG = 2.17 V
                 2(40)
Then
20 βˆ’ 2.17
I REF =          β‡’ I REF = 89.2 ΞΌ A
           200
M 5 , M 6 , M 8 matched transistors so that
I Q = I D 7 = I REF = 89.2 ΞΌ A
b.      Small-signal voltage gain of input stage:
 Ad = 2 K p1 I Q β‹… ( ro 2 ro 4 )
          1           1
r02 =          =               = 1.12 MΞ©
        Ξ»P I D        βŽ› 89.2 ⎞
               (0.02) ⎜      ⎟
                      ⎝ 2 ⎠
        1            1
r04 =        =                 = 2.24 MΞ©
      Ξ»n I D          βŽ› 89.2 ⎞
               (0.01) ⎜      ⎟
                      ⎝ 2 ⎠
Then
Ad = 2(200)(89.2) β‹… (1.12 2.24)
or
 Ad = 141
Small-signal voltage gain of second stage:
Av 2 = g m 7 (r07 r08 )
K n 7 = (20)(20) = 400 ΞΌ A / V 2
So
g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.0892) = 0.378 mA/V
         1               1
r08 =           =                 = 561 kΞ©
       Ξ»P I D 7 (0.02)(0.0892)
           1                  1
r07 =              =                  = 1121 kΞ©
        Ξ»n I D 7       (0.01)(0.0892)
So
Av 2 = (0.378)(1121 561) β‡’ Av 2 = 141
Then overall voltage gain
Av = Ad β‹… Av 2 = (141)(141) β‡’ Av = 19,881

13.25
Small-signal voltage gain of input stage:
 Ad = 2 K p1 I Q β‹… ( ro 2 ro 4 )
K p1 = (10)(10) = 100 ΞΌ A / V 2
          1            1
r02 =           =                = 1000 kΞ©
         βŽ› IQ ⎞         βŽ› 0.2 ⎞
      λP ⎜ ⎟ (0.01) ⎜         ⎟
         ⎝ 2⎠           ⎝ 2 ⎠
          1             1
r04 =           =                 = 2000 kΞ©
         βŽ› IQ ⎞           βŽ› 0.2 ⎞
      λn ⎜ ⎟      (0.005) ⎜     ⎟
         ⎝ 2⎠             ⎝ 2 ⎠
Then
Ad = 2(0.1)(0.2) β‹… (1000 2000)
or
 Ad = 133
Small-signal voltage gain of second stage:
Av 2 = g m 7 ( r07 r08 )
K n 7 = (20)(20) = 400 ΞΌ A / V 2
So
g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.2) = 0.566 mA/V
         1             1
r08 =          =              = 500 kΞ©
       Ξ»P I D 7 (0.01)(0.2)
           1                1
r07 =              =                = 1000 kΞ©
        Ξ»n I D 7       (0.005)(0.2)
So
Av 2 = (0.566)(1000 500) β‡’ Av 2 = 189
Then overall voltage gain is
Av = Ad β‹… Av 2 = (133)(189) β‡’ Av = 25,137

13.26
             1
 f PD =
          2Ο€ Req Ci
where Req = r04 r02 and Ci = C1 (1 + Av 2 )
We can find that
Av 2 = 251 and r04 = r02 = 5.025 MΞ©
Now
Req = 5.025 5.025 = 2.51 MΞ©
and
Ci = 12(1 + 251) = 3024 pF
So
                      1
 f PD =
        2Ο€ (2.51Γ— 106 )(3024 Γ— 10βˆ’12 )
or
 f PD = 21.0 Hz

13.27
             1
 f PD =
          2Ο€ Req Ci
where Req = r04 r02
From Problem 13.22,
r02 = 1.12 MΞ©, r04 = 2.24 MΞ© and Av 2 = 141
So
                1
8=
     2Ο€ (1.12 2.24) Γ— 106 Γ— Ci
or
Ci = 2.66 Γ— 10βˆ’8 = C1 (1 + Av 2 ) = C1 (142)
or
C1 = 188 pF

13.28
R0 = r07 r08
We can find that
r07 = r08 = 2.52 MΞ©
Then
R0 = 2.52 2.52
or
R0 = 1.26 MΞ©
13.29
a.




V0 = ( g m1Vgs1 )(r01 r02 )
VI = Vgs1 + V0
Then V0 = g m1 (r01 r02 )(VI βˆ’ V0 )
or
         g m1 (r01 r02 )
Av =
       1 + g m1 (r01 r02 )
                                VX VX
b.          I X + g m1Vgs1 =       +    and Vgs1 = βˆ’VX
                                r02 r01
                                     1
                             R0 =        r r
                                    g m1 01 02

13.30
                    βŽ› 80 ⎞
            I Q 2 = ⎜ ⎟ (20) [1.1737 βˆ’ 0.7 ]
                                            2
(a)
                    ⎝ 2⎠
            I Q 2 = 180 ΞΌ A
                    βŽ› 80 ⎞
            I D 6 = ⎜ ⎟ (25) (VGS 6 βˆ’ 0.7 ) = 25 β‡’ VGS 6 = 0.8581 V
                                           2
(b)
                    ⎝ 2⎠
                    βŽ› 40 ⎞
            I D 7 = ⎜ ⎟ (50) (VSG 7 βˆ’ 0.7 ) = 25 β‡’ VSG 7 = 0.8581 V
                                           2

                    ⎝  2 ⎠
Set
VSG 8 P = VGS 8 N = 0.8581 V
      βŽ› 40 ⎞ βŽ› W ⎞               βŽ›W ⎞
180 = ⎜ ⎟ ⎜ ⎟ (0.8581 βˆ’ 0.7) 2 β‡’ ⎜ ⎟ = 360
      ⎝ 2 ⎠ ⎝ L ⎠8 P             ⎝ L ⎠8 P
      βŽ› 80 ⎞ βŽ› W ⎞               βŽ›W ⎞
180 = ⎜ ⎟ ⎜ ⎟ (0.8581 βˆ’ 0.7) 2 β‡’ ⎜ ⎟ = 180
      ⎝ 2 ⎠ ⎝ L ⎠8 N             ⎝ L ⎠8 N

13.31
βŽ› 80 ⎞
VGS11 β‡’      200 = ⎜ ⎟ (20) (VGS 11 βˆ’ 0.7 )
                                            2

                     ⎝ 2⎠
            VGS 11 = 1.20 V
Let M 12 = 2 transistors in series. Than
       5 βˆ’ 1.20
VGS12 =         = 1.90 V
           2
       βŽ› 80 βŽžβŽ› W ⎞            βŽ›W ⎞      βŽ›W ⎞
 200 = ⎜ ⎟⎜ ⎟ (1.90 βˆ’ 0.7 ) β‡’ ⎜ ⎟ = ⎜ ⎟ = 3.47
                           2

       ⎝  2 ⎠⎝ L ⎠12          ⎝ L ⎠12 A ⎝ L ⎠12 B

13.32
(a)
                     βŽ› 80 ⎞
 I Q 2 = 250ΞΌ A = ⎜ ⎟ (5) (VGS 8 βˆ’ 0.7 )
                                         2

                     ⎝ 2⎠
      β‡’ VGS 8 = 1.818 V
                          1.818
      β‡’ VGS 6 = VSG 7 =         = 0.909 V
                            2
                 βŽ› 80 ⎞
 I D 6 = I D 7 = ⎜ ⎟ (25)(0.909 βˆ’ 0.7) 2 = 43.7 ΞΌ A
                 ⎝ 2⎠
(b)
            βŽ› 80 ⎞   βŽ› 250 ⎞
g m1 = 2 ⎜ ⎟ (15) ⎜        ⎟ β‡’ 0.5477 mA/V
            ⎝ 2⎠     ⎝ 2 ⎠
               1
ro 2 =                 = 800 K
       ( 0.01)( 0.125)
               1
r04 =                      = 533.3K
      ( 0.015)( 0.125)
Ad 1 = g m1 ( ro 2 ro 4 ) = ( 0.5477 ) ( 800   533.3)
Ad 1 = 175
Second stage:
A2 = βˆ’ g m 5 (ro 5 ro 9 )
           βŽ› 40 ⎞
g m 5 = 2 ⎜ ⎟ (80)(250) β‡’ 1.265 mA/V
           ⎝ 2 ⎠
               1
 r05 =                 = 266.7 K
        (0.015)(0.25)
              1
 r09 =               = 400 K
        (0.01)(0.25)
 A2 = βˆ’(1.265)(266.7 400)
 A2 = βˆ’202
Assume the gain of the output stage β‰ˆ 1, then
Av = Ad 1 β‹… A2 = (175)(βˆ’202)
Av = βˆ’35,350

13.33
(a)            Ad = g m1 ( Ro 6 Ro8 )
g m1 = 2 K n I DQ = 2 (0.5)(0.025) β‡’ 224 ΞΌ A / V
g m1 = g m8
g m 6 = 2 (0.5)(0.025) β‡’ 224 ΞΌ A / V
                               1         1
ro1 = ro 6 = ro8 = ro10 =          =            = 2.67 M Ξ©
                             Ξ» I DQ (0.015)(25)
           1           1
ro 4 =          =                β‡’ 1.33 M Ξ©
         Ξ» I D 4 ( 0.015 )( 50 )
Now
Ro8 = g m8 (ro8 ro10 ) = (224)(2.67)(2.67) = 1597 M Ξ©
Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) = (224)(2.67)(2.67 1.33) β‡’ Ro 6 = 531 M Ξ©
Then
Ad = (224)(531 1597) β‡’ Ad = 89, 264
(b)            Ro = Ro 6 Ro8 = 531 1597 β‡’ Ro = 398 M Ξ©
                           1                  1
(c)            f PD =           =                              β‡’ f PD = 80 Hz
                        2Ο€ Ro CL 2Ο€ ( 398 Γ— 106 )( 5 Γ— 10βˆ’12 )
GBW = (89, 264)(80) β‡’ GBW = 7.14 MHz

13.34
(a)
                          1         1
ro1 = ro8 = ro10 =             =           = 2 MΞ©
                        Ξ» p I D (0.02)(25)
           1               1
ro 6 =            =               = 2.67 M Ξ©
         Ξ»n I D       (0.015)(25)
           1           1
ro 4 =           =            = 1.33 M Ξ©
         Ξ»n I D 4 (0.015)(50)
         βŽ› 35 ⎞ βŽ› W ⎞        βŽ›W ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ (25) = 41.8 ⎜ ⎟ = g m8
         ⎝ 2 ⎠ ⎝ L ⎠1        ⎝ L ⎠1
          βŽ› 80 βŽžβŽ› W ⎞        βŽ›W ⎞
g m 6 = 2 ⎜ ⎟⎜ ⎟ (25) = 63.2 ⎜ ⎟
          ⎝ 2 ⎠⎝ L ⎠6        ⎝ L ⎠6
Ro = Ro 6 Ro8 = [ g m 6 (ro 6 )(ro 4 ro1 )] [ g m8 (ro8 ro10 )]
βŽ›W ⎞                   βŽ›W ⎞
Define X 1 = ⎜ ⎟ and X 6 = ⎜ ⎟
                 ⎝ L ⎠1                 ⎝ L ⎠6
Then
Ro = ⎣ 63.2 X 6 ( 2.67 ) (1.33 2 ) ⎦ ⎑ 41.8 X 1 ( 2 )( 2 ) ⎀
     ⎑                             ⎀ ⎣                     ⎦
                                  22,539 X 1 X 6
   = 134.8 X 6 167.2 X 1 =
                              134.8 X 6 + 167.2 X 1
                                 βŽ› 22,539 X 1 X 6        ⎞
Ad = g m1 Ro       = (41.8 X 1 ) ⎜                       ⎟
                                 ⎝ 134.8 X 6 + 167.2 X 1 ⎠
                   = 10, 000
              βŽ›W ⎞      1 βŽ›W ⎞
Now X 6 = ⎜ ⎟ =            ⎜ ⎟ = 0.674 X 1
              ⎝ L ⎠6   2.2 ⎝ L ⎠1
We then find
       βŽ›W ⎞          βŽ›W ⎞
X 12 = ⎜ ⎟ = 4.06 = ⎜ ⎟
       ⎝ L ⎠1        ⎝ L ⎠p
and
βŽ›W ⎞
⎜ ⎟ = 1.85
⎝ L ⎠n

13.35
Let V + = 5V , V βˆ’ = βˆ’5V
P = IT (10) = 3 β‡’ IT = 0.3 mA β‡’ I REF = 0.1 mA = 100 ΞΌ A
                        1
ro1 = ro8 = ro10 =            = 1 MΞ©
                   (0.02)(50)
             1
ro 6 =               = 1.33 MΞ©
       (0.015)(50)
             1
ro 4 =                = 0.667 M Ξ©
       (0.015)(100)
         βŽ› 35 ⎞ βŽ› W ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 59.2 X 1 = g m8
         ⎝ 2 ⎠ ⎝ L ⎠1
               βŽ›W ⎞
where X 1 = ⎜ ⎟
               ⎝ L ⎠1
Assume all width-to-length ratios are the same.
          βŽ› 80 ⎞ βŽ› W ⎞
g m 6 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 89.4 X 1
          ⎝ 2 ⎠⎝ L ⎠
Now
Ro = Ro 6 Ro8 = ⎑ g m 6 ( ro 6 ) ( ro 4 ro1 ) ⎀ ⎑ g m8 ( ro8 ro10 ) ⎀
                  ⎣                           ⎦ ⎣                   ⎦
     = ⎑89.4 X 1 (1.33) ( 0.667 1) ⎀ ⎑59.2 X 1 (1)(1) ⎀
       ⎣                              ⎦ ⎣                  ⎦
                                  ( 47.6 X 1 )( 59.2 X 1 )
     = [ 47.6 X 1 ] [59.2 X 1 ] =
                                    47.6 X 1 + 59.2 X 1
So Ro = 26.4 X 1
Now
Ad = g m1 Ro = ( 59.2 X 1 )( 26.4 X 1 ) = 25, 000
                   W
So that X 12 =       = 16 for all transistors
                   L

13.36
(a)       Ad = Bg m1 (ro 6 ro8 )
                           1         1
          ro 6 = ro8 =         =            = 0.741 M Ξ©
                         Ξ» I DQ (0.015)(90)
                  βŽ› k β€² βŽžβŽ› W ⎞
         g m1 = 2 ⎜ n ⎟ ⎜ ⎟ I D1 = 2 (500)(30) = 245 μ A / V
                  ⎝ 2 ⎠⎝ L ⎠
          Ad = (3)(245)(0.741 0.741) β‡’ Ad = 272

(b)      Ro = ro 6 ro8 = 0.741 0.741 β‡’ Ro = 371 k Ξ©
                      1              1
(c)      f PD =           =                           β‡’ f PD = 85.8 kHz
                   2Ο€ Ro C 2Ο€ (371Γ— 103 )(5 Γ— 10βˆ’12 )
GBW = (272)(85.8 Γ— 103 ) β‡’ GBW = 23.3 MHz

13.37
                        1
(a)       ro 6 =                  = 0.5 M Ξ©
                (0.02)(2.5)(40)
                         1
          ro8 =                    = 0.667 M Ξ©
                (0.015)(2.5)(40)
          Ad = Bg m1 ( ro 6 ro8 )
         400 = (2.5) g m1 ( 0.5 0.667 ) β‡’ g m1 = 560 ΞΌ A / V

                        βŽ› 80 ⎞ βŽ› W ⎞       βŽ›W ⎞
         g m1 = 560 = 2 ⎜ ⎟ ⎜ ⎟ (40) β‡’ ⎜ ⎟ = 49
                        ⎝ 2 ⎠⎝ L ⎠         ⎝L⎠
Assume all (W/L) ratios are the same except for
              βŽ›W ⎞ βŽ›W ⎞
M 5 and M 6 . ⎜ ⎟ = ⎜ ⎟ = 122.5
              ⎝ L ⎠5 ⎝ L ⎠ 6
(b)      Assume the bias voltages are
V + = 5V , V βˆ’ = βˆ’5V .




          βŽ›W ⎞      βŽ›W ⎞
Assume ⎜ ⎟ = ⎜ ⎟ = 49
          ⎝ L ⎠ A ⎝ L ⎠B
      βŽ› 80 ⎞
I Q = ⎜ ⎟ (49)(VGSA βˆ’ 0.5) 2 = 80 β‡’ VGSA = 0.702 V
      ⎝ 2⎠
Then
             βŽ› 80 ⎞ βŽ› W ⎞
I REF = 80 = ⎜ ⎟ ⎜ ⎟ (VGSC βˆ’ 0.5) 2
             ⎝ 2 ⎠ ⎝ L ⎠C
For four transistors
10 βˆ’ 0.702
VGSC =            = 2.325 V
             4
     βŽ› 80 ⎞ βŽ› W ⎞              βŽ›W ⎞
80 = ⎜ ⎟ ⎜ ⎟ (2.325 βˆ’ 0.5) 2 β‡’ ⎜ ⎟ = 0.60
     ⎝ 2 ⎠ ⎝ L ⎠C              ⎝ L ⎠C
                             1
(c)           f 3βˆ’ dB =             Ro = 0.5 0.667 = 0.286 M Ξ©
                          2Ο€ Ro C
                1
 f 3βˆ’ dB =                       = 185 kHz
     2Ο€ (286 Γ— 103 )(3 Γ— 10βˆ’12 )
GBW = (400)(185 Γ— 103 ) β‡’ 74 MHz

13.38
(a)       From previous results, we can write
 Ro10 = g m10 (ro10 ro 6 )
 Ro12 = g m12 (ro12 ro8 )
 Ad = Bg m1 ( Ro10 Ro12 )
Now
                     1                    1
ro10 = ro 6 =                    =                 = 0.5 M Ξ©
                Ξ»P B ( I Q / 2 )   (0.02)(2.5)(40)
                      1                   1
ro12 = ro8 =                     =                  = 0.667 M Ξ©
                Ξ»n B ( I Q / 2 )   (0.015)(2.5)(40)
Assume all transistors have the same width-to-length ratios except for M 5 and M 6 .
    βŽ›W       ⎞
             ⎟= X
                  2
Let ⎜
    ⎝L       ⎠
Then
           βŽ› kβ€² βŽžβŽ› W ⎞           βŽ› 35 ⎞
g m10 = 2 ⎜ ⎟ ⎜ ⎟ ( I DQ10 ) = 2 ⎜ ⎟ X 2 (2.5)(40)
              p

           ⎝ 2 ⎠ ⎝ L ⎠10         ⎝ 2⎠
      = 83.67 X
           βŽ› kβ€² βŽžβŽ› W ⎞             βŽ› 80 ⎞
g m12 = 2 ⎜ n ⎟ ⎜ ⎟ ( I DQ12 ) = 2 ⎜ ⎟ X 2 (2.5)(40)
           ⎝ 2 ⎠ ⎝ L ⎠12           ⎝ 2⎠
      = 126.5 X
          βŽ› 80 ⎞
 g m1 = 2 ⎜ ⎟ X 2 (40) = 80 X
          ⎝ 2⎠
Then
Ro10 = (83.67 X )(0.5)(0.5) = 20.9 X M Ξ©
Ro12 = (126.5 X )(0.667)(0.667) = 56.3 X M Ξ©
We want
20, 000 = (2.5)(80 X )[20.9 X 56.3 X ]
                     ⎑ (20.9 X )(56.3 X ) ⎀
             = 200 X ⎒                    βŽ₯ = 3048 X
                                                     2

                     ⎣ 20.9 X + 56.3 X ⎦
Then
             βŽ›W ⎞
X 2 = 6.56 = ⎜ ⎟
             ⎝L⎠
Then
βŽ›W ⎞ βŽ›W ⎞
⎜ ⎟ = ⎜ ⎟ = (2.5)(6.56) = 16.4
⎝ L ⎠ 6 ⎝ L ⎠5
(b)          Assume bias voltages are V + = 5V , V βˆ’ = βˆ’5V
βŽ›W ⎞      βŽ›W ⎞
Assume ⎜ ⎟ = ⎜ ⎟ = 6.56
          ⎝ L ⎠ A ⎝ L ⎠B
           βŽ› 80 ⎞
I Q = 80 = ⎜ ⎟ (6.56)(VGSA βˆ’ 0.5) 2 β‡’ VGSA = 1.052 V
           ⎝ 2⎠
Need 5 transistors in series
        10 βˆ’ 1.052
VGSC =               = 1.79 V
             5
Then
             βŽ› 80 ⎞ βŽ› W ⎞               βŽ›W ⎞
I REF = 80 = ⎜ ⎟ ⎜ ⎟ (1.79 βˆ’ 0.5) 2 β‡’ ⎜ ⎟ = 1.20
             ⎝ 2 ⎠ ⎝ L ⎠C               ⎝ L ⎠C
                              1
(c)            f 3βˆ’ dB =           where Ro = Ro10 Ro12
                           2Ο€ Ro C
Now
Ro10 = 20.9 6.56 = 53.5 M Ξ©
Ro12 = 56.3 6.56 = 144 M Ξ©
Then
Ro = 53.5 144 = 39 M Ξ©
                1
 f 3βˆ’ dB =                      = 1.36 kHz
     2Ο€ (39 Γ— 106 )(3 Γ— 10βˆ’12 )
GBW = (20, 000)(1.36 x103 ) β‡’ GBW = 27.2 MHz

13.39
 Ad = g m ( M 2 ) β‹… ⎑ ro 2 ( M 2 ) ro 2 (Q2 ) ⎀
                    ⎣                         ⎦
                   βŽ› 40 ⎞
g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 447 μ A / V
                   ⎝ 2 ⎠
                 1         1
ro 2 ( M 2 ) =        =           = 500 k Ξ©
               Ξ» I DQ (0.02)(0.1)
               VA 120
ro 2 (Q2 ) =       =    = 1200 k Ξ©
               I CQ 0.1
Then
Ad = 447(0.5 1.2) β‡’ Ad = 158

13.40
Ad = g m ( M 2 ) β‹… ⎑ ro 2 ( M 2 ) ro 2 (Q2 ) ⎀
                   ⎣                         ⎦
                   βŽ› 80 ⎞
g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 632 μ A / V
                   ⎝ 2⎠
                 1         1
ro 2 ( M 2 ) =        =            = 667 k Ξ©
               Ξ» I DQ (0.015)(0.1)
                  VA    80
ro 2 (Q2 ) =          =    = 800 k Ξ©
                  I CQ 0.1
Ad = (632) ( 0.667 0.80 ) β‡’ Ad = 230

13.41
(a)            I REF = 200 ΞΌ A            K n = K p = 0.5 mA / V 2
                                          Ξ»n = Ξ» p = 0.015 V βˆ’1
               Ad = g m1 ( Ro 6 Ro8 )
where
Ro8 = g m8 (ro8 ro10 )
Ro 6 = g m 6 (ro 6 ) ( ro 4 ro1 )
Now
g m8 = 2 K P I D 8 = 2 (0.5)(0.1) = 0.447 mA/V
         1            1
 ro8 =         =              = 667 k Ξ©
       Ξ»P I D 8 (0.015)(0.1)
             1
 ro10 =             = 667 k Ξ©
           Ξ»P I D 8
           IC 6    0.1
gm6 =           =       = 3.846 mA/V
           VT     0.026
           VA     80
  ro 6 =        =    = 800 k Ξ©
           I C 6 0.1
             1           1
  ro 4 =           =             = 333 k Ξ©
           Ξ»n I D 4 (0.015)(0.2)
              1                1
  ro1 =               =                = 667 k Ξ©
           Ξ» p I D1       (0.015)(0.1)
 g m1 = 2 K P I D1 = 2 (0.5)(0.1) = 0.447 mA/V
So
Ro8 = (0.447)(667)(667) β‡’ 198.9 M Ξ©
Ro 6 = (3.846)(800)(333 667) β‡’ 683.4 M Ξ©
Then
Ad = 447(198.9 683.4) β‡’ Ad = 68,865

13.42
Assume biased at V + = 10V , V βˆ’ = βˆ’10V .
  P = 3I REF (20) = 10 β‡’ I REF = 167 ΞΌ A
 Ad = g m1 ( Ro 6 Ro8 ) = 25, 000
 kn = 80 ΞΌ A / V 2 , k β€² = 35 ΞΌ A / V 2
  β€²                    p

 Ξ»n = 0.015V βˆ’1 , Ξ» p = 0.02 V βˆ’1
       βŽ›W ⎞      βŽ›W ⎞
Assume ⎜ ⎟ = 2.2 ⎜ ⎟
       ⎝ L ⎠p    ⎝ L ⎠n
Ro8 = g m8 ( ro8 ro10 )
Ro 6 = g m 6 (ro 6 )(ro 4 ro1 )
             1                1
 ro8 =               =                = 0.60 M Ξ©
          Ξ»P I D 8       (0.02)(83.3)
             1
ro10 =               = 0.60 M Ξ©
          Ξ»P I D 8
          βŽ› kβ€² βŽžβŽ› W ⎞      βŽ› 35 ⎞
g m8 = 2 ⎜ ⎟ ⎜ ⎟ I D 8 = 2 ⎜ ⎟ (2.2) X 2 (83.3)
             p

          ⎝ 2 ⎠ ⎝ L ⎠8     ⎝ 2⎠
     = 113.3 X
               βŽ›W ⎞
where X 2 = ⎜ ⎟
               ⎝ L ⎠n
        VA      80
 ro 6 =      =      = 0.960 M Ξ©
        I C 6 83.3
             1                1
 ro 4 =              =                = 0.40 M Ξ©
          Ξ»n I D 4       (0.015)(167)
             1          1
 ro1 =            =             = 0.60 M Ξ©
          Ξ» p I D1 (0.02)(83.3)
          IC 6   83.3
gm6 =          =       = 3204 ΞΌ A / V
          VT     0.026
             β€²
          βŽ› kp βŽžβŽ› W ⎞         βŽ› 35 ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ I D1 = 2 ⎜ ⎟ (2.2) X 2 (83.3)
          ⎝ 2 ⎠ ⎝ L ⎠1        ⎝ 2⎠
     = 113.3 X
Now
Ro 6 = (3204)(0.960) ⎑0.40 0.60 ⎀ = 738 M Ω
                      ⎣         ⎦
Ro8 = (113.3 X )(0.60)(0.60) = 40.8 X M Ξ©
Then
Ad = 25, 000 = (113.3 X ) ⎑ 738 40.8 X ⎀
                           ⎣           ⎦
                             ⎑ 30,110 X ⎀
                = (113.3 X ) ⎒              βŽ₯
                             ⎣ 738 + 40.8 X ⎦
which yields X = 2.48
or
              βŽ›W ⎞
 X 2 = 6.16 = ⎜ ⎟
              ⎝ L ⎠n
and
βŽ›W ⎞
⎜ ⎟ + (2.2)(6.16) = 12.3
⎝ L ⎠P

13.43
For vcm (max), assume VCB (Q5 ) = 0. Then
VS = 15 βˆ’ 0.6 βˆ’ 0.6 = 13.8 V
                0.236
I D 9 = I D10 =       = 0.118 mA
                  2
Using parameters given in Example 13.11
           I            0.118
VSG = D 9 βˆ’ VTP =             + 1.4 = 2.17 V
           KP            0.20
Then
vcm (max) = 13.8 βˆ’ 2.17 β‡’ vcm (max) = 11.6 V
For
vcm (min) , assume
VSD ( M 9 ) = VSD ( sat ) = VSG + VTP = 2.17 βˆ’ 1.4 = 0.77 V
Now
VD10 = I D10 (0.5) + 0.6 + I D10 (0.5) βˆ’ 15
      = 0.118 + 0.6 βˆ’ 15 β‡’ VD10 = βˆ’14.28 V
Then
vcm (min) = βˆ’14.28 + VSD (sat) βˆ’ VSG
            = βˆ’14.28 + 0.77 βˆ’ 2.17 = βˆ’15.68 V
Then, common-mode voltage range
βˆ’15.68 ≀ vcm ≀ 11.6
Or, assuming the input is limited to Β±15 V, then
βˆ’15 ≀ vcm ≀ 11.6 V

13.44
For I1 = I 2 = 300 ΞΌ A,
VSG = VBE + (0.3)(8) = 0.6 + 2.4 = 3.0 V
Then
I 2 = K P (VSG + VTP ) 2
0.3 = K P (3 βˆ’ 1.4)2 β‡’ K P = 0.117 mA / V 2

13.45
For VCB = 0 for both Q6 and Q7 , then
VS = 0.6 + 0.6 + VSG + (βˆ’VS )
So 2VS = 1.2 + VSG
Now
                      I1
0.6 + I 2 R1 = VSG =     + VTP and I1 = I 2
                     KP
Also I1 = I 2 = K P (VSG + VTP ) 2 so
0.6 + (0.25)(8)(VSG βˆ’ 1.4) 2 = VSG
0.6 + 2(VSG βˆ’ 2.8VSG + 1.96) = VSG
          2


2VSG βˆ’ 6.6VSG + 4.52 = 0
   2


      6.6 Β± (6.6) 2 βˆ’ 4(2)(4.52)
VSG =                            = 2.33 V
                 2(2)
Then     2VS = 1.2 + 2.33 = 3.53 and
VS = 1.765 V

13.46
I C 5 = I C 4 = 300 ΞΌ A
Using the parameters from Examples 13.12 and 13.13, we have
                Ξ²V      (200)(0.026)
Ri 2 = rΟ€ 13 = n T =                 = 17.3 kΞ©
                 I C13      0.3
Ad = 2 K n I Q 5 β‹… ( Ri 2 ) = 2(0.6)(0.3) β‹… (17.3)
or
 Ad = 10.38
Now
I C13    0.3
g m13 =            =       = 11.5 mA/V
             VT      0.026
          VA     50
r013 =         =    = 167 kΞ©
          I C13 0.3
Then
| Av 2 | = g m13 β‹… r013 = (11.5)(167)
or
 Av 2 = 1917
Overall gain:
 Av = (10.38)(1917) = 19,895
13.47         Assuming the resistances looking into Q4 and into the output stage are very large, we have
                     Ξ² R013
| Av 2 | =
             rΟ€ 13 + (1 + Ξ² ) RE13
where R013 = r013 ⎑1 + g m13 ( RE13 rΟ€ 13 ) ⎀
                  ⎣                         ⎦
                              50
I C13 = 300 ΞΌ A, r013 =           = 167 kΞ©
                              0.3
            0.3
g m13 =          = 11.5 mA / V
           0.026
          (200)(0.026)
rΟ€ 13   =              = 17.3 kΞ©
               0.3
So
R013 = (167) ⎑1 + (11.5) (1 17.3) ⎀ β‡’ 1.98 MΞ©
             ⎣                    ⎦
Then
              (200)(1980)
| Av 2 | =                   = 1814
             17.3 + (201)(1)
Now
Ci = C1 (1 + Av 2 ) = 12 [1 + 1814]
        β‡’ Ci = 21, 780 pF
           1
 f PD =
        2Ο€ Req Ci
Req = Ri 2 r012 r010
Neglecting R3 ,
             1         1
r010 =           =             = 333 kΞ©
          Ξ» I D10 (0.02)(0.15)
Neglecting R5 ,
         50
r012 =         = 333 kΞ©
       0.15
Ri 2 = rΟ€ 13 + (1 + Ξ² ) RE13         = 17.3 + (201)(1)
                                     = 218 kΞ©
Then
                             1
 f PD =
          2Ο€ ⎑ 218 333 333⎀ Γ— 103 Γ— ( 21, 780 ) Γ— 10βˆ’12
             ⎣            ⎦
or
 f PD = 77.4 Hz
Unity-Gain Bandwidth
Gain of first stage:
Ad = 2 K n I Qs β‹… ( R12 ro12 ro10 )
       = 2(0.6)(0.3) β‹… (218 333 333)
       = (0.6)(218 333 333)
or        Ad = 56.6
Overall gain:
 Av = (56.6)(1814) = 102, 672
Then unity-gain bandwidth = (77.4)(102, 672)
β‡’ 7.95 MHz

13.48
Since VGS = 0 in J 6 , I REF = I DSS
β‡’ I DSS = 0.8 mA

13.49
a.           Ri 2 = rΟ€ 5 + (1 + Ξ² ) [ rΟ€ 6 + (1 + Ξ² ) RE ]
        (100)(0.026)
rΟ€ 6 =               = 13 kΞ©
            0.2
         I    200 ΞΌ A
IC 5   β‰… C6 =          = 2 ΞΌA
          Ξ²     100
So
         (100)(0.026)
rΟ€ 5 =                = 1300 kΞ©
            0.002
Then
Ri 2 = 1300 + (101) [13 + (101)(0.3) ]
or
Ri 2 = 5.67 MΞ©
b.           Av = g m 2 ( r02 r04 Ri 2 )
          2                       2
gm2 =       β‹… I D β‹… I DSS     =     β‹… (0.1)(0.2)
         VP                       3
                              = 0.0943 mA / V
          1         1
r02 =         =            = 500 kΞ©
         Ξ» I D (0.02)(0.1)
         VA 5.0
r04 =         =    = 500 kΞ©
         I C 4 0.1
Then
 Av = (0.0943)[500 || 500 || 5670]
or
 Av = 22.6

13.50
a.          Need VSD (QE ) β‰₯ VSD ( sat ) = VP For minimum bias Β±3 V
Set VP = 3 V and VZK = 3 V
            VZK βˆ’ VD1
I REF 2 =
               R3
             3 βˆ’ 0.6
so that R3 =         β‡’ R3 = 24 kΞ©
               0.1
Set bias in QE = I REF 2 + I Z 2 = 0.1 + 0.1 = 0.2 mA
Therefore,
I DSS = 0.2 mA
b.          Neglecting base currents
                           12 βˆ’ 0.6
 I 01 = I REF 1 = 0.5 mA =
                              R4
so that
 R4 = 22.8 kΞ©

13.51
a.         We have
           2                       2
gm2   =        β‹… I D β‹… I DSS   =     β‹… (0.5)(1)
        | VP |                     4
                               = 0.354 mA/V
          1              1
 r02 =          =               = 100 kΞ©
         Ξ» ID       (0.02)(0.5)
         VA 100
 r04 =      =    = 200 kΞ©
         I D 0.5
         0.5
gm4 =          = 19.23 mA/V
        0.026
        (200)(0.026)
 rΟ€ 4 =                    = 10.4 kΞ©
             0.5
So
R04 = r04 ⎑1 + g m 4 ( rΟ€ 4 R2 ) ⎀
          ⎣                      ⎦
      = 200 ⎑1 + (19.23) (10.4 0.5 ) ⎀
            ⎣                        ⎦
      = 2035 kΞ©
 Ad = g m 2 ( r02 R04 RL )
For RL β†’ ∞
    Ad = 0.354 (100 || 2035 ) = 33.7
           With these parameter values, gain can never reach 500.
b.         Similarly for this part, gain can never reach 700.

More Related Content

What's hot

Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyearsAnwesa Roy
Β 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfGabrielRodriguez171709
Β 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodiaVenugopala Rao P
Β 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutionskhemraj298
Β 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutionskhemraj298
Β 
bai tap va phuong phap giai bai tap dien xoay chieu
bai tap va phuong phap giai bai tap dien xoay chieubai tap va phuong phap giai bai tap dien xoay chieu
bai tap va phuong phap giai bai tap dien xoay chieuAquamarine Stone
Β 
Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)asghar123456
Β 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutionskhemraj298
Β 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
Β 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd NaemenBilal Sarwar
Β 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutionskhemraj298
Β 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutionskhemraj298
Β 

What's hot (20)

Ch14s
Ch14sCh14s
Ch14s
Β 
Ch08p
Ch08pCh08p
Ch08p
Β 
Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
Β 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
Β 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
Β 
Ch10p
Ch10pCh10p
Ch10p
Β 
Ch15p
Ch15pCh15p
Ch15p
Β 
Ch06s
Ch06sCh06s
Ch06s
Β 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
Β 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
Β 
bai tap va phuong phap giai bai tap dien xoay chieu
bai tap va phuong phap giai bai tap dien xoay chieubai tap va phuong phap giai bai tap dien xoay chieu
bai tap va phuong phap giai bai tap dien xoay chieu
Β 
Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)
Β 
Budynas sm ch20
Budynas sm ch20Budynas sm ch20
Budynas sm ch20
Β 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
Β 
Ch08s
Ch08sCh08s
Ch08s
Β 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
Β 
Ch01p
Ch01pCh01p
Ch01p
Β 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
Β 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
Β 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutions
Β 

Viewers also liked (10)

Ch16p
Ch16pCh16p
Ch16p
Β 
Ch13p
Ch13pCh13p
Ch13p
Β 
Ch07p
Ch07pCh07p
Ch07p
Β 
Ch03p
Ch03pCh03p
Ch03p
Β 
Ch07s
Ch07sCh07s
Ch07s
Β 
Ch01s
Ch01sCh01s
Ch01s
Β 
Ch12s
Ch12sCh12s
Ch12s
Β 
Ch04s
Ch04sCh04s
Ch04s
Β 
Ch15s
Ch15sCh15s
Ch15s
Β 
Ch03s
Ch03sCh03s
Ch03s
Β 

Similar to Ch13s

Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd NaemenBilal Sarwar
Β 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
Β 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
Β 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
Β 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
Β 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionSalman Salman
Β 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfDannyCoronel5
Β 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdffranciscoantoniomonr1
Β 
Livro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdf
Livro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdfLivro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdf
Livro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdfTomCosta18
Β 
CapΓ­tulo 04 carga e anΓ‘lise de tensΓ£o
CapΓ­tulo 04   carga e anΓ‘lise de tensΓ£oCapΓ­tulo 04   carga e anΓ‘lise de tensΓ£o
CapΓ­tulo 04 carga e anΓ‘lise de tensΓ£oJhayson Carvalho
Β 
CapΓ­tulo 03 materiais
CapΓ­tulo 03   materiaisCapΓ­tulo 03   materiais
CapΓ­tulo 03 materiaisJhayson Carvalho
Β 

Similar to Ch13s (16)

Ch10s
Ch10sCh10s
Ch10s
Β 
Ch11p
Ch11pCh11p
Ch11p
Β 
Ch05p
Ch05pCh05p
Ch05p
Β 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Β 
Ch16s
Ch16sCh16s
Ch16s
Β 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Β 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
Β 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Β 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
Β 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
Β 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Β 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Β 
Livro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdf
Livro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdfLivro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdf
Livro Hibbeler - 7Βͺ ed Resistencia Materiais (soluçáes).pdf
Β 
CapΓ­tulo 04 carga e anΓ‘lise de tensΓ£o
CapΓ­tulo 04   carga e anΓ‘lise de tensΓ£oCapΓ­tulo 04   carga e anΓ‘lise de tensΓ£o
CapΓ­tulo 04 carga e anΓ‘lise de tensΓ£o
Β 
Chapter 04 is
Chapter 04 isChapter 04 is
Chapter 04 is
Β 
CapΓ­tulo 03 materiais
CapΓ­tulo 03   materiaisCapΓ­tulo 03   materiais
CapΓ­tulo 03 materiais
Β 

Recently uploaded

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
Β 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
Β 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
Β 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
Β 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
Β 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
Β 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
Β 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
Β 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
Β 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
Β 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
Β 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
Β 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
Β 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
Β 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
Β 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
Β 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
Β 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
Β 

Recently uploaded (20)

Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
Β 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
Β 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
Β 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
Β 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Β 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
Β 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Β 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
Β 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
Β 
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort ServiceHot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Β 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Β 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
Β 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
Β 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Β 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
Β 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
Β 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
Β 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
Β 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Β 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Β 

Ch13s

  • 1. Chapter 13 Problem Solutions 13.1 Computer Simulation 13.2 Computer Simulation 13.3 (a) ( Ad = g m1 ro 2 ro 4 Ri 6 ) I C1 20 g m1 = = β‡’ 0.769 mA / V VT 0.026 VA 2 80 ro 2 = = = 4 MΞ© I C 2 20 VA 4 80 ro 4 = = = 4 MΞ© I C 2 20 Ri 6 = rΟ€ 6 + (1 + Ξ² n ) ⎑ R1 rΟ€ 7 ⎀ ⎣ ⎦ (120)(0.026) rΟ€ 7 = = 15.6 k Ξ© 0.2 V (on) 0.6 I C 6 β‰… BE = = 0.030 mA R1 20 (120)(0.026) rΟ€ 6 = = 104 k Ξ© 0.030 Then Ri 6 = 104 + (121) ⎑ 20 15.6 ⎀ β‡’ 1.16 M Ξ© ⎣ ⎦ Then ( Ad = 769 4 4 1.16 β‡’ Ad = 565 ) Now βŽ› R1 ⎞ Vo = βˆ’ I c 7 ro 7 = βˆ’( Ξ² n I b 7 )ro 7 = βˆ’ Ξ² n ro 7 ⎜ ⎟ Ic6 ⎝ R1 + rΟ€ 7 ⎠ βŽ› R1 ⎞ Vo1 = βˆ’ Ξ² n (1 + Ξ² n )ro 7 ⎜ ⎟ I b 6 and I b 6 = ⎝ R1 + rΟ€ 7 ⎠ Ri 6 Then V βˆ’ Ξ² n (1 + Ξ² n )ro 7 βŽ› R1 ⎞ Av 2 = o = ⎜ ⎟ Vo1 Ri 6 ⎝ R1 + rΟ€ 7 ⎠ VA 80 ro 7 = = = 400 k Ξ© I C 7 0.2 So βˆ’(120)(121)(400) βŽ› 20 ⎞ Av 2 = ⎜ ⎟ β‡’ Av 2 = βˆ’2813 1160 ⎝ 20 + 15.6 ⎠ Overall gain = Ad β‹… Av 2 = (565)(βˆ’2813) β‡’ A = βˆ’1.59 Γ—106 (80)(0.026) (b) Rid = 2rΟ€ 1 and rΟ€ 1 = = 104 k Ξ© 0.020 Rid = 208 k Ξ© 1 (c) f PD = and CM = (10)(1 + 2813) = 28,140 pF 2Ο€ Req CM Req = ro 2 ro 4 Ri 6 = 4 4 1.16 = 0.734 M Ξ© 1 f PD = = 7.71 Hz 2Ο€ (0.734 Γ— 10 )(28,140 Γ— 10βˆ’12 ) 6
  • 2. Gain-Bandwidth Product = (7.71)(1.59 Γ— 106 ) β‡’ 12.3 MHz 13.4 a. Q3 acts as the protection device. b. Same as part (a). 13.5 If we assume VBE (on) = 0.7 V, then Vin = 0.7 + 0.7 + 50 + 5 So breakdown voltage β‰ˆ 56.4 V. 13.6 15 βˆ’ 0.6 βˆ’ 0.6 βˆ’ (βˆ’15) (a) I REF = = 0.50 β‡’ R5 = 57.6 k Ξ© R5 βŽ›I ⎞ I C10 R4 = VT ln ⎜ REF ⎟ ⎝ I C10 ⎠ 0.026 βŽ› 0.50 ⎞ R4 = ln ⎜ ⎟ β‡’ R4 = 2.44 k Ξ© 0.030 ⎝ 0.030 ⎠ 5 βˆ’ 0.6 βˆ’ 0.6 βˆ’ (βˆ’5) (b) I REF = β‡’ I REF = 0.153 mA 57.6 βŽ› 0.153 ⎞ I C10 (2.44) = (0.026) ln ⎜ ⎟ ⎝ I C10 ⎠ By trial and error, I C10 β‰… 21.1 ΞΌ A 13.7 (a) I REF β‰… 0.50 mA βŽ›I ⎞ βŽ› 0.50 Γ— 10βˆ’3 ⎞ VBE = VT ln ⎜ REF ⎟ = (0.026) ln ⎜ βˆ’14 ⎟ β‡’ VBE11 = 0.641V = VEB12 ⎝ IS ⎠ ⎝ 10 ⎠ Then 15 βˆ’ 0.641 βˆ’ 0.641 βˆ’ (βˆ’15) R5 = β‡’ R5 = 57.4 k Ξ© 0.50 0.026 βŽ› 0.50 ⎞ R4 = ln ⎜ ⎟ β‡’ R4 = 2.44 k Ξ© 0.030 ⎝ 0.030 ⎠ βŽ› 0.030 Γ— 10βˆ’3 ⎞ VBE10 = 0.026 ln ⎜ βˆ’14 ⎟ β‡’ VBE10 = 0.567 V ⎝ 10 ⎠ (b) From Problem 13.6, I REF β‰… 0.15 mA βŽ› 0.15 Γ— 10βˆ’3 ⎞ VBE11 = VEB12 = 0.026 ln ⎜ βˆ’14 ⎟ = 0.609 V ⎝ 10 ⎠ 5 βˆ’ 0.609 βˆ’ 0.609 βˆ’ (βˆ’5) Then I REF = β‡’ I REF = 0.153 mA 57.4 Then I C10 β‰… 21.1 ΞΌ A from Problem 13.6 13.8 5 βˆ’ 0.6 βˆ’ 0.6 βˆ’ (βˆ’5) a. I REF = β‡’ I REF = 0.22 mA 40 βŽ›I ⎞ I C10 R4 = VT ln ⎜ REF ⎟ ⎝ I C10 ⎠ βŽ› 0.22 ⎞ I C10 (5) = (0.026) ln ⎜ ⎟ ⎝ I C10 ⎠
  • 3. By trial and error; I C10 β‰… 14.2 ΞΌ A I C10 IC 6 β‰… β‡’ I C 6 = 7.10 ΞΌ A 2 I C17 = 0.75 I REF β‡’ I C17 = 0.165 mA I C13 A = 0.25I REF β‡’ I C13 A = 0.055 mA (b) Using Example 13.4 rΟ€ 17 = 31.5 kΞ© β€² RE = 50 [31.5 + (201)(0.1)] = 50 51.6 = 25.4 kΞ© Ξ² nVT rΟ€ 16 = and I C16 0.165 (0.165)(0.1) + 0.6 I C16 = + = 0.0132 mA 200 50 rΟ€ 16 = 394 kΞ© Then Ri 2 = 394 + (201)(25.4) β‡’ 5.5 MΞ© rΟ€ 6 = 732 kΞ© 0.00710 gm6 = = 0.273 mA / V 0.026 50 r06 = = 7.04 MΞ© 0.0071 Then Ract1 = 7.04[1 + (0.273)(1 732)] = 8.96 MΞ© 50 r04 = = 7.04 MΞ© 0.0071 Then βŽ› 7.1 ⎞ Ad = βˆ’ ⎜ ⎟ (7.04 8.96 5.5) ⎝ 0.026 ⎠ or Ad = βˆ’627 Gain of differential amp stage Using Example 13.5, and neglecting the input resistance to the output stage: V 50 Ract 2 = A = = 303 kΞ© I C13 B 0.165 βˆ’(200)(201)(50)(303) (303) Av 2 = (5500)[50 + 31.5 + (201)(0.1)] or Av 2 = βˆ’545 Gain of second stage 13.9 I C10 = 19 ΞΌ A From Equation (13.6) ⎑ Ξ² 2 + 2Ξ² P + 2 ⎀ ⎑ (10) 2 + 2(10) + 2 ⎀ I C10 = 2 I ⎒ P βŽ₯ = 2I ⎒ βŽ₯ ⎣ Ξ² P + 3Ξ² P + 2 ⎦ ⎣ (10) + 3(10) + 2 ⎦ 2 2 ⎑122 ⎀ = 2I ⎒ βŽ₯ ⎣132 ⎦ So βŽ› 132 ⎞ 2 I = (19) ⎜ ⎟ = 20.56 ΞΌ A ⎝ 122 ⎠ I C 2 = I = 10.28 ΞΌ A
  • 4. 2I 20.56 IC 9 = = β‡’ I C 9 = 17.13 ΞΌ A βŽ› 2 ⎞ βŽ› 2⎞ ⎜1 + ⎟ ⎜ 1+ ⎟ ⎝ Ξ²P ⎠ ⎝ 10 ⎠ I 17.13 I B9 = C9 = β‡’ I B 9 = 1.713 ΞΌ A Ξ²P 10 I 10.28 IB4 = = β‡’ I B 4 = 0.9345 ΞΌ A (1 + Ξ² P ) 11 βŽ› Ξ² ⎞ βŽ› 10 ⎞ IC 4 = I ⎜ P ⎟ = (10.28) ⎜ ⎟ β‡’ I C 4 = 9.345 ΞΌ A ⎝1+ Ξ²P ⎠ ⎝ 11 ⎠ 13.10 VB 5 βˆ’ V βˆ’ = VBE (on) + I C 5 (1) = 0.6 + (0.0095)(1) = 0.6095 0.6095 IC 7 = β‡’ I C 7 = 12.2 ΞΌ A 50 I C 8 = I C 9 = 19 ΞΌ A I REF = 0.72 mA I E13 = I REF = 0.72 mA I C14 = 138 ΞΌ A Power = (V + βˆ’ V βˆ’ ) [ I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 ] = 30[0.0122 + 0.019 + 0.019 + 0.72 + 0.72 + 0.138] β‡’ Power = 48.8 mW Current supplied by V + and V βˆ’ = I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 = 1.63 mA 13.11 (a) vcm (min) = βˆ’15 + 0.6 + 0.6 + 0.6 + 0.6 = βˆ’12.6 V vcm (max) = +15 βˆ’ .6 = 14.4 V So βˆ’ 12.6 ≀ vcm ≀ 14.4 V (b) vcm (min) = βˆ’5 + 4(0.6) = βˆ’2.6 V vcm (max) = 5 βˆ’ 0.6 = 4.4 V So βˆ’ 2.6 ≀ vcm ≀ 4.4 V 13.12 If v0 = V βˆ’ = βˆ’15 V , the base voltage of Q14 is pulled low, and Q18 and Q19 are effectively cut off. As a first approximation 0.6 I C14 = = 22.2 mA 0.027 22.2 I B14 = = 0.111 mA 200 Then I C15 = I C13 A βˆ’ I B14 = 0.18 βˆ’ 0.111 = 0.069 mA Now βŽ›I ⎞ VBE15 = VT ln ⎜ C15 ⎟ ⎝ 15 ⎠ βŽ› 0.069 Γ— 10βˆ’3 ⎞ = (0.026) ln ⎜ βˆ’14 ⎟ ⎝ 10 ⎠ = 0.589 V
  • 5. As a second approximation 0.589 I C14 = β‡’ I C14 = 21.8 mA 0.027 21.8 I B14 = = 0.109 mA 200 and I C15 = 0.18 βˆ’ 0.109 β‡’ I C15 = 0.071 mA 13.13 a. Neglecting base currents: I D = I BIAS Then βŽ›I ⎞ VBB = 2VD = 2VT ln ⎜ D ⎟ ⎝ IS ⎠ βŽ› 0.25 Γ— 10βˆ’3 ⎞ = 2(0.026) ln ⎜ βˆ’14 ⎟ ⎝ 2 Γ— 10 ⎠ or VBB = 1.2089 V βŽ›V / 2⎞ I CN = I CP = I S exp ⎜ BB ⎟ ⎝ VT ⎠ βŽ› 1.2089 ⎞ = 5 Γ— 10βˆ’14 exp ⎜ ⎟ ⎝ 2(0.026) ⎠ So I CN = I CP = 0.625 mA b. For vI = 5 V, v0 β‰… 5 V 5 iL β‰… = 1.25 mA 4 As a first approximation I CN β‰ˆ iL = 1.25 mA βŽ› 1.25 Γ— 10βˆ’3 ⎞ VBEN = (0.026) ln ⎜ βˆ’14 ⎟ = 0.6225 V ⎝ 5 Γ— 10 ⎠ Neglecting base currents, VBB = 1.2089 V Then VEBP = 1.2089 βˆ’ 0.6225 = 0.5864 V βŽ› 0.5864 ⎞ I CP = 5 Γ— 10βˆ’14 exp ⎜ ⎟ β‡’ I CP = 0.312 mA ⎝ 0.026 ⎠ As a second approximation, I CN = iL + I CP = 1.25 + 0.31 β‡’ I CN β‰… 1.56 mA 13.14 VBB 1.157 R1 + R2 = = = 64.28 kΞ© (0.1) I BIAS 0.018 βŽ›I ⎞ βŽ› (0.9) I BIAS ⎞ VBE = VT ln ⎜ C ⎟ = (0.026) ln ⎜ ⎟ ⎝ IS ⎠ ⎝ IS ⎠ βŽ› 0.162 Γ— 10βˆ’3 ⎞ = (0.026) ln ⎜ βˆ’14 ⎟ ⎝ 10 ⎠
  • 6. VBE = 0.6112 V βŽ› R2 ⎞ VBE = ⎜ ⎟ VBB ⎝ R1 + R2 ⎠ βŽ› R ⎞ 0.6112 = ⎜ 2 ⎟ (1.157) ⎝ 64.28 ⎠ So R2 = 33.96 kΞ© Then R1 = 30.32 kΞ© 13.15 (a) ( Ad = βˆ’ g m ro 4 ro 6 Ri 2 ) From example 13.4 9.5 gm = = 365 ΞΌ A / V , ro 4 = 5.26 M Ξ© 0.026 Now ro 6 = ro 4 = 5.26 M Ξ© Assuming R8 = 0, we find β€² Ri 2 = rΟ€ 16 + (1 + Ξ² n ) RE = 329 + (201) ( 50 9.63) β‡’ 1.95 M Ξ© Then ( ) Ad = βˆ’(365) 5.26 5.26 1.95 β‡’ Ad = βˆ’409 (b) From Equation (13.20), Av 2 = ( βˆ’ Ξ² n (1 + Ξ² n ) R9 Ract 2 Ri 3 R017 ) { Ri 2 R9 + ⎑ rΟ€ 17 + (1 + Ξ² n ) Rg ⎀ ⎣ ⎦} For Rg = 0, Ri 2 = 1.95 M Ξ© Using the results of Example 13.5 Av 2 = ( βˆ’200(201)(50) 92.6 4050 92.6 )β‡’A = βˆ’792 (1950){50 + 9.63} v2 13.16 Let I C10 = 40 ΞΌ A, then I C1 = I C 2 = 20 ΞΌ A. Using Example 13.5, Ri 2 = 4.07 MΞ© (200)(0.026) rΟ€ 6 = = 260 kΞ© 0.020 0.020 gm6 = = 0.769 mA/V 0.026 50 r06 = β‡’ 2.5 MΞ© 0.02 Then Ract1 = 2.5[1 + (0.769)(1 260)] = 4.42 MΞ© 50 r06 = β‡’ 2.5 MΞ© 0.02 Then
  • 7. βŽ› I CQ ⎞ Ad = βˆ’ ⎜ ⎟ (r04 Ract1 Ri 2 ) ⎝ VT ⎠ βŽ› 20 ⎞ = βˆ’βŽœ ⎟ (2.5 4.42 4.07) ⎝ 0.026 ⎠ So Ad = βˆ’882 13.17 From Problem 13.8 I1 = I 2 = 7.10 ΞΌ A, I C17 = 0.165 mA, I C13 A = 0.055 mA I E17 R8 + VBE17 0.165 (0.165)(0.1) + 0.6 I C16 β‰ˆ I B17 + = + R9 200 50 = 0.000825 + 0.01233 I C16 = 0.0132 mA (200)(0.026) rΟ€ 17 = = 31.5 K 0.165 RE = R9 [ rΟ€ 17 + (1 + Ξ² ) R8 ] = 50 [31.5 + (201)(0.1)] 1 = 50 51.6 = 25.4 K (200)(0.026) rΟ€ 16 = = 394 K 0.0132 Then Ri 2 = rΟ€ 16 + (1 + Ξ² ) RE = 394 + (201)(25.4) β‡’ 5.50 MΞ© 1 Now (200)(0.026) rΟ€ 6 = = 732 K 0.0071 0.0071 gm6 = = 0.273 mA/V 0.026 50 ro 6 = β‡’ 7.04 MΞ© 0.0071 Ract1 = ro 6 [1 + g m 6 ( R rΟ€ 6 )] = 7.04[1 + (0.273)(1 732)] = 8.96 MΞ© 50 ro 4 = β‡’ 7.04 MΞ© 0.0071 Then Ad = βˆ’ g m1 (ro 4 Ract1 Ri 2 ) βŽ› 7.10 ⎞ = βˆ’βŽœ ⎟ (7.04 8.96 5.5) ⎝ 0.026 ⎠ Ad = βˆ’627 50 50 Now Ract 2 = β‡’ 303 K Ro17 = = 303 K 0.165 0.165 From Eq. (13.20), assuming Ri 3 β†’ ∞ Ξ² (1 + Ξ² ) R9 ( Ract 2 R017 ) Av 2 β‰… βˆ’ Ri 2 { R9 + [rΟ€ 17 + (1 + Ξ² ) R8 ]} βˆ’(200)(201)(50)(303 303) βˆ’3.045 Γ— 108 = = (5500)[50 + 31.5 + (201)(0.1)] 5.588 Γ— 105 Av 2 = βˆ’545 Overall gain Av = (βˆ’627)(βˆ’545) = 341, 715
  • 8. 13.18 Using results from 13.17 βŽ› 100 ⎞ Ri 2 = 5.50 MΞ©, Ract1 ⎜ ⎟ [1 + (0.273)(1 732)] β‡’ 17.93 MΞ© ⎝ 0.0071 ⎠ 100 ro 4 = β‡’ 14.08 MΞ© 0.0071 βŽ› 7.10 ⎞ Ad = βˆ’ ⎜ ⎟ (14.08 17.93 5.50) ⎝ 0.026 ⎠ Ad = βˆ’885 Now 100 100 Ract 2 = = 606 K Ro17 = = 606 K 0.165 0.165 βˆ’(200)(201)(50)(606 606) βˆ’6.09 Γ— 108 Av 2 = = (5500)[50 + 31.5 + (201)(0.1)] 5.588 Γ— 105 Av 2 = βˆ’1090 Overall gain Av = (βˆ’885)(βˆ’1090) = 964, 650 13.19 Now rΟ€ 14 + R01 Re14 = and R0 = R6 + Re14 1+ Ξ²P Assume series resistance of Q18 and Q19 is small. Then R01 = r013 A Re 22 rΟ€ 22 + R017 r013 B where Re 22 = 1+ Ξ²P and R017 = r017 [1 + g m17 ( R8 rΟ€ 17 )] Using results from Example 13.6, rΟ€ 17 = 9.63 kΞ© rΟ€ 22 = 7.22 kΞ© g m17 = 20.8 mA/V r017 = 92.6 kΞ© Then R017 = 92.6[1 + (20.8)(0.1 9.63)] = 283 kΞ© 50 r013 B = = 92.6 kΞ© 0.54 Then 7.22 + 283 92.6 Re 22 = = 1.51 kΞ© 51 R01 = r013 A Re 22 = 278 1.51 = 1.50 kΞ© (50)(0.026) rΟ€ 14 = = 0.65 kΞ© 2 Then 0.65 + 1.50 Re14 = = 0.0422 kΞ© 51 or Re14 = 42.2 Ξ© Then R0 = 42.2 + 27 β‡’ R0 = 69.2 Ξ© 13.20
  • 9. ⎑ βŽ› r ⎞⎀ Rid = 2 ⎒ rΟ€ 1 + (1 + Ξ² n ) ⎜ Ο€ 3 ⎟βŽ₯ ⎣ ⎝ 1+ Ξ²P ⎠⎦ Ξ² n = 200, Ξ² P = 10 (a) I C1 = 9.5 ΞΌ A (200)(0.026) rΟ€ 1 = = 547 K 0.0095 (10)(0.026) rΟ€ 3 = = 27.4 K 0.0095 Then ⎑ (201)(27.4) ⎀ Rid = 2 ⎒547 + βŽ₯ ⎣ 11 ⎦ Rid β‡’ 2.095 MΞ© (b) I C1 = 7.10 ΞΌ A (200)(0.026) rΟ€ 1 = = 732 K 0.0071 (10)(0.026) rΟ€ 3 = = 36.6 K 0.0071 ⎑ (201)(36.6) ⎀ Rid = 2 ⎒ 732 + βŽ₯ ⎣ 11 ⎦ Rid β‡’ 2.80 MΞ© 13.21 We can write A0 A( f ) = βŽ› f βŽžβŽ› f ⎞ ⎜1 + j ⎟⎜ 1 + j ⎟ ⎝ f PD ⎠⎝ f1 ⎠ 181, 260 = βŽ› f βŽžβŽ› f ⎞ ⎜1 + j ⎟ ⎜1 + j ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ Phase: βŽ› f ⎞ βˆ’1 βŽ› f ⎞ Ο† = βˆ’ tan βˆ’1 ⎜ ⎟ βˆ’ tan ⎜ ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ For a Phase margin = 70Β°, Ο† = βˆ’110Β° So βŽ› f ⎞ βˆ’1 βŽ› f ⎞ βˆ’110Β° = βˆ’ tan βˆ’1 ⎜ ⎟ βˆ’ tan ⎜ ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ Assuming f 10.7, we have βŽ› f ⎞ f tan βˆ’1 ⎜ ⎟ = 20Β° β‡’ = 0.364 ⎝ f1 ⎠ f1 At this frequency, A( f ) = 1, so
  • 10. 181, 260 1= 2 βŽ› f ⎞ 1+ ⎜ ⎟ β‹… 1 + (0.364) 2 ⎝ 10.7 ⎠ 170,327 = 2 βŽ› f ⎞ 1+ ⎜ ⎟ ⎝ 10.7 ⎠ f or = 170,327 β‡’ f = 1.82 MHz 10.7 Then, second pole at f f1 = β‡’ f1 = 5 MHz 0.364 13.22 a. Original g m1 and g m 2 βŽ›W βŽžβŽ› ΞΌ C ⎞ K p1 = K p 2 = ⎜ ⎟⎜ P ox ⎟ = (12.5)(10) ⎝ L ⎠⎝ 2 ⎠ = 125 ΞΌ A / V 2 So βŽ› IQ ⎞ g m1 = g m 2 = 2 K p1 ⎜ ⎟ = 2 (0.125)(10) ⎝ 2⎠ = 0.09975 mA/V βŽ›W ⎞ If ⎜ ⎟ is increased to 50, then ⎝L⎠ K p1 = K p 2 = (50)(10) = 500 ΞΌ A / V 2 So g m1 = g m 2 = 2 (0.5)(0.0199) = 0.1995 mA/V b. Gain of first stage Ad = g m1 (r02 r04 ) = (0.1995)(5025 5025) or Ad = 501 Voltage gain of second stage remains the same, or Av 2 = 251 Then Av = Ad β‹… Av 2 = (501)(251) or Ad = 125, 751 13.24 a. K p = (10)(20) = 200 ΞΌ A / V 2 = 0.2 mA / V 2 10 βˆ’ VSG βˆ’ (βˆ’10) I REF = I SET = 200 = k P (VSG βˆ’ 1.5) 2 20 βˆ’ VSG = (0.2)(200)(VSG βˆ’ 3VSG + 2.25) 2 40VSG βˆ’ 119VSG + 70 = 0 2 119 Β± (119) 2 βˆ’ 4(40)(70) VSG = β‡’ VSG = 2.17 V 2(40) Then
  • 11. 20 βˆ’ 2.17 I REF = β‡’ I REF = 89.2 ΞΌ A 200 M 5 , M 6 , M 8 matched transistors so that I Q = I D 7 = I REF = 89.2 ΞΌ A b. Small-signal voltage gain of input stage: Ad = 2 K p1 I Q β‹… ( ro 2 ro 4 ) 1 1 r02 = = = 1.12 MΞ© Ξ»P I D βŽ› 89.2 ⎞ (0.02) ⎜ ⎟ ⎝ 2 ⎠ 1 1 r04 = = = 2.24 MΞ© Ξ»n I D βŽ› 89.2 ⎞ (0.01) ⎜ ⎟ ⎝ 2 ⎠ Then Ad = 2(200)(89.2) β‹… (1.12 2.24) or Ad = 141 Small-signal voltage gain of second stage: Av 2 = g m 7 (r07 r08 ) K n 7 = (20)(20) = 400 ΞΌ A / V 2 So g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.0892) = 0.378 mA/V 1 1 r08 = = = 561 kΞ© Ξ»P I D 7 (0.02)(0.0892) 1 1 r07 = = = 1121 kΞ© Ξ»n I D 7 (0.01)(0.0892) So Av 2 = (0.378)(1121 561) β‡’ Av 2 = 141 Then overall voltage gain Av = Ad β‹… Av 2 = (141)(141) β‡’ Av = 19,881 13.25 Small-signal voltage gain of input stage: Ad = 2 K p1 I Q β‹… ( ro 2 ro 4 ) K p1 = (10)(10) = 100 ΞΌ A / V 2 1 1 r02 = = = 1000 kΞ© βŽ› IQ ⎞ βŽ› 0.2 ⎞ Ξ»P ⎜ ⎟ (0.01) ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ 1 1 r04 = = = 2000 kΞ© βŽ› IQ ⎞ βŽ› 0.2 ⎞ Ξ»n ⎜ ⎟ (0.005) ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ Then Ad = 2(0.1)(0.2) β‹… (1000 2000) or Ad = 133 Small-signal voltage gain of second stage: Av 2 = g m 7 ( r07 r08 ) K n 7 = (20)(20) = 400 ΞΌ A / V 2 So
  • 12. g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.2) = 0.566 mA/V 1 1 r08 = = = 500 kΞ© Ξ»P I D 7 (0.01)(0.2) 1 1 r07 = = = 1000 kΞ© Ξ»n I D 7 (0.005)(0.2) So Av 2 = (0.566)(1000 500) β‡’ Av 2 = 189 Then overall voltage gain is Av = Ad β‹… Av 2 = (133)(189) β‡’ Av = 25,137 13.26 1 f PD = 2Ο€ Req Ci where Req = r04 r02 and Ci = C1 (1 + Av 2 ) We can find that Av 2 = 251 and r04 = r02 = 5.025 MΞ© Now Req = 5.025 5.025 = 2.51 MΞ© and Ci = 12(1 + 251) = 3024 pF So 1 f PD = 2Ο€ (2.51Γ— 106 )(3024 Γ— 10βˆ’12 ) or f PD = 21.0 Hz 13.27 1 f PD = 2Ο€ Req Ci where Req = r04 r02 From Problem 13.22, r02 = 1.12 MΞ©, r04 = 2.24 MΞ© and Av 2 = 141 So 1 8= 2Ο€ (1.12 2.24) Γ— 106 Γ— Ci or Ci = 2.66 Γ— 10βˆ’8 = C1 (1 + Av 2 ) = C1 (142) or C1 = 188 pF 13.28 R0 = r07 r08 We can find that r07 = r08 = 2.52 MΞ© Then R0 = 2.52 2.52 or R0 = 1.26 MΞ©
  • 13. 13.29 a. V0 = ( g m1Vgs1 )(r01 r02 ) VI = Vgs1 + V0 Then V0 = g m1 (r01 r02 )(VI βˆ’ V0 ) or g m1 (r01 r02 ) Av = 1 + g m1 (r01 r02 ) VX VX b. I X + g m1Vgs1 = + and Vgs1 = βˆ’VX r02 r01 1 R0 = r r g m1 01 02 13.30 βŽ› 80 ⎞ I Q 2 = ⎜ ⎟ (20) [1.1737 βˆ’ 0.7 ] 2 (a) ⎝ 2⎠ I Q 2 = 180 ΞΌ A βŽ› 80 ⎞ I D 6 = ⎜ ⎟ (25) (VGS 6 βˆ’ 0.7 ) = 25 β‡’ VGS 6 = 0.8581 V 2 (b) ⎝ 2⎠ βŽ› 40 ⎞ I D 7 = ⎜ ⎟ (50) (VSG 7 βˆ’ 0.7 ) = 25 β‡’ VSG 7 = 0.8581 V 2 ⎝ 2 ⎠ Set VSG 8 P = VGS 8 N = 0.8581 V βŽ› 40 ⎞ βŽ› W ⎞ βŽ›W ⎞ 180 = ⎜ ⎟ ⎜ ⎟ (0.8581 βˆ’ 0.7) 2 β‡’ ⎜ ⎟ = 360 ⎝ 2 ⎠ ⎝ L ⎠8 P ⎝ L ⎠8 P βŽ› 80 ⎞ βŽ› W ⎞ βŽ›W ⎞ 180 = ⎜ ⎟ ⎜ ⎟ (0.8581 βˆ’ 0.7) 2 β‡’ ⎜ ⎟ = 180 ⎝ 2 ⎠ ⎝ L ⎠8 N ⎝ L ⎠8 N 13.31
  • 14. βŽ› 80 ⎞ VGS11 β‡’ 200 = ⎜ ⎟ (20) (VGS 11 βˆ’ 0.7 ) 2 ⎝ 2⎠ VGS 11 = 1.20 V Let M 12 = 2 transistors in series. Than 5 βˆ’ 1.20 VGS12 = = 1.90 V 2 βŽ› 80 βŽžβŽ› W ⎞ βŽ›W ⎞ βŽ›W ⎞ 200 = ⎜ ⎟⎜ ⎟ (1.90 βˆ’ 0.7 ) β‡’ ⎜ ⎟ = ⎜ ⎟ = 3.47 2 ⎝ 2 ⎠⎝ L ⎠12 ⎝ L ⎠12 A ⎝ L ⎠12 B 13.32 (a) βŽ› 80 ⎞ I Q 2 = 250ΞΌ A = ⎜ ⎟ (5) (VGS 8 βˆ’ 0.7 ) 2 ⎝ 2⎠ β‡’ VGS 8 = 1.818 V 1.818 β‡’ VGS 6 = VSG 7 = = 0.909 V 2 βŽ› 80 ⎞ I D 6 = I D 7 = ⎜ ⎟ (25)(0.909 βˆ’ 0.7) 2 = 43.7 ΞΌ A ⎝ 2⎠ (b) βŽ› 80 ⎞ βŽ› 250 ⎞ g m1 = 2 ⎜ ⎟ (15) ⎜ ⎟ β‡’ 0.5477 mA/V ⎝ 2⎠ ⎝ 2 ⎠ 1 ro 2 = = 800 K ( 0.01)( 0.125) 1 r04 = = 533.3K ( 0.015)( 0.125) Ad 1 = g m1 ( ro 2 ro 4 ) = ( 0.5477 ) ( 800 533.3) Ad 1 = 175 Second stage:
  • 15. A2 = βˆ’ g m 5 (ro 5 ro 9 ) βŽ› 40 ⎞ g m 5 = 2 ⎜ ⎟ (80)(250) β‡’ 1.265 mA/V ⎝ 2 ⎠ 1 r05 = = 266.7 K (0.015)(0.25) 1 r09 = = 400 K (0.01)(0.25) A2 = βˆ’(1.265)(266.7 400) A2 = βˆ’202 Assume the gain of the output stage β‰ˆ 1, then Av = Ad 1 β‹… A2 = (175)(βˆ’202) Av = βˆ’35,350 13.33 (a) Ad = g m1 ( Ro 6 Ro8 ) g m1 = 2 K n I DQ = 2 (0.5)(0.025) β‡’ 224 ΞΌ A / V g m1 = g m8 g m 6 = 2 (0.5)(0.025) β‡’ 224 ΞΌ A / V 1 1 ro1 = ro 6 = ro8 = ro10 = = = 2.67 M Ξ© Ξ» I DQ (0.015)(25) 1 1 ro 4 = = β‡’ 1.33 M Ξ© Ξ» I D 4 ( 0.015 )( 50 ) Now Ro8 = g m8 (ro8 ro10 ) = (224)(2.67)(2.67) = 1597 M Ξ© Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) = (224)(2.67)(2.67 1.33) β‡’ Ro 6 = 531 M Ξ© Then Ad = (224)(531 1597) β‡’ Ad = 89, 264 (b) Ro = Ro 6 Ro8 = 531 1597 β‡’ Ro = 398 M Ξ© 1 1 (c) f PD = = β‡’ f PD = 80 Hz 2Ο€ Ro CL 2Ο€ ( 398 Γ— 106 )( 5 Γ— 10βˆ’12 ) GBW = (89, 264)(80) β‡’ GBW = 7.14 MHz 13.34 (a) 1 1 ro1 = ro8 = ro10 = = = 2 MΞ© Ξ» p I D (0.02)(25) 1 1 ro 6 = = = 2.67 M Ξ© Ξ»n I D (0.015)(25) 1 1 ro 4 = = = 1.33 M Ξ© Ξ»n I D 4 (0.015)(50) βŽ› 35 ⎞ βŽ› W ⎞ βŽ›W ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ (25) = 41.8 ⎜ ⎟ = g m8 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 βŽ› 80 βŽžβŽ› W ⎞ βŽ›W ⎞ g m 6 = 2 ⎜ ⎟⎜ ⎟ (25) = 63.2 ⎜ ⎟ ⎝ 2 ⎠⎝ L ⎠6 ⎝ L ⎠6 Ro = Ro 6 Ro8 = [ g m 6 (ro 6 )(ro 4 ro1 )] [ g m8 (ro8 ro10 )]
  • 16. βŽ›W ⎞ βŽ›W ⎞ Define X 1 = ⎜ ⎟ and X 6 = ⎜ ⎟ ⎝ L ⎠1 ⎝ L ⎠6 Then Ro = ⎣ 63.2 X 6 ( 2.67 ) (1.33 2 ) ⎦ ⎑ 41.8 X 1 ( 2 )( 2 ) ⎀ ⎑ ⎀ ⎣ ⎦ 22,539 X 1 X 6 = 134.8 X 6 167.2 X 1 = 134.8 X 6 + 167.2 X 1 βŽ› 22,539 X 1 X 6 ⎞ Ad = g m1 Ro = (41.8 X 1 ) ⎜ ⎟ ⎝ 134.8 X 6 + 167.2 X 1 ⎠ = 10, 000 βŽ›W ⎞ 1 βŽ›W ⎞ Now X 6 = ⎜ ⎟ = ⎜ ⎟ = 0.674 X 1 ⎝ L ⎠6 2.2 ⎝ L ⎠1 We then find βŽ›W ⎞ βŽ›W ⎞ X 12 = ⎜ ⎟ = 4.06 = ⎜ ⎟ ⎝ L ⎠1 ⎝ L ⎠p and βŽ›W ⎞ ⎜ ⎟ = 1.85 ⎝ L ⎠n 13.35 Let V + = 5V , V βˆ’ = βˆ’5V P = IT (10) = 3 β‡’ IT = 0.3 mA β‡’ I REF = 0.1 mA = 100 ΞΌ A 1 ro1 = ro8 = ro10 = = 1 MΞ© (0.02)(50) 1 ro 6 = = 1.33 MΞ© (0.015)(50) 1 ro 4 = = 0.667 M Ξ© (0.015)(100) βŽ› 35 ⎞ βŽ› W ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 59.2 X 1 = g m8 ⎝ 2 ⎠ ⎝ L ⎠1 βŽ›W ⎞ where X 1 = ⎜ ⎟ ⎝ L ⎠1 Assume all width-to-length ratios are the same. βŽ› 80 ⎞ βŽ› W ⎞ g m 6 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 89.4 X 1 ⎝ 2 ⎠⎝ L ⎠ Now Ro = Ro 6 Ro8 = ⎑ g m 6 ( ro 6 ) ( ro 4 ro1 ) ⎀ ⎑ g m8 ( ro8 ro10 ) ⎀ ⎣ ⎦ ⎣ ⎦ = ⎑89.4 X 1 (1.33) ( 0.667 1) ⎀ ⎑59.2 X 1 (1)(1) ⎀ ⎣ ⎦ ⎣ ⎦ ( 47.6 X 1 )( 59.2 X 1 ) = [ 47.6 X 1 ] [59.2 X 1 ] = 47.6 X 1 + 59.2 X 1 So Ro = 26.4 X 1 Now Ad = g m1 Ro = ( 59.2 X 1 )( 26.4 X 1 ) = 25, 000 W So that X 12 = = 16 for all transistors L 13.36
  • 17. (a) Ad = Bg m1 (ro 6 ro8 ) 1 1 ro 6 = ro8 = = = 0.741 M Ξ© Ξ» I DQ (0.015)(90) βŽ› k β€² βŽžβŽ› W ⎞ g m1 = 2 ⎜ n ⎟ ⎜ ⎟ I D1 = 2 (500)(30) = 245 ΞΌ A / V ⎝ 2 ⎠⎝ L ⎠ Ad = (3)(245)(0.741 0.741) β‡’ Ad = 272 (b) Ro = ro 6 ro8 = 0.741 0.741 β‡’ Ro = 371 k Ξ© 1 1 (c) f PD = = β‡’ f PD = 85.8 kHz 2Ο€ Ro C 2Ο€ (371Γ— 103 )(5 Γ— 10βˆ’12 ) GBW = (272)(85.8 Γ— 103 ) β‡’ GBW = 23.3 MHz 13.37 1 (a) ro 6 = = 0.5 M Ξ© (0.02)(2.5)(40) 1 ro8 = = 0.667 M Ξ© (0.015)(2.5)(40) Ad = Bg m1 ( ro 6 ro8 ) 400 = (2.5) g m1 ( 0.5 0.667 ) β‡’ g m1 = 560 ΞΌ A / V βŽ› 80 ⎞ βŽ› W ⎞ βŽ›W ⎞ g m1 = 560 = 2 ⎜ ⎟ ⎜ ⎟ (40) β‡’ ⎜ ⎟ = 49 ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ Assume all (W/L) ratios are the same except for βŽ›W ⎞ βŽ›W ⎞ M 5 and M 6 . ⎜ ⎟ = ⎜ ⎟ = 122.5 ⎝ L ⎠5 ⎝ L ⎠ 6 (b) Assume the bias voltages are V + = 5V , V βˆ’ = βˆ’5V . βŽ›W ⎞ βŽ›W ⎞ Assume ⎜ ⎟ = ⎜ ⎟ = 49 ⎝ L ⎠ A ⎝ L ⎠B βŽ› 80 ⎞ I Q = ⎜ ⎟ (49)(VGSA βˆ’ 0.5) 2 = 80 β‡’ VGSA = 0.702 V ⎝ 2⎠ Then βŽ› 80 ⎞ βŽ› W ⎞ I REF = 80 = ⎜ ⎟ ⎜ ⎟ (VGSC βˆ’ 0.5) 2 ⎝ 2 ⎠ ⎝ L ⎠C For four transistors
  • 18. 10 βˆ’ 0.702 VGSC = = 2.325 V 4 βŽ› 80 ⎞ βŽ› W ⎞ βŽ›W ⎞ 80 = ⎜ ⎟ ⎜ ⎟ (2.325 βˆ’ 0.5) 2 β‡’ ⎜ ⎟ = 0.60 ⎝ 2 ⎠ ⎝ L ⎠C ⎝ L ⎠C 1 (c) f 3βˆ’ dB = Ro = 0.5 0.667 = 0.286 M Ξ© 2Ο€ Ro C 1 f 3βˆ’ dB = = 185 kHz 2Ο€ (286 Γ— 103 )(3 Γ— 10βˆ’12 ) GBW = (400)(185 Γ— 103 ) β‡’ 74 MHz 13.38 (a) From previous results, we can write Ro10 = g m10 (ro10 ro 6 ) Ro12 = g m12 (ro12 ro8 ) Ad = Bg m1 ( Ro10 Ro12 ) Now 1 1 ro10 = ro 6 = = = 0.5 M Ξ© Ξ»P B ( I Q / 2 ) (0.02)(2.5)(40) 1 1 ro12 = ro8 = = = 0.667 M Ξ© Ξ»n B ( I Q / 2 ) (0.015)(2.5)(40) Assume all transistors have the same width-to-length ratios except for M 5 and M 6 . βŽ›W ⎞ ⎟= X 2 Let ⎜ ⎝L ⎠ Then βŽ› kβ€² βŽžβŽ› W ⎞ βŽ› 35 ⎞ g m10 = 2 ⎜ ⎟ ⎜ ⎟ ( I DQ10 ) = 2 ⎜ ⎟ X 2 (2.5)(40) p ⎝ 2 ⎠ ⎝ L ⎠10 ⎝ 2⎠ = 83.67 X βŽ› kβ€² βŽžβŽ› W ⎞ βŽ› 80 ⎞ g m12 = 2 ⎜ n ⎟ ⎜ ⎟ ( I DQ12 ) = 2 ⎜ ⎟ X 2 (2.5)(40) ⎝ 2 ⎠ ⎝ L ⎠12 ⎝ 2⎠ = 126.5 X βŽ› 80 ⎞ g m1 = 2 ⎜ ⎟ X 2 (40) = 80 X ⎝ 2⎠ Then Ro10 = (83.67 X )(0.5)(0.5) = 20.9 X M Ξ© Ro12 = (126.5 X )(0.667)(0.667) = 56.3 X M Ξ© We want 20, 000 = (2.5)(80 X )[20.9 X 56.3 X ] ⎑ (20.9 X )(56.3 X ) ⎀ = 200 X ⎒ βŽ₯ = 3048 X 2 ⎣ 20.9 X + 56.3 X ⎦ Then βŽ›W ⎞ X 2 = 6.56 = ⎜ ⎟ ⎝L⎠ Then βŽ›W ⎞ βŽ›W ⎞ ⎜ ⎟ = ⎜ ⎟ = (2.5)(6.56) = 16.4 ⎝ L ⎠ 6 ⎝ L ⎠5 (b) Assume bias voltages are V + = 5V , V βˆ’ = βˆ’5V
  • 19. βŽ›W ⎞ βŽ›W ⎞ Assume ⎜ ⎟ = ⎜ ⎟ = 6.56 ⎝ L ⎠ A ⎝ L ⎠B βŽ› 80 ⎞ I Q = 80 = ⎜ ⎟ (6.56)(VGSA βˆ’ 0.5) 2 β‡’ VGSA = 1.052 V ⎝ 2⎠ Need 5 transistors in series 10 βˆ’ 1.052 VGSC = = 1.79 V 5 Then βŽ› 80 ⎞ βŽ› W ⎞ βŽ›W ⎞ I REF = 80 = ⎜ ⎟ ⎜ ⎟ (1.79 βˆ’ 0.5) 2 β‡’ ⎜ ⎟ = 1.20 ⎝ 2 ⎠ ⎝ L ⎠C ⎝ L ⎠C 1 (c) f 3βˆ’ dB = where Ro = Ro10 Ro12 2Ο€ Ro C Now Ro10 = 20.9 6.56 = 53.5 M Ξ© Ro12 = 56.3 6.56 = 144 M Ξ© Then Ro = 53.5 144 = 39 M Ξ© 1 f 3βˆ’ dB = = 1.36 kHz 2Ο€ (39 Γ— 106 )(3 Γ— 10βˆ’12 ) GBW = (20, 000)(1.36 x103 ) β‡’ GBW = 27.2 MHz 13.39 Ad = g m ( M 2 ) β‹… ⎑ ro 2 ( M 2 ) ro 2 (Q2 ) ⎀ ⎣ ⎦ βŽ› 40 ⎞ g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 447 ΞΌ A / V ⎝ 2 ⎠ 1 1 ro 2 ( M 2 ) = = = 500 k Ξ© Ξ» I DQ (0.02)(0.1) VA 120 ro 2 (Q2 ) = = = 1200 k Ξ© I CQ 0.1 Then Ad = 447(0.5 1.2) β‡’ Ad = 158 13.40
  • 20. Ad = g m ( M 2 ) β‹… ⎑ ro 2 ( M 2 ) ro 2 (Q2 ) ⎀ ⎣ ⎦ βŽ› 80 ⎞ g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 632 ΞΌ A / V ⎝ 2⎠ 1 1 ro 2 ( M 2 ) = = = 667 k Ξ© Ξ» I DQ (0.015)(0.1) VA 80 ro 2 (Q2 ) = = = 800 k Ξ© I CQ 0.1 Ad = (632) ( 0.667 0.80 ) β‡’ Ad = 230 13.41 (a) I REF = 200 ΞΌ A K n = K p = 0.5 mA / V 2 Ξ»n = Ξ» p = 0.015 V βˆ’1 Ad = g m1 ( Ro 6 Ro8 ) where Ro8 = g m8 (ro8 ro10 ) Ro 6 = g m 6 (ro 6 ) ( ro 4 ro1 ) Now g m8 = 2 K P I D 8 = 2 (0.5)(0.1) = 0.447 mA/V 1 1 ro8 = = = 667 k Ξ© Ξ»P I D 8 (0.015)(0.1) 1 ro10 = = 667 k Ξ© Ξ»P I D 8 IC 6 0.1 gm6 = = = 3.846 mA/V VT 0.026 VA 80 ro 6 = = = 800 k Ξ© I C 6 0.1 1 1 ro 4 = = = 333 k Ξ© Ξ»n I D 4 (0.015)(0.2) 1 1 ro1 = = = 667 k Ξ© Ξ» p I D1 (0.015)(0.1) g m1 = 2 K P I D1 = 2 (0.5)(0.1) = 0.447 mA/V So Ro8 = (0.447)(667)(667) β‡’ 198.9 M Ξ© Ro 6 = (3.846)(800)(333 667) β‡’ 683.4 M Ξ© Then Ad = 447(198.9 683.4) β‡’ Ad = 68,865 13.42 Assume biased at V + = 10V , V βˆ’ = βˆ’10V . P = 3I REF (20) = 10 β‡’ I REF = 167 ΞΌ A Ad = g m1 ( Ro 6 Ro8 ) = 25, 000 kn = 80 ΞΌ A / V 2 , k β€² = 35 ΞΌ A / V 2 β€² p Ξ»n = 0.015V βˆ’1 , Ξ» p = 0.02 V βˆ’1 βŽ›W ⎞ βŽ›W ⎞ Assume ⎜ ⎟ = 2.2 ⎜ ⎟ ⎝ L ⎠p ⎝ L ⎠n
  • 21. Ro8 = g m8 ( ro8 ro10 ) Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) 1 1 ro8 = = = 0.60 M Ξ© Ξ»P I D 8 (0.02)(83.3) 1 ro10 = = 0.60 M Ξ© Ξ»P I D 8 βŽ› kβ€² βŽžβŽ› W ⎞ βŽ› 35 ⎞ g m8 = 2 ⎜ ⎟ ⎜ ⎟ I D 8 = 2 ⎜ ⎟ (2.2) X 2 (83.3) p ⎝ 2 ⎠ ⎝ L ⎠8 ⎝ 2⎠ = 113.3 X βŽ›W ⎞ where X 2 = ⎜ ⎟ ⎝ L ⎠n VA 80 ro 6 = = = 0.960 M Ξ© I C 6 83.3 1 1 ro 4 = = = 0.40 M Ξ© Ξ»n I D 4 (0.015)(167) 1 1 ro1 = = = 0.60 M Ξ© Ξ» p I D1 (0.02)(83.3) IC 6 83.3 gm6 = = = 3204 ΞΌ A / V VT 0.026 β€² βŽ› kp βŽžβŽ› W ⎞ βŽ› 35 ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ I D1 = 2 ⎜ ⎟ (2.2) X 2 (83.3) ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ 2⎠ = 113.3 X Now Ro 6 = (3204)(0.960) ⎑0.40 0.60 ⎀ = 738 M Ξ© ⎣ ⎦ Ro8 = (113.3 X )(0.60)(0.60) = 40.8 X M Ξ© Then Ad = 25, 000 = (113.3 X ) ⎑ 738 40.8 X ⎀ ⎣ ⎦ ⎑ 30,110 X ⎀ = (113.3 X ) ⎒ βŽ₯ ⎣ 738 + 40.8 X ⎦ which yields X = 2.48 or βŽ›W ⎞ X 2 = 6.16 = ⎜ ⎟ ⎝ L ⎠n and βŽ›W ⎞ ⎜ ⎟ + (2.2)(6.16) = 12.3 ⎝ L ⎠P 13.43 For vcm (max), assume VCB (Q5 ) = 0. Then VS = 15 βˆ’ 0.6 βˆ’ 0.6 = 13.8 V 0.236 I D 9 = I D10 = = 0.118 mA 2 Using parameters given in Example 13.11 I 0.118 VSG = D 9 βˆ’ VTP = + 1.4 = 2.17 V KP 0.20 Then vcm (max) = 13.8 βˆ’ 2.17 β‡’ vcm (max) = 11.6 V
  • 22. For vcm (min) , assume VSD ( M 9 ) = VSD ( sat ) = VSG + VTP = 2.17 βˆ’ 1.4 = 0.77 V Now VD10 = I D10 (0.5) + 0.6 + I D10 (0.5) βˆ’ 15 = 0.118 + 0.6 βˆ’ 15 β‡’ VD10 = βˆ’14.28 V Then vcm (min) = βˆ’14.28 + VSD (sat) βˆ’ VSG = βˆ’14.28 + 0.77 βˆ’ 2.17 = βˆ’15.68 V Then, common-mode voltage range βˆ’15.68 ≀ vcm ≀ 11.6 Or, assuming the input is limited to Β±15 V, then βˆ’15 ≀ vcm ≀ 11.6 V 13.44 For I1 = I 2 = 300 ΞΌ A, VSG = VBE + (0.3)(8) = 0.6 + 2.4 = 3.0 V Then I 2 = K P (VSG + VTP ) 2 0.3 = K P (3 βˆ’ 1.4)2 β‡’ K P = 0.117 mA / V 2 13.45 For VCB = 0 for both Q6 and Q7 , then VS = 0.6 + 0.6 + VSG + (βˆ’VS ) So 2VS = 1.2 + VSG Now I1 0.6 + I 2 R1 = VSG = + VTP and I1 = I 2 KP Also I1 = I 2 = K P (VSG + VTP ) 2 so 0.6 + (0.25)(8)(VSG βˆ’ 1.4) 2 = VSG 0.6 + 2(VSG βˆ’ 2.8VSG + 1.96) = VSG 2 2VSG βˆ’ 6.6VSG + 4.52 = 0 2 6.6 Β± (6.6) 2 βˆ’ 4(2)(4.52) VSG = = 2.33 V 2(2) Then 2VS = 1.2 + 2.33 = 3.53 and VS = 1.765 V 13.46 I C 5 = I C 4 = 300 ΞΌ A Using the parameters from Examples 13.12 and 13.13, we have Ξ²V (200)(0.026) Ri 2 = rΟ€ 13 = n T = = 17.3 kΞ© I C13 0.3 Ad = 2 K n I Q 5 β‹… ( Ri 2 ) = 2(0.6)(0.3) β‹… (17.3) or Ad = 10.38 Now
  • 23. I C13 0.3 g m13 = = = 11.5 mA/V VT 0.026 VA 50 r013 = = = 167 kΞ© I C13 0.3 Then | Av 2 | = g m13 β‹… r013 = (11.5)(167) or Av 2 = 1917 Overall gain: Av = (10.38)(1917) = 19,895 13.47 Assuming the resistances looking into Q4 and into the output stage are very large, we have Ξ² R013 | Av 2 | = rΟ€ 13 + (1 + Ξ² ) RE13 where R013 = r013 ⎑1 + g m13 ( RE13 rΟ€ 13 ) ⎀ ⎣ ⎦ 50 I C13 = 300 ΞΌ A, r013 = = 167 kΞ© 0.3 0.3 g m13 = = 11.5 mA / V 0.026 (200)(0.026) rΟ€ 13 = = 17.3 kΞ© 0.3 So R013 = (167) ⎑1 + (11.5) (1 17.3) ⎀ β‡’ 1.98 MΞ© ⎣ ⎦ Then (200)(1980) | Av 2 | = = 1814 17.3 + (201)(1) Now Ci = C1 (1 + Av 2 ) = 12 [1 + 1814] β‡’ Ci = 21, 780 pF 1 f PD = 2Ο€ Req Ci Req = Ri 2 r012 r010 Neglecting R3 , 1 1 r010 = = = 333 kΞ© Ξ» I D10 (0.02)(0.15) Neglecting R5 , 50 r012 = = 333 kΞ© 0.15 Ri 2 = rΟ€ 13 + (1 + Ξ² ) RE13 = 17.3 + (201)(1) = 218 kΞ© Then 1 f PD = 2Ο€ ⎑ 218 333 333⎀ Γ— 103 Γ— ( 21, 780 ) Γ— 10βˆ’12 ⎣ ⎦ or f PD = 77.4 Hz Unity-Gain Bandwidth Gain of first stage:
  • 24. Ad = 2 K n I Qs β‹… ( R12 ro12 ro10 ) = 2(0.6)(0.3) β‹… (218 333 333) = (0.6)(218 333 333) or Ad = 56.6 Overall gain: Av = (56.6)(1814) = 102, 672 Then unity-gain bandwidth = (77.4)(102, 672) β‡’ 7.95 MHz 13.48 Since VGS = 0 in J 6 , I REF = I DSS β‡’ I DSS = 0.8 mA 13.49 a. Ri 2 = rΟ€ 5 + (1 + Ξ² ) [ rΟ€ 6 + (1 + Ξ² ) RE ] (100)(0.026) rΟ€ 6 = = 13 kΞ© 0.2 I 200 ΞΌ A IC 5 β‰… C6 = = 2 ΞΌA Ξ² 100 So (100)(0.026) rΟ€ 5 = = 1300 kΞ© 0.002 Then Ri 2 = 1300 + (101) [13 + (101)(0.3) ] or Ri 2 = 5.67 MΞ© b. Av = g m 2 ( r02 r04 Ri 2 ) 2 2 gm2 = β‹… I D β‹… I DSS = β‹… (0.1)(0.2) VP 3 = 0.0943 mA / V 1 1 r02 = = = 500 kΞ© Ξ» I D (0.02)(0.1) VA 5.0 r04 = = = 500 kΞ© I C 4 0.1 Then Av = (0.0943)[500 || 500 || 5670] or Av = 22.6 13.50 a. Need VSD (QE ) β‰₯ VSD ( sat ) = VP For minimum bias Β±3 V Set VP = 3 V and VZK = 3 V VZK βˆ’ VD1 I REF 2 = R3 3 βˆ’ 0.6 so that R3 = β‡’ R3 = 24 kΞ© 0.1 Set bias in QE = I REF 2 + I Z 2 = 0.1 + 0.1 = 0.2 mA Therefore,
  • 25. I DSS = 0.2 mA b. Neglecting base currents 12 βˆ’ 0.6 I 01 = I REF 1 = 0.5 mA = R4 so that R4 = 22.8 kΞ© 13.51 a. We have 2 2 gm2 = β‹… I D β‹… I DSS = β‹… (0.5)(1) | VP | 4 = 0.354 mA/V 1 1 r02 = = = 100 kΞ© Ξ» ID (0.02)(0.5) VA 100 r04 = = = 200 kΞ© I D 0.5 0.5 gm4 = = 19.23 mA/V 0.026 (200)(0.026) rΟ€ 4 = = 10.4 kΞ© 0.5 So R04 = r04 ⎑1 + g m 4 ( rΟ€ 4 R2 ) ⎀ ⎣ ⎦ = 200 ⎑1 + (19.23) (10.4 0.5 ) ⎀ ⎣ ⎦ = 2035 kΞ© Ad = g m 2 ( r02 R04 RL ) For RL β†’ ∞ Ad = 0.354 (100 || 2035 ) = 33.7 With these parameter values, gain can never reach 500. b. Similarly for this part, gain can never reach 700.