Chapter 7
Exercise Solutions

EX7.1
(a)
(i)
 RS = RP = 4 kΩ
     1         1
ω= =
     rS ( RS + RP ) CS
                  1                               1
CS =                               =
           2π f ( RS + RP )            2π ( 20 )( 4 + 4 ) × 10 3
CS = 0.995 μ F
(ii)
            ⎛ RP ⎞ ω rS
 T ( jω ) = ⎜         ⎟
            ⎝ RS + RP ⎠ 1 + ω 2 rS2
rS = ( RS + RP ) CS = 7.96 × 10 −3
   RP         4
          =        = 0.5
RS + RP 4 + 4
 f = 40 Hz
                  ( 0.5)( 2π )( 40 ) ( 7.96 × 10 −3 )
 T ( jω ) =
                                         (                 )
                                                               2
                  1 + ⎡ 2π ( 40 ) 7.96 × 10 −3 ⎤
                      ⎣                        ⎦
             T ( jω ) = 0.447
 f = 80 Hz
                  ( 0.5)( 2π )(80 ) ( 7.96 × 10 −3 )
 T ( jω ) =
                                         (                 )
                                                               2
                  1 + ⎡ 2π ( 80 ) 7.96 × 10 −3 ⎤
                      ⎣                        ⎦
             T ( jω ) = 0.485
 f = 200 Hz
                  ( 0.5 )( 2π )( 200 ) ( 7.96 × 10 −3 )
 T ( jω ) =
                                             (                 )
                                                                   2
                  1 + ⎡ 2π ( 200 ) 7.96 × 10 −3 ⎤
                      ⎣                         ⎦
             T ( jω ) = 0.498
(b)
       1       1
ω=       =
       rP ( RS RP ) CP
                  1
CP =
           2π f ( RS    RP )
                               1
       =
              (
           2π 500 × 10     3
                               ) (10         10 ) × 10 3
CP = 63.7 pF

EX7.2
a.
⎛ RP ⎞                RP                 RP
20 log10 ⎜         ⎟ = −1 ⇒         = 0.891 =           ⇒ (1 − 0.891) RP = 0.891 ⇒ RP = 8.20 kΩ
         ⎝ RP + RS ⎠        RP + RS             RP + 1
              1                            1
 fL =                   ⇒ CS =
      2π ( RS + RP ) CS        2π (100 )(1 + 8.20 ) × 10 3
CS = 0.173 μ F
                        1                                       1
fH =                                  ⇒ CP =
           2π ( RS          RP ) CP                2π 10( ) (1 || 8.20 ) × 10
                                                           6                    3


CP = 179 pF
b.
rS = ( RS + RP ) CS
       (                               )(
rS = 1 × 10 3 + 8.20 × 10 3 0.173 × 10 −6                  )
rS = 1.59 ms open-circuit time-constant
rP = ( RS          RP ) CP
rP = (1 8.20 ) × 10 3 179 × 10 −12(            )
rP = 0.160 μ s short-circuit time-constant

EX7.3
a.               rS = ( Ri + RS i ) CC
b.
             1
     f =
            2π rS
RTH = R1 R2 = 2.2 20 = 1.98 kΩ
       ⎛ R2 ⎞            ⎛ 2.2 ⎞
VTH = ⎜          ⎟ VCC = ⎜          ⎟ (10 ) = 0.991 V
       ⎝ R1 + R2 ⎠       ⎝ 2.2 + 20 ⎠
        VTH − VBE ( on )        0.991 − 0.7
I BQ =                    =                      = 0.0132 mA
       RTH + (1 + β ) RE 1.98 + ( 201)( 0.1)
 I CQ = 2.636 mA
            β VT        ( 200 )( 0.026 )
     rπ =           =                       = 1.97 kΩ
            I CQ               2.636
            ICQ        2.636
 gm =              =         = 101.4 mA/V
            VT         0.026
 Rib = τ π + (1 + β ) RE = 1.97 + ( 201)( 0.1) = 22.1 kΩ
 RB = R1 R2 = 1.98 kΩ
Ri = RB Rib = 1.98 22.1 = 1.817 kΩ
rS = ( Ri + RSi ) CC
      = (1.817 + 0.1) ×10 3   (        )( 47 × 10 )−6


  = 90.1 ms
          1
f =                 ⇒ f = 1.77 Hz
             (
    2π 90.1 × 10 −3               )
Midband Gain
− β RC         Ri
Aν =                     ⋅
         rπ + (1 + β ) RE Ri + RSi
            − ( 200 )( 2 )      1.82
     =                            ⋅
         1.97 + ( 201)( 0.1) 1.82 + 0.1
Aν = −17.2

EX7.4
I DQ = K n (VGS − VTN )
                              2


a.
 0.8
     + 2 = VGS ⇒ VGS = 3.265 V
 0.5
                     VS − ( −5 )
VS = −3.265 ⇒ I DQ =
                        RS
       −3.265 + 5
RS =               ⇒ RS = 2.17 kΩ
           0.8
                   5
VD = 0 ⇒ RD =         ⇒ RD = 6.25 kΩ
                  0.8
b.
rS = ( RD + RL ) CC = (10 + 6.25 ) × 10 3 × CC
       1                     1
 f =       ⇒ CC =
     2π rS                        (
                    2π f 16.25 × 10 3            )
                      1
CC =                                      ⇒ CC = 0.49 μ F
                  (
         2π ( 20 ) 16.25 × 10 3       )
EX7.5
rS = ( RL + Ro ) CC 2
       1                     1
 f =       ⇒ CC 2 =
     2π rS            2π f ( RL + Ro )
           ⎧ rπ + ( RS RB ) ⎫
           ⎪                ⎪
R0 = RE r0 ⎨                ⎬
           ⎪
           ⎩      1+ β      ⎪
                            ⎭
From Example 7-5, R0 = 35.5 Ω
                          1
CC 2 =
          2π (10 ) ⎡10 × 10 3 + 35.5⎤
                   ⎣                ⎦
CC 2 = 1.59 μ F

EX7.6
            I DQ = K P (VSG + VTP )
                                            2
a.
           1
              − ( −2 ) = VSG ⇒ VSG = 3.41 V
          0.5
        VS = 3.41
              5 − 3.41
        RS =            ⇒ RS = 1.59 kΩ
                  1
                                     5
For VSDG = VSGQ ⇒ VD = 0 ⇒ RD = ⇒ RD = 5 kΩ
                                    1
b.           rP = ( RD RL ) CL
                     1                  1
              f =         ⇒ CL =
                    2π rP        2π f ( RD RL )
                                  1
             CL =                                  ⇒ CL = 47.7 pF
                          ( )
                     2π 10 6     ( 5 10 ) × 10 3

EX7.7
(a)
 RTH = 5 K
 VTH = −3.7527
          −3.7527 − 0.7 − ( −5) 0.54726
I BQ =                         =
             5 + (101)( 0.5)      55.5
      = 0.00986
I CQ = 0.986 mA
gm = 37.925 rπ = 2.637 K
        5 − Vo Vo
0.986 =       − = 1 − Vo ( 0.4 )
           5   5
Vo = 0.035
(b)
                                       Rib

            RS ϭ 0.1 k⍀
                                                                               V0
                                             ϩ

Vi    ϩ                           RTH ϭ                                    RC ͉͉RL ϭ
      Ϫ                                      V␲     r␲
                                  5 k⍀                              gmV␲   2.5 k⍀

                                             Ϫ




                                                           RE ϭ
                                                           0.5 k⍀




 Vo = − gmVπ ( RC         RL )
Rib = rπ + (1 + β ) RE = 2.64 + (101)( 0.5) = 53.14 K
               Vb                Vb              Vb
Vπ =                   =                     =
             ⎛1+ β ⎞        ⎛  101 ⎞           14.885
          1+ ⎜     ⎟ RE 1 + ⎜ 2.637 ⎟ ( 0.5)
             ⎝ rπ ⎠         ⎝       ⎠
      ⎛ RTH Rib ⎞              ⎛ 5 53.14 ⎞
 Vb = ⎜                 ⎟ Vi = ⎜               ⎟ Vi
      ⎝ RTH Rib + RS ⎠         ⎝ 5 53.14 + 0.1 ⎠
      ⎛ 4.57 ⎞
    =⎜             ⎟ Vi = 0.9786
      ⎝ 4.57 + 0.1 ⎠
           (37.925)( 2.5)
 Av = −                      ( 0.9786 ) = Av = −6.23
               14.885
(c)

EX7.8
a.
0 − 0.7 − ( −10 )
I BQ =                              = 0.0230 mA
           0.5 + (101)( 4 )
I CQ = 2.30 mA
           β VT        (100 )( 0.026 )
 rπ =              =                      = 1.13 kΩ
            I CQ               2.30
           I CQ        2.30
 gm =              =         = 88.46 mA / V
           VT          0.026
            RE ( RS + rπ ) CE
rB =
          RS + rπ + (1 + β ) RE

      =
        ( 4 × 10 ) ( 0.5 + 1.13) C
                   3
                                         E

           0.5 + 1.13 + (101)( 4 )
            1        1
rB =            =           = 0.7958 ms
          2π f B 2π ( 200 )
                                     0.796 × 10 −3
rB = 16.07CE ⇒ CE =                                ⇒ CE = 49.5 μ F
                                        16.07
b.
 rA = RE CE = 4 × 10 3 (            )( 49.5 × 10 ) ⇒ r
                                               −6
                                                            A   = 0.198 s
           1         1
fA =           =             ⇒ f A = 0.804 H Z
          2π rA 2π ( 0.198 )

EX7.9
          β 0VT        (150 )( 0.026 )
 rπ =              =                      = 7.8 kΩ
           I CQ                0.5
                   1
fβ =
          2π rπ ( Cπ + Cμ )
                                1
      =                                                  ⇒ f β = 8.87 MH Z
              (
          2π 7.8 × 10      3
                               ) ( 2 + 0.3) × 10   −12




EX7.10
          β 0VT        (150)(0.026)
 rπ   =            =                ⇒ rπ = 3.9 kΩ
           I CQ             1
                   1
fβ =
          2π rπ ( Cπ + Cμ )
                                1
      =                                                  ⇒ f β = 9.07 MHz
              (
          2π 3.9 × 10      3
                               ) ( 4 + 0.5) (10 )
                                               −12


 fT = β 0 f β = (150 )( 9.07 ) ⇒ fT = 1.36 GHz

EX7.11
RTH = R1 R2 = 200 220 = 104.8 kΩ
       ⎛ R2 ⎞            ⎛ 220 ⎞
VTH = ⎜          ⎟ VCC = ⎜           ⎟ (5) = 2.619 V
       ⎝ R1 + R2 ⎠       ⎝ 200 + 220 ⎠
          2.62 − 0.7
I BQ =                 = 0.009316 mA
       105 + (101)(1)
 I CQ = 0.9316 mA
I CQ         0.9316
gm =              =          ⇒ gm = 35.83 mA/V
         VT           0.026
         β VT         (100)(0.026)
 rπ =             =                ⇒ rπ = 2.79 kΩ
           I CQ          0.932
a.
C M = Cμ ⎡1 + gm ( RC RL ) ⎤
           ⎣                   ⎦
C M = ( 2 ) ⎡1 + ( 35.83 )( 2.2 4.7 ) ⎤ ⇒ C M = 109 pF
            ⎣                         ⎦
b.
  RB = rS         R1        R2 = 100 200 220 = 51.17 kΩ
                             1
 f3 dB =
            2π ( RB rπ        ) (Cπ   + Cμ )
                                1
      =                                                    ⇒ f3dB = 0.506 MHz
            2π [ 51.17 2.79] × 10 3 × (10 + 109 ) × 10 −12

EX7.12
               gm
 fT =
         2π ( Cgs + Cgd )
gm = 2 K n I DQ

     =2       ( 0.2 )( 0.4 )
     = 0.5657 mA/V
               0.5657 × 10 −3
 fT =                                ⇒ fT = 333 MHz
         2π ( 0.25 + 0.02 ) × 10 −12

EX7.13
dc analysis
     ⎛ R2 ⎞            ⎛ 166 ⎞
VG = ⎜         ⎟ VDD = ⎜
       R1 + R2 ⎠                   ⎟ (10 ) = 4.15 V
     ⎝                 ⎝ 166 + 234 ⎠
     V
I D = S and VS = VG − VGS
     RS
                              VG − VGS
K n (VGS − VTN ) =
                        2

                                 RS
( 0.5)( 0.5) (VGS − 4VGS + 4 ) = 4.15 − VGS
               2



0.25VGS − 3.15 = 0 ⇒ VGS = 3.55 V
     2


gm = 2K n (VGS − VTN ) = 2 ( 0.5 )( 3.55 − 2 )
  = 1.55 mA/V
Small-signal equivalent circuit.
         Ri ϭ 10 k⍀
                                                                      V0
                                            ϩ Cgd
                                      Cgs
                             RG ϭ
Vi   ϩ                                      Vgs              RD       RL
     Ϫ                       R1͉͉R2
                                                    gmVgs
                                            Ϫ


a.              C M = Cgd (1 + gm ( RD RL ) )
                C M = ( 0.1) ⎡1 + (1.55) ( 4 20 )⎤ ⇒ C M = 0.617 pF
                             ⎣                   ⎦
b.
1
 fH =
       2πτ P
τ P = ( RG Ri ) ( Cgs + C M )
RG = R1 R2 = 234 166 = 97.1 kΩ
RG Ri = 97.1 10 = 9.07 kΩ
        (                        )
rP = 9.07 × 10 3 (1 + 0.617 ) × 10 −12 = 14.7 ns
                            1
 fH =                                         ⇒ f H = 10.9 MHz
                    (
            2π 14.7 × 10 −9               )
EX7.14
dc analysis
VTH = 0, RTH = 10 kΩ
            0 − 0.7 − ( −5 )
I BQ =                                    = 0.00672 mA
            10 + (126 )( 5 )
I CQ = 0.840 mA
            β VT            (125)( 0.026 )
     rπ =               =                              = 3.87 kΩ
                I CQ                  0.840
            I CQ            0.840
 gm =                   =         = 32.3 mA/V
             VT             0.026
            VA    200
     r0 =       =     = 238 kΩ
            I CQ 0.84
High-frequency equivalent circuit
                                                                   C␮
            RS ϭ 1 k⍀
                                                                                         V0
                                                   ϩ
       ϩ                              RB ϭ
Vi                                           V          r␲                     r0   RC   RL
       Ϫ                              R1͉͉R2 ␲               C␲         gmV␲
                                              Ϫ


a.
Miller Capacitance
C M = Cμ (1 + gm RL )
                  ′
  ′
RL = r0 RC RL
  ′
RL = 238 2.3 5 = 1.565 kΩ
C M = ( 3 ) ⎡1 + ( 32.3 )(1.57 ) ⎤ ⇒ Cμ = 155 pF
            ⎣                    ⎦
b.
Req = RS RB rπ = RS R1 R2 rπ
Req = 1 20 20 3.87 = 0.736 kΩ
  rP = Re q ( Cπ + C M )
            (                         )
       = 0.736 × 10 3 ( 24 + 155 ) × 10 −12
                                 −7
       = 1.314 × 10
                             1
 fH =                                             ⇒ f H = 1.21 MHz
                    (
            2π 1.314 × 10 −7                  )
c.
⎡ RB τ π ⎤
( Av )M             ′
           = − gm RL ⎢              ⎥
                      ⎢ RB τ π + RS ⎥
                      ⎣             ⎦
                                ⎡ 10 3.87 ⎤
( Av )M    = − ( 32.3 )(1.565 ) ⎢             ⎥ ⇒ ( Av ) M = −37.2
                                ⎣ 10 3.87 + 1 ⎦

EX7.15
The dc analysis
           10 − 0.7
I BQ =                  = 0.00838 mA
       100 + (101)(10 )
I CQ = 0.838 mA
        β VT         (100 )( 0.026 )
 rπ =            =                     = 3.10 kΩ
          I CQ           0.838
        I CQ
gm =       = 32.22 mA/V
      VT
For the input
       ⎡⎛ r ⎞          ⎤
 rPπ = ⎢⎜ π ⎟ RE RS ⎥ Cπ
       ⎣⎝ 1 + β ⎠      ⎦
       ⎡ 3.10       ⎤
     =⎢       10 1⎥ × 10 3 × 24 × 10 −12
       ⎣ 101        ⎦
     = 7.13 × 10 −10 s
            1          1
f Hπ =          =                 ⇒ f Hπ = 223 MHz
                           (
          2π rPπ 2π 7.13 × 10 −10            )
For the output
 rP μ = [ RC RL ] Cμ = (10 1) × 10 3 × 3 × 10 −12
      = 2.73 × 10 −9
           1            1
 fHμ =          =                ⇒ f H μ = 58.4 MHz
                           (
        2π rP μ 2π 2.73 × 10 −9          )
                               ⎡      ⎛ rπ ⎞ ⎤
                               ⎢ RE ⎜        ⎟ ⎥
                          RL ) ⎢      ⎝1+ β ⎠ ⎥
( Aν )M    = gm ( RC
                               ⎢                 ⎥
                                    ⎛ rπ ⎞
                               ⎢ RE ⎜     ⎟ + RS ⎥
                               ⎢
                               ⎣    ⎝1+ β ⎠      ⎥
                                                 ⎦
                             ⎡      ⎛ 3.1 ⎞ ⎤
                             ⎢ 10 ⎜ 101 ⎟ ⎥
           = ( 32.22 )(10 1) ⎢      ⎝     ⎠ ⎥⇒ A
                                                ( ν )M = 0.870
                             ⎢    ⎛ 3.1 ⎞ ⎥
                             ⎢ 10 ⎜ 101 ⎟ + 1 ⎥
                                  ⎝     ⎠ ⎦
                             ⎣

EX7.16
      ⎛      R3      ⎞         ⎛        7.92        ⎞
VB1 = ⎜              ⎟ (12 ) = ⎜                      (12 ) = 0.9502 V
      ⎝ R1 + R2 + R3 ⎠         ⎝ 58.8 + 33.3 + 7.92 ⎟
                                                    ⎠
Neglecting lose currents
      0.9502 − 0.7
 IC =               = 0.50 mA
          0.5
      β VT (100 )( 0.026 )
 rπ =      =                = 5.2 K
       IC          0.5
     IC     0.5
gm =    =       = 19.23 mA/V
     VT 0.026
From Eq (7.127(a)),
τ Pπ   = [ RS      RB1 rπ ][Cπ 1 + C M 1 ]
RB1 = R2 R3 = 33.3 7.92 = 6.398 K
C M 1 = 2Cμ 1 = 6 pF
Then
 τ Pπ = [1 6.398 5.2] × 10 × [24 + 6] × 10     ⇒ 22.24 ns
                          3                −12


          1            1
 f Hπ =       =                     ⇒ 7.15 MHz
        2πτ Pπ 2π ( 22.24 × 10 −9 )
From Eq (7.128(a))
 τ P μ = [ RC RL ] C μ 2 = ( 7.5 2 ) × 10 × 3 × 10     ⇒ 4.737 ns
                                         3         −12


             1                1
 fHμ =          =                       = 33.6 MHz
          2πτ Pμ 2π ( 4.737 × 10 −9 )
From Eq. 7.133
                             ⎡ RB1 rπ 1 ⎤
 Av        = gm 2 ( RC  RC ) ⎢               ⎥
                             ⎣ RB1 rπ 1 + RS ⎦
       M


                               ⎡ 6.40 5.2 ⎤
           = (19.23)( 7.5 2 ) ⎢                ⎥
                               ⎣ 6.40 5.2 + 1 ⎦
                             ⎡ 2.869 ⎤
           = (19.23)(1.579 ) ⎢
                             ⎣ 2.869 + 1 ⎥
                                         ⎦
 Av    M
           = 22.5

TYU7.1
a.
   V0 = − ( gmVπ ) RL
               rπ
   Vπ =                 × Vi
               1
        rπ +       + RS
              sCC
               V0 ( s )            − gm rπ RL
T (s) =                   =
               Vi ( s )       rπ + RS + (1 / sCC )
                − gm rπ RL ( sCC )
           =
               1 + s ( rπ + RS ) CC
gm rπ = β
                − β RL     ⎛ s ( rπ + RS ) CC        ⎞
T (s) =                   ×⎜                         ⎟
               rπ + RS     ⎜ 1 + s (r + R ) C        ⎟
                           ⎝         π   S    C      ⎠
 Then τ = ( rπ + RS ) CC
b.
                  1
 f3− dB =
          2π ( rπ + RS ) CC
                                   1
 f3− dB =                                                ⇒ f3 dB = 53.1 Hz
         2π ⎡ 2 × 10 + 1 × 10 3 ⎤ ⎡10 −6 ⎤
             ⎣
                               3
                                ⎦⎣       ⎦
               rg R       ( 2 )( 50 )( 4 )
T ( jω ) max = π m L =
               rπ + RS         2 +1
T ( jω ) max = 133
c.
͉T( j␻)͉


     133




                      53.1 Hz                           f

TYU7.2
a.
             ⎛          1 ⎞
V0 = − g mVπ ⎜ RL          ⎟
             ⎝         sCL ⎠
     ⎛ r       ⎞
Vπ = ⎜ π ⎟ × Vi
     ⎝ rπ + RS ⎠
                                ⎛       1       ⎞
        V0 ( s )           rπ   ⎜ RL × sC       ⎟
T (s) =          = − gm         ⎜         L     ⎟
        Vi ( s )        rπ + RS ⎜       1       ⎟
                                ⎜ RL + sC       ⎟
                                ⎝         L     ⎠
            − β RL ⎛      1     ⎞
T (s) =           ×⎜            ⎟
           rπ + RS ⎝ 1 + sRL CL ⎠
Then τ = RL CL
b.
             1                1
 f3− dB =         =                      ⇒ f3dB = 3.18 MH Z
                             (       )(
          2π RL CL 2π 5 × 10 10 × 10 −12
                            3
                                                    )
              gm rπ RL ( 75)(1.5)( 5)
 T ( jω ) =           =
              rπ + RS     1.5 + 0.5
 T ( jω ) max = 281
c.


     281



͉T( j␻)͉



              f                  3.18 MHz

TYU7.3
a.     Open-circuit time constant ( CL → open )
rS = ( RS + rπ ) CC
                         (       )
     = ( 0.25 + 2 ) × 10 3 2 × 10 −6 = 4.5 ms
Short-circuit time constant ( CC → short )
                  (       )(
rP = RL CL = 4 × 10 3 50 × 10 −12         )
rP = 0.2 μ s
b.          Midband gain
⎛ rπ ⎞
V0 = − gmVπ RL , Vπ = ⎜          ⎟ Vi
                      ⎝ τ π + RS ⎠
     V     −g r R
Av = 0 = m π L
     Vi     rπ + RS
         − ( 65 )( 2 )( 4 )
     =
       2 + 0.25
Av = −231
c.
          1         1
 fL =         =               ⇒ f L = 35.4 Hz
                        (
         2π rS 2π 4.5 × 10 −3          )
          1         1
 fH =         =               ⇒ f H = 0.796 MHz
                        (
         2π rP 2π 0.2 × 10 −6          )
TYU7.4 Computer Analysis

TYU7.5 Computer Analysis

TYU7.6
     βV     (100 )( 0.026 )
 rπ = 0 T =                 = 10.4 kΩ
      I CQ      0.25
                  1
 fβ =
         2π rπ ( Cπ + C μ )
                   1                  1
Cπ + Cμ =                =
                                   (          )(
                2π f β rπ 2π 11.5 × 10 6 10.4 × 10 3      )
Cπ + Cμ = 1.33 pF
         Cμ = 0.1 pF ⇒ Cπ = 1.23 pF

TYU7.7
                β0
h fe =
         1 + j ( f / fβ )
 f β = 5 MH Z , β 0 = 100
At f = 50 MH Z
               100
 h fe =                       ⇒ h fe = 9.95
                        2
               ⎛ 50 ⎞
            1+ ⎜ ⎟
               ⎝ 5 ⎠
                 ⎛ 50 ⎞
Phase = − tan −1 ⎜ ⎟ ⇒ Phase = −84.3°
                 ⎝ 5 ⎠

TYU7.8
      f   500
 fβ = T =     ⇒ f β = 4.17 MHz
     β 0 120
                 1
 fβ =
         2π rπ (Cπ + C μ )
                   1                  1
Cπ + Cμ =                =
                2π f β rπ 2π (4.167 × 10 6 )(5 × 10 3 )
Cπ + Cμ = 7.639 pF
Cμ = 0.2 pF ⇒ Cπ = 7.44 pF
TYU7.9
(a)
 gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 3 − 1) ⇒ gm = 1.6 mA/V
  ′
 gm = 80% of gm = 1.28 mA/V
         gm
  ′
 gm =
      1 + gm rS
                  gm
1 + gm rS =
                   ′
                  gm
        ⎛ gm
        1       ⎞ 1 ⎛ 1.6        ⎞
rS =    ⎜    − 1⎟ =     ⎜     − 1⎟
        ⎝
       gm  ′
          gm    ⎠   1.6 ⎝ 1.28 ⎠
rS = 0.156 kΩ ⇒ rS = 156 ohms
(b)
 gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 5 − 1) ⇒ gm = 3.2 mA/V
         gm              3.2
  ′
 gm =          =                       = 2.134
      1 + gm rS 1 + ( 3.2 )( 0.156 )
Δgm 3.2 − 2.134
    =           ⇒ A 33.3% reduction
 gm     3.2

TYU7.10
                       gm
 fT =
           2π ( CgsT + C gdT )
                            gm
       =
           2π ( Cgs + Cgsp + Cgdp )
            gm
Cgs =            − Cgsp − C gdp
           2π fT
             0.5 × 10 −3
       =                                 − ( 0.01 + 0.01) × 10 −12 ⇒ Cgs = 0.139 pF
              (
           2π 500 × 10           6
                                     )
TYU7.11
                gm
fT =
       2π (Cgs + Cgsp + Cgdp )
Cgsp = Cgdp
              gm               1× 10−3
2Cgsp =            − C gs =                 − 0.4 × 10−12
             2π fT          2π (350 × 106 )
2Cgsp = 0.0547 pF ⇒ Cgsp = Cgdp ≅ 0.0274 pF

TYU7.12
dc analysis
     ⎛ 50 ⎞
VG = ⎜          ⎟ (10 ) − 5 = −2.5
     ⎝ 50 + 150 ⎠
                                         VS − ( −5 )
VS = VG − VGS . I D =
                                             RS
                             VG − VGS + 5
K n (VGS − VTN ) =
                       2

                                  RS
(1)( 2 ) ⎡VGS − 1.6VGS + 0.64 ⎤ = −2.5 − VGS + 5
         ⎣
           2
                              ⎦
2VGS − 2.2VGS − 1.22 = 0
  2



                    ( 2.2 )       + 4 ( 2 )(1.22 )
                              2
            2.2 ±
VGS =                                                ⇒ VGS = 1.505 V
                          2 (2)
gm = 2 K n (VGS − VTN ) = 2 (1)(1.505 − 0.8 )
                                     = 1.41 mA/V
Equivalent circuit
              Ri                                           Cgd
                                                                              V0
                                            ϩ
      ϩ                            RG ϭ
Vi                                        Vgs
      Ϫ                            R1͉͉R2            Cgs
                                                                         RD
                                                                 gmVgs
                                               Ϫ


(a)           C M = Cgd (1 + gm RD ) = ( 0.2 ) ⎡1 + (1.42 )( 5 ) ⎤ ⇒ C M = 1.61 pF
                                               ⎣                 ⎦
(b)
τ P = ( Ri RG ) ( Cgs + CM )
 rP = [ 20 50 150 ] × 10 3 × ( 2 + 1.61) × 10 −12
        (            )(                    )
      = 13 × 10 3 3.62 × 10 −12 = 4.71 × 10 −8 s
           1          1
 fH =          =                ⇒ f H = 3.38 MHz
                          (
          2π rP 2π 4.71 × 10 −8             )
                                  ⎛ RG ⎞
c.            ( Av )M   = − gm RD ⎜           ⎟
                                  ⎝ RG + RS ⎠
                                        ⎛ 37.5 ⎞
              ( Av )M   = − (1.41)( 5 ) ⎜           ⎟ ⇒ ( Av ) M = −4.60
                                        ⎝ 37.5 + 20 ⎠

TYU7.13 Computer Analysis

Ch07p

  • 1.
    Chapter 7 Exercise Solutions EX7.1 (a) (i) RS = RP = 4 kΩ 1 1 ω= = rS ( RS + RP ) CS 1 1 CS = = 2π f ( RS + RP ) 2π ( 20 )( 4 + 4 ) × 10 3 CS = 0.995 μ F (ii) ⎛ RP ⎞ ω rS T ( jω ) = ⎜ ⎟ ⎝ RS + RP ⎠ 1 + ω 2 rS2 rS = ( RS + RP ) CS = 7.96 × 10 −3 RP 4 = = 0.5 RS + RP 4 + 4 f = 40 Hz ( 0.5)( 2π )( 40 ) ( 7.96 × 10 −3 ) T ( jω ) = ( ) 2 1 + ⎡ 2π ( 40 ) 7.96 × 10 −3 ⎤ ⎣ ⎦ T ( jω ) = 0.447 f = 80 Hz ( 0.5)( 2π )(80 ) ( 7.96 × 10 −3 ) T ( jω ) = ( ) 2 1 + ⎡ 2π ( 80 ) 7.96 × 10 −3 ⎤ ⎣ ⎦ T ( jω ) = 0.485 f = 200 Hz ( 0.5 )( 2π )( 200 ) ( 7.96 × 10 −3 ) T ( jω ) = ( ) 2 1 + ⎡ 2π ( 200 ) 7.96 × 10 −3 ⎤ ⎣ ⎦ T ( jω ) = 0.498 (b) 1 1 ω= = rP ( RS RP ) CP 1 CP = 2π f ( RS RP ) 1 = ( 2π 500 × 10 3 ) (10 10 ) × 10 3 CP = 63.7 pF EX7.2 a.
  • 2.
    ⎛ RP ⎞ RP RP 20 log10 ⎜ ⎟ = −1 ⇒ = 0.891 = ⇒ (1 − 0.891) RP = 0.891 ⇒ RP = 8.20 kΩ ⎝ RP + RS ⎠ RP + RS RP + 1 1 1 fL = ⇒ CS = 2π ( RS + RP ) CS 2π (100 )(1 + 8.20 ) × 10 3 CS = 0.173 μ F 1 1 fH = ⇒ CP = 2π ( RS RP ) CP 2π 10( ) (1 || 8.20 ) × 10 6 3 CP = 179 pF b. rS = ( RS + RP ) CS ( )( rS = 1 × 10 3 + 8.20 × 10 3 0.173 × 10 −6 ) rS = 1.59 ms open-circuit time-constant rP = ( RS RP ) CP rP = (1 8.20 ) × 10 3 179 × 10 −12( ) rP = 0.160 μ s short-circuit time-constant EX7.3 a. rS = ( Ri + RS i ) CC b. 1 f = 2π rS RTH = R1 R2 = 2.2 20 = 1.98 kΩ ⎛ R2 ⎞ ⎛ 2.2 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) = 0.991 V ⎝ R1 + R2 ⎠ ⎝ 2.2 + 20 ⎠ VTH − VBE ( on ) 0.991 − 0.7 I BQ = = = 0.0132 mA RTH + (1 + β ) RE 1.98 + ( 201)( 0.1) I CQ = 2.636 mA β VT ( 200 )( 0.026 ) rπ = = = 1.97 kΩ I CQ 2.636 ICQ 2.636 gm = = = 101.4 mA/V VT 0.026 Rib = τ π + (1 + β ) RE = 1.97 + ( 201)( 0.1) = 22.1 kΩ RB = R1 R2 = 1.98 kΩ Ri = RB Rib = 1.98 22.1 = 1.817 kΩ rS = ( Ri + RSi ) CC = (1.817 + 0.1) ×10 3 ( )( 47 × 10 )−6 = 90.1 ms 1 f = ⇒ f = 1.77 Hz ( 2π 90.1 × 10 −3 ) Midband Gain
  • 3.
    − β RC Ri Aν = ⋅ rπ + (1 + β ) RE Ri + RSi − ( 200 )( 2 ) 1.82 = ⋅ 1.97 + ( 201)( 0.1) 1.82 + 0.1 Aν = −17.2 EX7.4 I DQ = K n (VGS − VTN ) 2 a. 0.8 + 2 = VGS ⇒ VGS = 3.265 V 0.5 VS − ( −5 ) VS = −3.265 ⇒ I DQ = RS −3.265 + 5 RS = ⇒ RS = 2.17 kΩ 0.8 5 VD = 0 ⇒ RD = ⇒ RD = 6.25 kΩ 0.8 b. rS = ( RD + RL ) CC = (10 + 6.25 ) × 10 3 × CC 1 1 f = ⇒ CC = 2π rS ( 2π f 16.25 × 10 3 ) 1 CC = ⇒ CC = 0.49 μ F ( 2π ( 20 ) 16.25 × 10 3 ) EX7.5 rS = ( RL + Ro ) CC 2 1 1 f = ⇒ CC 2 = 2π rS 2π f ( RL + Ro ) ⎧ rπ + ( RS RB ) ⎫ ⎪ ⎪ R0 = RE r0 ⎨ ⎬ ⎪ ⎩ 1+ β ⎪ ⎭ From Example 7-5, R0 = 35.5 Ω 1 CC 2 = 2π (10 ) ⎡10 × 10 3 + 35.5⎤ ⎣ ⎦ CC 2 = 1.59 μ F EX7.6 I DQ = K P (VSG + VTP ) 2 a. 1 − ( −2 ) = VSG ⇒ VSG = 3.41 V 0.5 VS = 3.41 5 − 3.41 RS = ⇒ RS = 1.59 kΩ 1 5 For VSDG = VSGQ ⇒ VD = 0 ⇒ RD = ⇒ RD = 5 kΩ 1
  • 4.
    b. rP = ( RD RL ) CL 1 1 f = ⇒ CL = 2π rP 2π f ( RD RL ) 1 CL = ⇒ CL = 47.7 pF ( ) 2π 10 6 ( 5 10 ) × 10 3 EX7.7 (a) RTH = 5 K VTH = −3.7527 −3.7527 − 0.7 − ( −5) 0.54726 I BQ = = 5 + (101)( 0.5) 55.5 = 0.00986 I CQ = 0.986 mA gm = 37.925 rπ = 2.637 K 5 − Vo Vo 0.986 = − = 1 − Vo ( 0.4 ) 5 5 Vo = 0.035 (b) Rib RS ϭ 0.1 k⍀ V0 ϩ Vi ϩ RTH ϭ RC ͉͉RL ϭ Ϫ V␲ r␲ 5 k⍀ gmV␲ 2.5 k⍀ Ϫ RE ϭ 0.5 k⍀ Vo = − gmVπ ( RC RL ) Rib = rπ + (1 + β ) RE = 2.64 + (101)( 0.5) = 53.14 K Vb Vb Vb Vπ = = = ⎛1+ β ⎞ ⎛ 101 ⎞ 14.885 1+ ⎜ ⎟ RE 1 + ⎜ 2.637 ⎟ ( 0.5) ⎝ rπ ⎠ ⎝ ⎠ ⎛ RTH Rib ⎞ ⎛ 5 53.14 ⎞ Vb = ⎜ ⎟ Vi = ⎜ ⎟ Vi ⎝ RTH Rib + RS ⎠ ⎝ 5 53.14 + 0.1 ⎠ ⎛ 4.57 ⎞ =⎜ ⎟ Vi = 0.9786 ⎝ 4.57 + 0.1 ⎠ (37.925)( 2.5) Av = − ( 0.9786 ) = Av = −6.23 14.885 (c) EX7.8 a.
  • 5.
    0 − 0.7− ( −10 ) I BQ = = 0.0230 mA 0.5 + (101)( 4 ) I CQ = 2.30 mA β VT (100 )( 0.026 ) rπ = = = 1.13 kΩ I CQ 2.30 I CQ 2.30 gm = = = 88.46 mA / V VT 0.026 RE ( RS + rπ ) CE rB = RS + rπ + (1 + β ) RE = ( 4 × 10 ) ( 0.5 + 1.13) C 3 E 0.5 + 1.13 + (101)( 4 ) 1 1 rB = = = 0.7958 ms 2π f B 2π ( 200 ) 0.796 × 10 −3 rB = 16.07CE ⇒ CE = ⇒ CE = 49.5 μ F 16.07 b. rA = RE CE = 4 × 10 3 ( )( 49.5 × 10 ) ⇒ r −6 A = 0.198 s 1 1 fA = = ⇒ f A = 0.804 H Z 2π rA 2π ( 0.198 ) EX7.9 β 0VT (150 )( 0.026 ) rπ = = = 7.8 kΩ I CQ 0.5 1 fβ = 2π rπ ( Cπ + Cμ ) 1 = ⇒ f β = 8.87 MH Z ( 2π 7.8 × 10 3 ) ( 2 + 0.3) × 10 −12 EX7.10 β 0VT (150)(0.026) rπ = = ⇒ rπ = 3.9 kΩ I CQ 1 1 fβ = 2π rπ ( Cπ + Cμ ) 1 = ⇒ f β = 9.07 MHz ( 2π 3.9 × 10 3 ) ( 4 + 0.5) (10 ) −12 fT = β 0 f β = (150 )( 9.07 ) ⇒ fT = 1.36 GHz EX7.11 RTH = R1 R2 = 200 220 = 104.8 kΩ ⎛ R2 ⎞ ⎛ 220 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (5) = 2.619 V ⎝ R1 + R2 ⎠ ⎝ 200 + 220 ⎠ 2.62 − 0.7 I BQ = = 0.009316 mA 105 + (101)(1) I CQ = 0.9316 mA
  • 6.
    I CQ 0.9316 gm = = ⇒ gm = 35.83 mA/V VT 0.026 β VT (100)(0.026) rπ = = ⇒ rπ = 2.79 kΩ I CQ 0.932 a. C M = Cμ ⎡1 + gm ( RC RL ) ⎤ ⎣ ⎦ C M = ( 2 ) ⎡1 + ( 35.83 )( 2.2 4.7 ) ⎤ ⇒ C M = 109 pF ⎣ ⎦ b. RB = rS R1 R2 = 100 200 220 = 51.17 kΩ 1 f3 dB = 2π ( RB rπ ) (Cπ + Cμ ) 1 = ⇒ f3dB = 0.506 MHz 2π [ 51.17 2.79] × 10 3 × (10 + 109 ) × 10 −12 EX7.12 gm fT = 2π ( Cgs + Cgd ) gm = 2 K n I DQ =2 ( 0.2 )( 0.4 ) = 0.5657 mA/V 0.5657 × 10 −3 fT = ⇒ fT = 333 MHz 2π ( 0.25 + 0.02 ) × 10 −12 EX7.13 dc analysis ⎛ R2 ⎞ ⎛ 166 ⎞ VG = ⎜ ⎟ VDD = ⎜ R1 + R2 ⎠ ⎟ (10 ) = 4.15 V ⎝ ⎝ 166 + 234 ⎠ V I D = S and VS = VG − VGS RS VG − VGS K n (VGS − VTN ) = 2 RS ( 0.5)( 0.5) (VGS − 4VGS + 4 ) = 4.15 − VGS 2 0.25VGS − 3.15 = 0 ⇒ VGS = 3.55 V 2 gm = 2K n (VGS − VTN ) = 2 ( 0.5 )( 3.55 − 2 ) = 1.55 mA/V Small-signal equivalent circuit. Ri ϭ 10 k⍀ V0 ϩ Cgd Cgs RG ϭ Vi ϩ Vgs RD RL Ϫ R1͉͉R2 gmVgs Ϫ a. C M = Cgd (1 + gm ( RD RL ) ) C M = ( 0.1) ⎡1 + (1.55) ( 4 20 )⎤ ⇒ C M = 0.617 pF ⎣ ⎦ b.
  • 7.
    1 fH = 2πτ P τ P = ( RG Ri ) ( Cgs + C M ) RG = R1 R2 = 234 166 = 97.1 kΩ RG Ri = 97.1 10 = 9.07 kΩ ( ) rP = 9.07 × 10 3 (1 + 0.617 ) × 10 −12 = 14.7 ns 1 fH = ⇒ f H = 10.9 MHz ( 2π 14.7 × 10 −9 ) EX7.14 dc analysis VTH = 0, RTH = 10 kΩ 0 − 0.7 − ( −5 ) I BQ = = 0.00672 mA 10 + (126 )( 5 ) I CQ = 0.840 mA β VT (125)( 0.026 ) rπ = = = 3.87 kΩ I CQ 0.840 I CQ 0.840 gm = = = 32.3 mA/V VT 0.026 VA 200 r0 = = = 238 kΩ I CQ 0.84 High-frequency equivalent circuit C␮ RS ϭ 1 k⍀ V0 ϩ ϩ RB ϭ Vi V r␲ r0 RC RL Ϫ R1͉͉R2 ␲ C␲ gmV␲ Ϫ a. Miller Capacitance C M = Cμ (1 + gm RL ) ′ ′ RL = r0 RC RL ′ RL = 238 2.3 5 = 1.565 kΩ C M = ( 3 ) ⎡1 + ( 32.3 )(1.57 ) ⎤ ⇒ Cμ = 155 pF ⎣ ⎦ b. Req = RS RB rπ = RS R1 R2 rπ Req = 1 20 20 3.87 = 0.736 kΩ rP = Re q ( Cπ + C M ) ( ) = 0.736 × 10 3 ( 24 + 155 ) × 10 −12 −7 = 1.314 × 10 1 fH = ⇒ f H = 1.21 MHz ( 2π 1.314 × 10 −7 ) c.
  • 8.
    ⎡ RB τπ ⎤ ( Av )M ′ = − gm RL ⎢ ⎥ ⎢ RB τ π + RS ⎥ ⎣ ⎦ ⎡ 10 3.87 ⎤ ( Av )M = − ( 32.3 )(1.565 ) ⎢ ⎥ ⇒ ( Av ) M = −37.2 ⎣ 10 3.87 + 1 ⎦ EX7.15 The dc analysis 10 − 0.7 I BQ = = 0.00838 mA 100 + (101)(10 ) I CQ = 0.838 mA β VT (100 )( 0.026 ) rπ = = = 3.10 kΩ I CQ 0.838 I CQ gm = = 32.22 mA/V VT For the input ⎡⎛ r ⎞ ⎤ rPπ = ⎢⎜ π ⎟ RE RS ⎥ Cπ ⎣⎝ 1 + β ⎠ ⎦ ⎡ 3.10 ⎤ =⎢ 10 1⎥ × 10 3 × 24 × 10 −12 ⎣ 101 ⎦ = 7.13 × 10 −10 s 1 1 f Hπ = = ⇒ f Hπ = 223 MHz ( 2π rPπ 2π 7.13 × 10 −10 ) For the output rP μ = [ RC RL ] Cμ = (10 1) × 10 3 × 3 × 10 −12 = 2.73 × 10 −9 1 1 fHμ = = ⇒ f H μ = 58.4 MHz ( 2π rP μ 2π 2.73 × 10 −9 ) ⎡ ⎛ rπ ⎞ ⎤ ⎢ RE ⎜ ⎟ ⎥ RL ) ⎢ ⎝1+ β ⎠ ⎥ ( Aν )M = gm ( RC ⎢ ⎥ ⎛ rπ ⎞ ⎢ RE ⎜ ⎟ + RS ⎥ ⎢ ⎣ ⎝1+ β ⎠ ⎥ ⎦ ⎡ ⎛ 3.1 ⎞ ⎤ ⎢ 10 ⎜ 101 ⎟ ⎥ = ( 32.22 )(10 1) ⎢ ⎝ ⎠ ⎥⇒ A ( ν )M = 0.870 ⎢ ⎛ 3.1 ⎞ ⎥ ⎢ 10 ⎜ 101 ⎟ + 1 ⎥ ⎝ ⎠ ⎦ ⎣ EX7.16 ⎛ R3 ⎞ ⎛ 7.92 ⎞ VB1 = ⎜ ⎟ (12 ) = ⎜ (12 ) = 0.9502 V ⎝ R1 + R2 + R3 ⎠ ⎝ 58.8 + 33.3 + 7.92 ⎟ ⎠ Neglecting lose currents 0.9502 − 0.7 IC = = 0.50 mA 0.5 β VT (100 )( 0.026 ) rπ = = = 5.2 K IC 0.5 IC 0.5 gm = = = 19.23 mA/V VT 0.026 From Eq (7.127(a)),
  • 9.
    τ Pπ = [ RS RB1 rπ ][Cπ 1 + C M 1 ] RB1 = R2 R3 = 33.3 7.92 = 6.398 K C M 1 = 2Cμ 1 = 6 pF Then τ Pπ = [1 6.398 5.2] × 10 × [24 + 6] × 10 ⇒ 22.24 ns 3 −12 1 1 f Hπ = = ⇒ 7.15 MHz 2πτ Pπ 2π ( 22.24 × 10 −9 ) From Eq (7.128(a)) τ P μ = [ RC RL ] C μ 2 = ( 7.5 2 ) × 10 × 3 × 10 ⇒ 4.737 ns 3 −12 1 1 fHμ = = = 33.6 MHz 2πτ Pμ 2π ( 4.737 × 10 −9 ) From Eq. 7.133 ⎡ RB1 rπ 1 ⎤ Av = gm 2 ( RC RC ) ⎢ ⎥ ⎣ RB1 rπ 1 + RS ⎦ M ⎡ 6.40 5.2 ⎤ = (19.23)( 7.5 2 ) ⎢ ⎥ ⎣ 6.40 5.2 + 1 ⎦ ⎡ 2.869 ⎤ = (19.23)(1.579 ) ⎢ ⎣ 2.869 + 1 ⎥ ⎦ Av M = 22.5 TYU7.1 a. V0 = − ( gmVπ ) RL rπ Vπ = × Vi 1 rπ + + RS sCC V0 ( s ) − gm rπ RL T (s) = = Vi ( s ) rπ + RS + (1 / sCC ) − gm rπ RL ( sCC ) = 1 + s ( rπ + RS ) CC gm rπ = β − β RL ⎛ s ( rπ + RS ) CC ⎞ T (s) = ×⎜ ⎟ rπ + RS ⎜ 1 + s (r + R ) C ⎟ ⎝ π S C ⎠ Then τ = ( rπ + RS ) CC b. 1 f3− dB = 2π ( rπ + RS ) CC 1 f3− dB = ⇒ f3 dB = 53.1 Hz 2π ⎡ 2 × 10 + 1 × 10 3 ⎤ ⎡10 −6 ⎤ ⎣ 3 ⎦⎣ ⎦ rg R ( 2 )( 50 )( 4 ) T ( jω ) max = π m L = rπ + RS 2 +1 T ( jω ) max = 133 c.
  • 10.
    ͉T( j␻)͉ 133 53.1 Hz f TYU7.2 a. ⎛ 1 ⎞ V0 = − g mVπ ⎜ RL ⎟ ⎝ sCL ⎠ ⎛ r ⎞ Vπ = ⎜ π ⎟ × Vi ⎝ rπ + RS ⎠ ⎛ 1 ⎞ V0 ( s ) rπ ⎜ RL × sC ⎟ T (s) = = − gm ⎜ L ⎟ Vi ( s ) rπ + RS ⎜ 1 ⎟ ⎜ RL + sC ⎟ ⎝ L ⎠ − β RL ⎛ 1 ⎞ T (s) = ×⎜ ⎟ rπ + RS ⎝ 1 + sRL CL ⎠ Then τ = RL CL b. 1 1 f3− dB = = ⇒ f3dB = 3.18 MH Z ( )( 2π RL CL 2π 5 × 10 10 × 10 −12 3 ) gm rπ RL ( 75)(1.5)( 5) T ( jω ) = = rπ + RS 1.5 + 0.5 T ( jω ) max = 281 c. 281 ͉T( j␻)͉ f 3.18 MHz TYU7.3 a. Open-circuit time constant ( CL → open ) rS = ( RS + rπ ) CC ( ) = ( 0.25 + 2 ) × 10 3 2 × 10 −6 = 4.5 ms Short-circuit time constant ( CC → short ) ( )( rP = RL CL = 4 × 10 3 50 × 10 −12 ) rP = 0.2 μ s b. Midband gain
  • 11.
    ⎛ rπ ⎞ V0= − gmVπ RL , Vπ = ⎜ ⎟ Vi ⎝ τ π + RS ⎠ V −g r R Av = 0 = m π L Vi rπ + RS − ( 65 )( 2 )( 4 ) = 2 + 0.25 Av = −231 c. 1 1 fL = = ⇒ f L = 35.4 Hz ( 2π rS 2π 4.5 × 10 −3 ) 1 1 fH = = ⇒ f H = 0.796 MHz ( 2π rP 2π 0.2 × 10 −6 ) TYU7.4 Computer Analysis TYU7.5 Computer Analysis TYU7.6 βV (100 )( 0.026 ) rπ = 0 T = = 10.4 kΩ I CQ 0.25 1 fβ = 2π rπ ( Cπ + C μ ) 1 1 Cπ + Cμ = = ( )( 2π f β rπ 2π 11.5 × 10 6 10.4 × 10 3 ) Cπ + Cμ = 1.33 pF Cμ = 0.1 pF ⇒ Cπ = 1.23 pF TYU7.7 β0 h fe = 1 + j ( f / fβ ) f β = 5 MH Z , β 0 = 100 At f = 50 MH Z 100 h fe = ⇒ h fe = 9.95 2 ⎛ 50 ⎞ 1+ ⎜ ⎟ ⎝ 5 ⎠ ⎛ 50 ⎞ Phase = − tan −1 ⎜ ⎟ ⇒ Phase = −84.3° ⎝ 5 ⎠ TYU7.8 f 500 fβ = T = ⇒ f β = 4.17 MHz β 0 120 1 fβ = 2π rπ (Cπ + C μ ) 1 1 Cπ + Cμ = = 2π f β rπ 2π (4.167 × 10 6 )(5 × 10 3 ) Cπ + Cμ = 7.639 pF Cμ = 0.2 pF ⇒ Cπ = 7.44 pF
  • 12.
    TYU7.9 (a) gm =2K n (VGS − VTN ) = 2 ( 0.4 )( 3 − 1) ⇒ gm = 1.6 mA/V ′ gm = 80% of gm = 1.28 mA/V gm ′ gm = 1 + gm rS gm 1 + gm rS = ′ gm ⎛ gm 1 ⎞ 1 ⎛ 1.6 ⎞ rS = ⎜ − 1⎟ = ⎜ − 1⎟ ⎝ gm ′ gm ⎠ 1.6 ⎝ 1.28 ⎠ rS = 0.156 kΩ ⇒ rS = 156 ohms (b) gm = 2K n (VGS − VTN ) = 2 ( 0.4 )( 5 − 1) ⇒ gm = 3.2 mA/V gm 3.2 ′ gm = = = 2.134 1 + gm rS 1 + ( 3.2 )( 0.156 ) Δgm 3.2 − 2.134 = ⇒ A 33.3% reduction gm 3.2 TYU7.10 gm fT = 2π ( CgsT + C gdT ) gm = 2π ( Cgs + Cgsp + Cgdp ) gm Cgs = − Cgsp − C gdp 2π fT 0.5 × 10 −3 = − ( 0.01 + 0.01) × 10 −12 ⇒ Cgs = 0.139 pF ( 2π 500 × 10 6 ) TYU7.11 gm fT = 2π (Cgs + Cgsp + Cgdp ) Cgsp = Cgdp gm 1× 10−3 2Cgsp = − C gs = − 0.4 × 10−12 2π fT 2π (350 × 106 ) 2Cgsp = 0.0547 pF ⇒ Cgsp = Cgdp ≅ 0.0274 pF TYU7.12 dc analysis ⎛ 50 ⎞ VG = ⎜ ⎟ (10 ) − 5 = −2.5 ⎝ 50 + 150 ⎠ VS − ( −5 ) VS = VG − VGS . I D = RS VG − VGS + 5 K n (VGS − VTN ) = 2 RS
  • 13.
    (1)( 2 )⎡VGS − 1.6VGS + 0.64 ⎤ = −2.5 − VGS + 5 ⎣ 2 ⎦ 2VGS − 2.2VGS − 1.22 = 0 2 ( 2.2 ) + 4 ( 2 )(1.22 ) 2 2.2 ± VGS = ⇒ VGS = 1.505 V 2 (2) gm = 2 K n (VGS − VTN ) = 2 (1)(1.505 − 0.8 ) = 1.41 mA/V Equivalent circuit Ri Cgd V0 ϩ ϩ RG ϭ Vi Vgs Ϫ R1͉͉R2 Cgs RD gmVgs Ϫ (a) C M = Cgd (1 + gm RD ) = ( 0.2 ) ⎡1 + (1.42 )( 5 ) ⎤ ⇒ C M = 1.61 pF ⎣ ⎦ (b) τ P = ( Ri RG ) ( Cgs + CM ) rP = [ 20 50 150 ] × 10 3 × ( 2 + 1.61) × 10 −12 ( )( ) = 13 × 10 3 3.62 × 10 −12 = 4.71 × 10 −8 s 1 1 fH = = ⇒ f H = 3.38 MHz ( 2π rP 2π 4.71 × 10 −8 ) ⎛ RG ⎞ c. ( Av )M = − gm RD ⎜ ⎟ ⎝ RG + RS ⎠ ⎛ 37.5 ⎞ ( Av )M = − (1.41)( 5 ) ⎜ ⎟ ⇒ ( Av ) M = −4.60 ⎝ 37.5 + 20 ⎠ TYU7.13 Computer Analysis