SlideShare a Scribd company logo
1 of 69
Download to read offline
Chapter 11
Problem Solutions

11.1
(a)
 −0.7 − ( −3)
                = 0.1 ⇒ RE = 23 K
       RE
3 − 1.5
        = 0.05 ⇒ RC = 30 K
  RC
(b)         vCE 2 = 6 − iC 2 ( RC + 2 RE ) = 6 − iC 2 ( 76 )




(c)         vcm ( max ) ⇒ vCB 2 = 0 ⇒ vCE 2 = 0.7 V
So 0.7 = 6 − iC 2 ( 76 ) ⇒ iC 2 = 69.74 μ A
( v ( max ) − 0.7 ) − ( −3) = 2
  CM
                              ( 0.06974 ) ⇒ vCM ( max ) = 0.908 V
               23
vCM    ( min ) ⇒ VS = −3 V ⇒ vCM ( min ) = −2.3 V

11.2
        Ad = 180, C M RRdB = 85 dB
                     Ad    180
C M RR = 17, 783 =       =     ⇒ Acm = 0.01012
                     Acm   Acm
Assume the common-mode gain is negative.
v0 = Ad vd + Acm vcm
   = 180vd − 0.01012vcm
v0 = 180 ( 2sin ω t ) mV − ( 0.01012 )( 2sin ω t ) V
v0 = 0.36sin ω t − 0.02024sin ω t
Ideal Output:          v0 = 0.360sin ω t ( V )
Actual Output:         v0 = 0.340sin ω t ( V )

11.3
a.
10 − 2 ( 0.7 )
I1 =                    ⇒ I1 = 1.01 mA
            8.5
               I1                   1.01
IC 2 =                     =                  ⇒ I C 2 ≅ 1.01 mA
                2                      2
         1+                    1+
            β (1 + β )            (100 )(101)
       ⎛ 100 ⎞ ⎛ 1.01 ⎞
IC 4 = ⎜      ⎟⎜       ⎟ ⇒ I C 4 ≅ 0.50 mA
       ⎝ 101 ⎠ ⎝ 2 ⎠
VCE 2 = ( 0 − 0.7 ) − ( −5 ) ⇒ VCE 2 = 4.3 V
VCE 4 = ⎡5 − ( 0.5 )( 2 ) ⎤ − ( −0.7 ) ⇒ VCE 4 = 4.7 V
        ⎣                 ⎦
b.
For VCE 4 = 2.5 V ⇒ VC 4 = −0.7 + 2.5 = 1.8 V
        5 − 1.8
IC 4 =          ⇒ I C 4 = 1.6 mA
           2
       ⎛ 1+ β ⎞              ⎛ 101 ⎞
IC 2 + ⎜       ⎟ ( 2IC 4 ) = ⎜     ⎟ ( 2 )(1.6 ) ⇒ I C 2 = 3.23 mA
       ⎝   β ⎠               ⎝ 100 ⎠
I1 ≈ I C 2 = 3.23 mA
       10 − 2 ( 0.7 )
R1 =                     ⇒ R1 = 2.66 kΩ
            3.23

11.4
a.         Neglecting base currents
                             30 − 0.7
I1 = I 3 = 400 μ A ⇒ R1 =             ⇒ R1 = 73.25 kΩ
                               0.4
VCE1 = 10 V ⇒ VC1 = 9.3 V
       15 − 9.3
RC =            ⇒ RC = 28.5 kΩ
          0.2
b.
      (100 )( 0.026 )
rπ =                  = 13 kΩ
            0.2
            50
r0 ( Q3 ) =     = 125 kΩ
            0.4
We have
                        β RC   (100 )( 28.5)
          Ad =                   =           ⇒ Ad     = 62
                 2 ( rπ + RB )  2 (13 + 10 )
                          ⎧                  ⎫
                          ⎪                  ⎪
                   β RC ⎪           1        ⎪
         Acm = −          ⎨                  ⎬
                 rπ + RB ⎪      2r0 (1 + β ) ⎪
                           1+
                          ⎪
                          ⎩       rπ + RB ⎪  ⎭
                                ⎧                ⎫
                 (100 )( 28.5 ) ⎪
                                ⎪         1      ⎪
                                                 ⎪
             =−                 ⎨                ⎬ ⇒ Acm = −0.113
                    13 + 10 ⎪ 2 (125 )(101) ⎪
                                 1+
                                ⎪
                                ⎩                ⎪
                                         13 + 10 ⎭
                    ⎛ 62 ⎞
C M RRdB = 20 log10 ⎜       ⎟ ⇒ C M RRdB = 54.8 dB
                    ⎝ 0.113 ⎠
c.
Rid = 2 ( rπ + RB ) = 2 (13 + 10 ) ⇒ Rid = 46 kΩ
        1
Ricm =    ⎡ rπ + RB + 2 (1 + β ) r0 ⎤
        2⎣                          ⎦
        1
       = ⎡13 + 10 + 2 (101)(125 ) ⎤ ⇒ Ricm = 12.6 MΩ
        2⎣                            ⎦

11.5
                                                               IQ                  ( 0.5)
(a)          vCM ( max ) ⇒ VCB = 0 so that vCM ( max ) = 5 −        ( RC ) = 5 −            (8)
                                                               2                     2
vCM ( max ) = 3 V
(b)
            Vd ⎛ I CQ ⎞ Vd ⎛ 0.25 ⎞ ⎛ 0.018 ⎞
ΔI = g m ⋅       =⎜      ⎟⋅   =⎜           ⎟⎜    ⎟ = 0.08654 mA
             2 ⎝ VT ⎠ 2 ⎝ 0.026 ⎠ ⎝ 2 ⎠
 ΔVC 2   = ΔI ⋅ RC = ( 0.08654 ) ( 8 ) = 0.692 V
(c)
     ⎛ 0.25 ⎞ ⎛ 0.010 ⎞
ΔI = ⎜        ⎟⎜         ⎟ = 0.04808 mA
     ⎝ 0.026 ⎠ ⎝ 2 ⎠
ΔVC 2 = ( 0.04808 )( 8 ) = 0.385 V

11.6
P = ( I1 + I C 4 ) (V + − V − )
I1 ≅ I C 4 so 1.2 = 2 I1 ( 6 ) ⇒ I1 = I C 4 = 0.1 mA
         3 − 0.7 − ( −3)
R1 =                       ⇒ R1 = 53 k Ω
              0.1
                                                  3 −1
For vCM = +1V ⇒ VC1 = VC 2 = 1 V ⇒ RC =                ⇒ RC = 40 k Ω
                                                  0.05
One-sided output
     1                   0.05
Ad = g m RC where g m =       = 1.923 mA / V
     2                  0.026
Then
     1
Ad = (1.923)( 40 ) ⇒ Ad = 38.5
     2

11.7
a.
             IE
0 = 0.7 +       ( 2 ) + I E (85) − 5
             2
      5 − 0.7
IE =             ⇒ I E = 0.050 mA
       85 + 1
               ⎛ β ⎞ ⎛ I E ⎞ ⎛ 100 ⎞⎛ 0.050 ⎞
I C1 = I C 2 = ⎜        ⎟⎜ ⎟ = ⎜     ⎟⎜     ⎟
               ⎝ 1 + β ⎠ ⎝ 2 ⎠ ⎝ 101 ⎠⎝ 2 ⎠
Or I C1 = I C 2 = 0.0248 mA
VCE1 = VCE 2 = ⎡5 − I C1 (100 ) ⎤ − ( −0.7 )
               ⎣                ⎦
So VCE1 = VCE 2 = 3.22 V
b.           vcm ( max ) for VCB = 0 and VC = 5 − I C1 (100 ) = 2.52 V
So vcm ( max ) = 2.52 V
vcm ( min ) for Q1 and Q2 at the edge of cutoff ⇒ vcm ( min ) = −4.3 V
(c) Differential-mode half circuits
vd        ⎛V           ⎞
−                          ′
    = Vπ + ⎜ π + g mVπ ⎟ .RE
  2        ⎝ rπ         ⎠
         ⎡ (1 + β ) ⎤
    = Vπ ⎢1 +          ′
                     RE ⎥
         ⎣      rπ       ⎦
Then
                − ( vd / 2 )
 Vπ =
         ⎡ (1 + β ) ⎤
         ⎢1 +       ′
                   RE ⎥
         ⎣    rπ      ⎦
                                   1       β RC
vo = − g mVπ RC ⇒ Ad =               ⋅
                                   2 rπ + (1 + β ) RE
                                                    ′
        β VT         (100 )( 0.026 )              ′
rπ =            =                      = 105 k Ω RE = 2 k Ω
        I CQ            0.0248
Then
         1 (100 )(100 )
 Ad =     ⋅                 ⇒ Ad = 16.3
         2 105 + (101)( 2 )

11.8
a.             For v1 = v2 = 0 and neglecting base currents
        −0.7 − ( −10 )
RE =                           ⇒ RE = 62 kΩ
                0.15
b.
        v02     β RC
Ad =        =
        vd 2 ( rπ + RB )
        β VT         (100 )( 0.026 )
 rπ =            =                     = 34.7 kΩ
         I CQ             0.075
          (100 )( 50 )
Ad =                     ⇒ Ad          = 71.0
        2 ( 34.7 + 0.5 )
                ⎡               ⎤
                ⎢               ⎥
          β RC ⎢       1        ⎥
Acm = −
        rπ + RB ⎢ 2 RE (1 + β ) ⎥
                ⎢1 +            ⎥
                ⎢
                ⎣    rπ + RB ⎥  ⎦
                               ⎡     ⎤
           (100 )( 50 ) ⎢     1      ⎥
    =−               ⎢               ⎥ ⇒ Acm = −0.398
          34.7 + 0.5 ⎢ 2 ( 62 )(101) ⎥
                     ⎢1 + 34.7 + 0.5 ⎥
                     ⎣               ⎦
                         71.0
C M RRdB = 20 log10            ⇒ C M RRdB = 45.0 dB
                        0.398
c.
Rid = 2 ( rπ + RB )
Rid = 2 ( 34.7 + 0.5 ) ⇒ Rid = 70.4 kΩ
Common-mode input resistance
      1
Ricm = ⎡ rπ + RB + 2 (1 + β ) RE ⎤
      2⎣                         ⎦
      1
     = ⎡34.7 + 0.5 + 2 (101)( 62 ) ⎤ ⇒ Ricm = 6.28 MΩ
      2⎣                           ⎦

11.9
(a)
 v1 = v2 = 1 V ⇒ VE = 1.6
       9 − 1.6
IE =           ⇒ 18.97 μ A
        390
 IE
     = 9.49 μ A I C1 = I C 2 = 9.39 μ A
  2
 vC1 = vC 2 = ( 9.39 )( 0.51) − 9 = −4.21 V
(b)
        9.39
 gm =          ⇒ 0.361 mA/V
       0.026
 ΔI = g m d = ( 0.361× 10−3 ) ( 0.005 ) = 1.805 μ A
           V
            2
 ΔvC = (1.805 × 10−6 )( 510 × 103 ) = 0.921 V ⇒ vC 2 = −4.21 + 0.921 ⇒ −3.29 V
vC1 = −4.21 − 0.921 ⇒ −5.13 V

11.10
(a)
 v1 = v2 = 0
 I E1 = I E 2 ≅ 6 μ A
 β = 60
 I C1 = I C 2 = 5.90 μ A
  vC1 = vC 2 = ( 5.90 )( 0.360 ) − 3
      = −0.875 V
VEC1 = VEC 2 = +0.6 − ( −0.875 )
      = 1.475 V
(b)
(i)
        5.90
 gm =         ⇒ 0.227 mA/V
       0.026
 Ad = g m RC = ( 0.227 )( 360 ) = 81.7
 Acm = 0
(ii)
       g R                    ( 60 )( 0.026 )
 Ad = m C = 40.8 rπ =
         2                        0.0059
                            = 264 K
         − ( 0.227 )( 360 )
Acm =                        = −0.0442
             2 ( 61)( 4000 )
        1+
                   264

11.11
For v1 = v2 = 0.20 V
I C1 = I C 2 = 0.1 mA
vC1 = vC 2 = ( 0.1)( 30 ) − 10
    = −7 V
       0.1
gm =          = 3.846 mA/V
      0.026
          v
ΔI = g m d = ( 3.846 )( 0.008 ) ⇒ 30.77 μ A
           2
ΔvC = ΔI ⋅ RC = ( 30.77 × 10−6 )( 30 × 103 ) = 0.923 V
v2 ↑⇒ I C 2 ↓⇒ vC 2 ↓⇒ vC1       = −7 + 0.923
                                 = −6.077 V
vC 2 = −7 − 0.923
     = −7.923 V

11.12
RC = 50 K
For v1 = v2 = 0
        −0.7 − ( −10 )
 IE =
              75
     = 0.124 mA
I C1 = I C 2 = 0.0615 mA
        0.0615
gm =             = 2.365 mA/V
        0.026
       (120 )( 0.026 )
  rπ =                 = 50.7 K
            0.0615
Differential Input
      v            V
v1 = d v2 = − d
       2            2
Half-circuit.
             V                  ⎛ ΔR ⎞
ΔI = + g m d ⇒ ΔvC1 = −ΔI ⎜ RC +     ⎟
              2                 ⎝  2 ⎠
                                  ⎛      ΔR ⎞
                     ΔvC 2 = +ΔI ⎜ RC −      ⎟
                                  ⎝       2 ⎠
                           ⎛       ΔR ⎞      ⎛      ΔR ⎞
 vo = ΔvC1 − ΔvC 2   = −ΔI ⎜ RC +     ⎟ − ΔI ⎜ RC −    ⎟
                           ⎝        2 ⎠      ⎝       2 ⎠
    = −2ΔIRC
        ⎛ V ⎞
   = −2 ⎜ g m d ⎟ RC
        ⎝     2⎠
Ad = − g m RC = − ( 2.365 )( 50 ) = −118.25
Common-mode input.
⎛V           ⎞
     vcm = Vπ + ⎜ π + g mVπ ⎟ ( 2 RE )
                 ⎝ rπ         ⎠
                    vcm
     Vπ =
               ⎛ β⎞
           1 + ⎜ 1 + ⎟ ( 2 RE )
               ⎝ rπ ⎠
                           g m vcm                    β vcm
      ΔI = g mVπ =                          =
                         ⎛1+ β ⎞              rπ + (1 + β )( 2 RE )
                      1+ ⎜       ⎟ ( 2 RE )
                         ⎝ rπ ⎠
                       ⎛       ΔR ⎞
                   − β ⎜ RC +      ⎟ ⋅ vcm
    ΔvC1 = −ΔIR1 =     ⎝        2 ⎠
                    rπ + (1 + β )( 2 RE )
                         ⎛      ΔR ⎞
                     − β ⎜ RC −      ⎟ vcm
                         ⎝        2 ⎠
   ΔvC 2   = −ΔIR2 =
                     rπ + (1 + β )( 2 RE )
                                   ⎛      ΔR ⎞         ⎛      ΔR ⎞
                               − β ⎜ RC +    ⎟ vcm + β ⎜ RC −    ⎟ vcm
      vo = ΔvC1 − ΔvC 2      =     ⎝       2 ⎠         ⎝       2 ⎠
                                       [ ]                  [ ]
                     ⎛ ΔR ⎞
               −2 β ⎜     ⎟ vcm
           =         ⎝ 2 ⎠
             rπ + (1 + β )( 2 RE )
                    − βΔR              − (120 )( 0.5 )
     Acm =                        =
             rπ + (1 + β )( 2 RE ) 50.7 + (121)( 2 )( 75 )
       = −0.0032966
           118.25
C M RR =           = 35,870.5
         0.0032966
C M R R ∫ = 91.1 dB
            dB



11.13
   v1 = v2 = 0
          −0.7 − ( −10 )
  IE =
                75
       = 0.124 mA
  I C1 = I C 2 = 0.0615 mA
         0.0615
  gm =             = 2.365 mA/V
          0.026
Δg m
       = 0.01
 gm
 g m1 = 2.377 mA/V
 g m 2 = 2.353 mA/V
          (120 )( 0.026 )
   rπ =                     = 50.7 K
             0.0615
Vd
  ΔI = g m
                2
                 V
ΔvC1     = − g m1 d Rc
                  2
                  Vd
ΔvC 2    = + gm2     Rc
                   2
                                   Vd           V
      vo = ΔvC1 − ΔvC 2 = − g m1      RC − g m 2 d RC
                                    2            2
        Vd
         =−  RC ( g m1 + g m 2 )
         2
         R                      −50
  Ad = − C ( g m1 + g m 2 ) =        ( 2.377 + 2.353) ⇒ Ad = −118.25
          2                      2
Common-Mode
          − g m1 RC vcm                     − g m 2 RC vcm
ΔvC1 =                          ΔvC 2 =
          ⎛ 1+ β ⎞                          ⎛ 1+ β ⎞
       1+ ⎜       ⎟ ( 2 RE )             1+ ⎜        ⎟ ( 2 RE )
          ⎝ rπ ⎠                            ⎝ rπ ⎠
vo          − ( g m1 − g m 2 ) RC    − ( 2.377 − 2.353) ( 50 )
    = Acm =                        =
vcm            ⎛ 1+ β ⎞                    ⎛ 121 ⎞
            1+ ⎜        ⎟ ( 2 RE )    1+ ⎜        ⎟ ( 2 )( 75 )
               ⎝ rπ ⎠                      ⎝ 50.7 ⎠
       −1.2
    =        ⇒ Acm = −0.003343
      358.99
        C M R R ∫ = 91 dB
                   dB


11.14
(a)
  v1 = v2 = 0
 vE = +0.7 V
       5 − 0.7
 IE =           = 4.3 mA
            1
I C1 = I C 2 = 2.132 mA
 vC1 = vC 2 = ( 2.132 )(1) − 5
     = −2.87 V
(b)        v1 = 0.5, v2 = 0 Q2 on
                               Q1 off
                      ⎛ 120 ⎞
I C1 = 0, I C 2 = 4.3 ⎜     ⎟ mA = 4.264 mA
                      ⎝ 121 ⎠
vC1 = −5 V vC 2 = ( 4.264 ) (1) − 5
                        vC 2 = −0.736 V
                          2.132
(c)           vE ≈ 0.7 V    gm == 82.0 mA/V
                          0.026
        v                     V         (82.0 )
ΔI = g m d ΔvC = ΔI ⋅ RC = g m d ⋅ RC =         ⋅ Vd (1) = 41.0Vd
         2                     2          2
Vd = 0.015 ⇒ Δvc = 0.615 V
vC 2 ↓ vC1 ↑
vC1 = −2.87 + 0.615 = −2.255 V
vC 2 = −2.87 − 0.615 = −3.485 V

11.15
(a)
        IC   1
gm =       =     = 38.46 mA/V
        VT 0.026
        vo   1
Ad =       =    = 100
        vd 0.01
Ad = g m RC
100 = 38.46 RC
Rc = 2.6 K
(b)
With v1 = v2 = 0
vC1 = vC 2 = 10 − (1)( 2.6 ) = 7.4 V ⇒ vcm ( max ) = 7.4 V

11.16
a.
i.          ( v01 − v02 ) = 0
ii.
 I C1 = I C 2 = 1 mA
v01 − v02 = ⎡V + − I C1 RC1 ⎤ − ⎡V + − I C 2 RC 2 ⎤
            ⎣               ⎦ ⎣                   ⎦
          = I C ( RC 2 − RC1 ) = (1)( 7.9 − 8 ) ⇒ v01 − v02 = −0.1 V
b.
                            ⎛v ⎞
I 0 = ( I S 1 + I S 2 ) exp ⎜ BE ⎟
                            ⎝ VT ⎠
       ⎛v ⎞         2 × 10−3
So exp ⎜ BE ⎟ = −13          −13
       ⎝ VT ⎠ 10 + 1.1× 10
              = 9.524 × 109
                 ⎛v     ⎞
                        ⎟ = (10 )( 9.524 × 10 ) ⇒ I C1 = 0.952 mA
                               −13           9
I C1 = I S 1 exp ⎜ BE
                 ⎝ VT   ⎠
I C 2 = (1.1× 10−13 )( 9.524 × 109 ) ⇒ I C 2 = 1.048 mA
i.
 v01 − v02 = I C 2 RC 2 − I C1 RC1 ⇒ v01 − v02 = (1.048 − 0.952 )( 8 ) ⇒ v01 − v02 = 0.768 V
ii.
 v01 − v02 = (1.048 )( 7.9 ) − ( 0.952 )( 8 )
 v01 − v02 = 8.279 − 7.616 ⇒ v01 − v02 = 0.663 V

11.17
From Equation (11.12(b))
             IQ
  iC 2 =
         1 + evd / VT
              1
0.90 =
         1 + evd / VT
                 1
So evd / VT =         − 1 = 0.111
               0.90
vd = VT ln ( 0.111) = ( 0.026 ) ln ( 0.111) ⇒ vd = −0.0571 V

11.18
From Example 11.2, we have
vd ( max )             1
0.5 +               −
        4 ( 0.026 ) 1 + e − vd ( max ) / 0.026
                                               = 0.02
                   v ( max )
             0.5 + d
                  4 ( 0.026 )
      ⎡      v ( max ) ⎤              1
 0.98 ⎢ 0.5 + d          ⎥=
      ⎢
      ⎣      4 ( 0.026 ) ⎥ 1 + e
                         ⎦
                                 − vd ( max ) / 0.026


                                            1
0.490 + 9.423vd ( max ) =               − vd ( max ) / 0.026
                                 1+ e
By trial and error
vd ( max ) = 23.7 mV

11.19
a.
For I1 = 1 mA, VBE3 = 0.7 V
       20 − 0.7
R1 =            ⇒ R1 = 19.3 kΩ
          1
       V      ⎛ I ⎞ 0.026 ⎛ 1 ⎞
R2 = T ⋅ ln ⎜ 1 ⎟ =
              ⎜I ⎟
                               ⋅ ln ⎜     ⎟ ⇒ R2 = 0.599 kΩ
       IQ     ⎝ Q⎠      0.1         ⎝ 0.1 ⎠
b.
       (180 )( 0.026 )
rπ 4 =                 = 46.8 kΩ
             0.1
         0.1
 gm =          = 3.846 mA/V
       0.026
       100
 r04 =      ⇒ 1 MΩ
        0.1
From Chapter 10
R0 = r04 ⎡1 + g m ( RE rπ 4 ) ⎤
          ⎣                   ⎦
RE rπ 4 = 0.599 46.8 = 0.591
R0 = (1) ⎡1 + ( 3.846 )( 0.591) ⎤ = 3.27 MΩ
         ⎣                      ⎦
        100
r01 =        ⇒ 2 MΩ
        0.05
                       ⎡        ⎛ r ⎞⎤
Ricm ≅ ⎡(1 + β ) R0 ⎤ ⎢(1 + β ) ⎜ 01 ⎟⎥
       ⎣            ⎦
                       ⎣        ⎝ 2 ⎠⎦
     = ⎣(181)( 3.27 ) ⎦ ⎣(181)(1) ⎤
       ⎡              ⎤ ⎡           ⎦
        = 592 181 ⇒ Ricm = 139 MΩ
(c)     From Eq. (11.32(b))
         − g m RC
Acm =
         2 (1 + β ) Ro
      1+
            rπ + RB
       0.05
 gm =        = 1.923 mA / V
      0.026
      (180 )( 0.026 )
 rπ =                 = 93.6 k Ω
           0.05
 RB = 0
Then
           − (1.923)( 50 )
 Acm =                      ⇒ Acm = −0.00760
            2 (181)( 3270 )
         1+
                 93.6
11.19
For vCM = 3.5 V and a maximum peak-to-peak swing in the output voltage of 2 V, we need the
quiescent collector voltage to be
VC = 3.5 + 1 = 4.5 V
Assume the bias is ±10 V , and I Q = 0.5 mA.
Then I C = 0.25 mA
             10 − 4.5
Now RC =               ⇒ RC = 22 k Ω
               0.25
                     (100 )( 0.026 )
In this case, rπ =                   = 10.4 k Ω
                          0.25
Then
        (100 )( 22 )
 Ad =                  = 101 So gain specification is met.
       2 (10.4 + 0.5 )
For CMRRdB = 80 dB ⇒
                  1 ⎡ (1 + β ) I Q Ro ⎤ 1 ⎡ (101)( 0.5 ) Ro ⎤
CMRR = 104 =        ⎢1 +              ⎥ = ⎢1 +              ⎥ ⇒ Ro = 1.03 M Ω
                   2⎣         VT β    ⎦ 2 ⎢ ( 0.026 )(100 ) ⎥
                                          ⎣                 ⎦
Need to use a Modified Widlar current source.
Ro = ro ⎡1 + g m ( RE1 rπ ) ⎤
        ⎣                   ⎦
                                100
If VA = 100V , then ro =            = 200 k Ω
                                0.5
       (100 )( 0.026 )
rπ =                = 5.2 k Ω
          0.5
       0.5
gm =         = 19.23 mA / V
      0.026
Then 1030 = 200 ⎡1 + (19.23)( RE1 rπ ) ⎤ ⇒ RE1 rπ = 0.216 k Ω = RE1 5.2 ⇒ RE1 = 225 Ω
                  ⎣                    ⎦
Also let RE 2 = 225 Ω and I REF ≅ 0.5 mA

11.20
                  −0.7 − ( −10 )
(a)        RE =                    ⇒ RE = 37.2 k Ω
                         0.25




(b)
Vπ 1            V               V         ⎛1+ β ⎞                  Ve
     + g mVπ 1 + π 2 + g mVπ 2 = e or (1) ⎜     ⎟ (Vπ 1 + Vπ 2 ) =
 rπ              rπ             RE        ⎝ rπ ⎠                   RE
Vπ 1 V1 − Ve             ⎛ r       ⎞
     =          ⇒ Vπ 1 = ⎜ π ⎟ (V1 − Ve )
 rπ    RB + rπ           ⎝ rπ + RB ⎠
 Vπ 2 = V2 − Ve
Then
      ⎛1+ β
         ⎞ ⎡ rπ                             ⎤ V
(1) ⎜    ⎟⎢          (V1 − Ve ) + (V2 − Ve )⎥ = e
         ⎠ ⎣ rπ + RB
      ⎝ rπ                                  ⎦ RE
From this, we find
                     rπ + RB
              V1 +           ⋅ V2
                        rπ
Ve =
        ⎡ rπ + RB         r + RB ⎤
        ⎢             +1+ π      ⎥
        ⎣ RE (1 + β )       rπ ⎦
Now
Vo = − g mVπ 2 RC = − g m RC (V2 − Ve )
We have
        (120 )( 0.026 )                      0.125
rπ =                      ≅ 25 k Ω,   gm =         = 4.81 mA / V
            0.125                            0.026
(i)
            Vd           V
Set V1 =       and V2 = − d
             2            2
Then
               ⎛ ⎛ 25 + 0.5 ⎞ ⎞
              Vd                       Vd
               ⎜ 1 − ⎜ 25 ⎟ ⎟
               2                          ( −0.02 )
               ⎝     ⎝       ⎠⎠
Ve =                                  = 2
     ⎡ 25 + 0.5            25 + 0.5 ⎤     2.026
     ⎢                 +1+          ⎥
     ⎣ ( 37.2 )(121)         25 ⎦
So
Ve = −0.00494Vd
Now
                     ⎛ V                    ⎞       V
Vo = − ( 4.81)( 50 ) ⎜ − d − ( −0.00494 )Vd ⎟ ⇒ Ad = o = 119
                     ⎝ 2                    ⎠       Vd
(ii)
Set V1 = V2 = Vcm
 Then
                ⎛ 25 + 0.5 ⎞
            Vcm ⎜ 1 +        ⎟
                ⎝       25 ⎠          V ( −2.02 )
Ve =                                 = cm
     ⎡ 25 + 0.5           25 + 0.5 ⎤   2.02567
     ⎢                +1+          ⎥
     ⎣ ( 37.2 )(121)        25 ⎦
Ve = Vcm ( 0.9972 )
Then
Vo = − ( 4.81)( 50 ) ⎡Vcm − Vcm ( 0.9972 ) ⎤
                     ⎣                     ⎦
            Vo
or Acm =        = −0.673
            Vcm

11.21
From Equation (11.18)
v0 = vC 2 − vC1 = g m RC vd
       I CQ
gm =
        VT
For I Q = 2 mA, I CQ = 1 mA
             1
Then g m =        = 38.46 mA/V
           0.026
Now 2 = ( 38.46 ) RC ( 0.015 )
So RC = 3.47 kΩ
Now VC = V + − I C RC         = 10 − (1)( 3.47 )
                              = 6.53 V
For VCB = 0 ⇒ vcm ( max ) = 6.53 V

11.22
The small-signal equivalent circuit is




A KVL equation: v1 = Vπ 1 − Vπ 2 + v2
                       v1 − v2 = Vπ 1 − Vπ 2
A KCL equation
Vπ 1            V
     + g mVπ 1 + π 2 + g mVπ 2 = 0
 rπ              rπ
              ⎛1         ⎞
(Vπ 1 + Vπ 2 ) ⎜   + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2
              ⎝ rπ       ⎠
                                   1                         1
Then v1 − v2 = 2Vπ 1 ⇒ Vπ 1 =        ( v1 − v2 ) and Vπ 2 = − ( v1 − v2 )
                                   2                         2
At the v01 node:
v01 v01 − v02
   +          + g mVπ 1 = 0
RC     RL
    ⎛ 1    1 ⎞       ⎛ 1      ⎞ 1
v01 ⎜   +    ⎟ − v02 ⎜        ⎟ = g m ( v2 − v1 )    (1)
    ⎝ RC RL ⎠        ⎝ RL     ⎠ 2
At the v02 node:
v02 v02 − v01
   +          + g mVπ 2 = 0
RC     RL
    ⎛ 1   1 ⎞       ⎛ 1 ⎞ 1
v02 ⎜   +   ⎟ − v01 ⎜ ⎟ = g m ( v1 − v2 )            (2)
    ⎝ RC RL ⎠       ⎝ RL ⎠ 2
From (1):
⎛ R ⎞ 1
v02 = v01 ⎜ 1 + L ⎟ − g m RL ( v2 − v1 )
          ⎝ RC ⎠ 2
Substituting into (2)
    ⎛ R ⎞⎛ 1         1 ⎞ 1                     ⎛ 1   1 ⎞       ⎛ 1    ⎞ 1
v01 ⎜1 + L ⎟ ⎜     +   ⎟ − g m RL ( v2 − v1/ ) ⎜   +   ⎟ − v01 ⎜      ⎟ = g m ( v1 − v2 )
    ⎝    RC ⎠ ⎝ RC RL ⎠ 2                      ⎝ RC RL ⎠       ⎝ RL   ⎠ 2
    ⎛ 1 RL    1 ⎞ 1                 ⎡ ⎛ RL    ⎞⎤
v01 ⎜   + 2 +   ⎟ = g m ( v1 − v2 ) ⎢1 − ⎜ + 1⎟ ⎥
    ⎝ RC RC RC ⎠ 2                  ⎣ ⎝ RC    ⎠⎦
v01 ⎛     RL ⎞    1 ⎛ RL ⎞
    ⎜2+      ⎟ = − gm ⎜  ⎟ ( v1 − v2 )
RC ⎝     RC ⎠     2 ⎝ RC ⎠
For v1 − v2 = vd
             1
           − g m RL
      v01
Av1 =     = 2
      vd ⎛     RL ⎞
           ⎜2+    ⎟
           ⎝   RC ⎠
                             1
                               g m RL
                      v02
From symmetry: Av 2 =     = 2
                      vd ⎛        RL ⎞
                           ⎜2+        ⎟
                           ⎝      RC ⎠
            v02 − v01     g m RL
Then Av =             =
               vd       ⎛     RL ⎞
                        ⎜2+      ⎟
                        ⎝     RC ⎠

11.23
The small-signal equivalent circuit is




KVL equation: v1 = Vπ 1 − Vπ 2 + v2 or v1 − v2 = Vπ 1 − Vπ 2
KCL equation:
Vπ 1                      V
     + g mVπ 1 + g mVπ 2 + π 2 = 0
 rπ                        rπ
              ⎛1         ⎞
(Vπ 1 + Vπ 2 ) ⎜   + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2
              ⎝ rπ       ⎠
                                        1
Then v1 − v2 = −2Vπ 2 or Vπ 2 = −         ( v1 − v2 )
                                        2
Now       v0 = − g mVπ 2 ( RC    RL )
               1
              = g m ( RC      RL )( v1 − v2 )
               2
                                v0 1
For v1 − v2 ≡ vd ⇒ Ad =           = g m ( RC       RL )
                                vd 2

11.23
a.
      10 − 7
RD =            ⇒ RD = 6 kΩ
         0.5
I Q = I D1 + I D 2 ⇒ I Q = 1 mA
b.
10 = I D ( 6 ) + VDS − VGS
                   ID
and VGS =             + VTN
                   Kn
                                 0.5
For I D = 0.5 mA, VGS =              + 2 = 3.12 V
                                 0.4
and VDS = 10.12




Load line is actually nonlinear.
c.       Maximum common-mode voltage when M 1 and M 2 reach the transition point, or
VDS ( sat ) = VGS − VTN = 3.12 = 2 = 1.12V
Then
vcm = v02 − vDS ( sat ) + VGS = 7 − 1.12 + 3.12
Or vcm ( max ) = 9 V
Minimum common-mode voltage, voltage across I Q becomes zero.
So vcm ( min ) = −10 + 3.12
⇒ vcm ( min ) = −6.88 V

11.24
We have VC 2 = − g mVπ 2 RC = − g m (Vb 2 − Ve ) RC
and
VC1 = − g mVπ 1 RC = − g m (Vb1 − Ve ) RC
Then
V0 = VC 2 − VC1
   = − g m (Vb 2 − Ve ) RC − ⎡ − g m (Vb1 − Ve ) RC ⎤
                             ⎣                      ⎦
   = g m RC (Vb1 − Vb 2 )
                               V0
Differential gain Ad =                 = g m RC
                            Vb1 − Vb 2
Common-mode gain Acm = 0

11.25
(a)
 vcm = 3 V ⇒ VC1 = VC 2 = 3 V
           10 − 3
 Then RC =        ⇒ RC = 70 k Ω
             0.1
(b)
CMRRdB = 75 dB ⇒ CMRR = 5623
 Now
           1 ⎡ (1 + β ) I Q Ro ⎤
CMRR =       ⎢1 +              ⎥
           2⎣       β VT       ⎦
         1 ⎡ (151)( 0.2 ) Ro ⎤
5623 =     ⎢1 +              ⎥ ⇒ Ro = 1.45 M Ω
         2 ⎢ (150 )( 0.026 ) ⎥
           ⎣                 ⎦
Use a Widlar current source.
Ro = ro [1 + g m RE ]
                  ′
Let VA of current source transistor be 100 V.
           100                      0.2
Then ro =       = 500 k Ω, g m =         = 7.69 mA / V
           0.2                     0.026
     (150 )( 0.026 )
rπ =                 = 19.5 k Ω
          0.2
So 1450 = 500 ⎡1 + ( 7.69 ) RE ⎤ ⇒ RE = 0.247 k Ω
                ⎣             ′⎦     ′
     ′
Now RE = RE rπ ⇒ 0.247 = RE 19.5 ⇒ RE = 250Ω
                    ⎛I        ⎞
Then I Q RE = VT ln ⎜ REF     ⎟
                    ⎜ I       ⎟
                    ⎝ Q       ⎠
                               ⎛ I REF ⎞
( 0.2 )( 0.250 ) = ( 0.026 ) ln ⎜
                                ⎜        ⎟ ⇒ I REF = 1.37 mA
                                         ⎟
                               ⎝ ( 0.2 ) ⎠
             10 − 0.7 − ( −10 )
Then R1 =                           ⇒ R1 = 14.1 k Ω
                    1.37

11.26
At terminal A.
                     R (1 + δ ) ⋅ R       R (1 + δ )       R
RTHA = RA R =                         =                ≅     = 5 kΩ
                    R (1 + δ ) + R         2+δ             2
Variation in RTH is not significant
       ⎛ RA ⎞ + R (1 + δ )( 5 ) 5 (1 + δ )
VTHA = ⎜        ⎟V =                =
       ⎝ RA + R ⎠    R (1 + δ ) + R   2+δ
At terminal B.
                 R
RTHB = R R =        = 5 kΩ
                 2
       ⎛ R ⎞ +
VTHB = ⎜        ⎟ V = 2.5 V
       ⎝R+R⎠
From Eq. (11.27)
     − β RC (V2 − V1 )
VO =                    where V2 = VTHB and V1 = VTHA
       2 ( rπ + RB )
                      (120 )( 0.026 )
RB = 5 k Ω, rπ =                        = 12.5 k Ω
                           0.25
            − (120 )( 3)(V2 − V1 )
So VO =                              = −10.3 (V2 − V1 )
                2 (12.5 + 5 )
We can find V2 − V1 = VTHB − VTHA
                       ⎡ 5 (1 + δ ) ⎤
VTHB − VTHA = 2.5 − ⎢               ⎥
                       ⎣ 2+δ ⎦
  2.5 ( 2 + δ ) − 5 (1 + δ ) 2.5δ − 5δ
=                             =
            2+δ                     2+δ
  −2.5δ
≅          = −1.25δ
     2
Then VO = − (10.3)( −1.25 ) δ = 12.9δ
So for −0.01 ≤ δ ≤ 0.01
We have −0.129 ≤ VO 2 ≤ 0.129 V

11.27
a.
Rid = 2rπ
        (180 )( 0.026 )
 rπ =                     = 23.4 kΩ
           0.2
So Rid = 46.8 kΩ
b.          Assuming rμ → ∞, then
Ricm ≅ ⎡(1 + β ) R0 ⎤
       ⎣            ⎦
Ricm = ⎡(181)(1) ⎤
       ⎣          ⎦
      = 181 ⇒ Ricm = 181 MΩ

11.28
(a)
      10 − 0.7 − ( −10 )
 I1 =                    = 0.5 ⇒ R1 = 38.6 K
             R1
        0.026 ⎛ 0.5 ⎞
R2 =         ln ⎜    ⎟ ⇒ R2 = 236 Ω
         0.14 ⎝ 0.14 ⎠
(b)
Ricm ≈ (1 + β ) Ro
                                         0.14
Ro = ro 4 (1 + g m 4 RE ) g m 4 =
                      ′                        = 5.385 mA/V
                                        0.026
                                        (180 )( 0.026 )
                                 rπ 4 =                 = 33.4 K
                                             0.14
                                    ′
                                 RE = 33.4 0.236 = 0.234 K
                                100
                                  ro 4 =
                                     = 714 K
                               0.14
  Ro = 714 ⎡1 + ( 5.385 )( 0.234 ) ⎤
           ⎣                       ⎦
      = 1614 K
Ricm = (181)(1614 ) ≈ 292 MΩ
(c)
            − g m1 RC                          0.07
Acm =                                g m1 =          = 2.692 mA/V
            2 (1 + β ) Ro                      0.026
         1+
                 rπ 1
                                              (180 )( 0.026 )
                                     rπ 1 =                     = 66.86 K
                                                    0.07
       − ( 2.692 )( 40 )
Acm =
         2 (181)(1614 )
      1+
              66.86
Acm = −0.0123

11.29
 Ad 1 = g m1 ( R1 rπ 3 )
         I Q1 / 2
g m1 =              = 19.23I Q1
           VT
          β VT          2 (100 )( 0.026 )          5.2
rπ 3 =              =                          =
         IQ2 / 2              IQ 2                 IQ 2
          g m 3 R2          IQ 2 / 2
Ad 2 =             , g m3 =          = 19.23I Q 2
             2                VT
                 (19.23) I Q 2
Then 30 =             ⋅ R2 ⇒ I Q 2 R2 = 3.12 V
              2
Maximum vo 2 − vo1 = ±18 mV for linearity
vo3 ( max ) = ( ±18 )( 30 ) mV ⇒ ±0.54 V
so I Q 2 R2 = 3.12 V is OK.
From Ad 1 :
⎛    ⎛ 5.2 ⎞ ⎞
                                       ⎜ R1 ⎜
                                            ⎜I ⎟ ⎟⎟
                                       ⎜    ⎝ Q2 ⎠ ⎟
20 = 19.23I Q1 ( R1 rπ 3 ) = 19.23I Q1 ⎜              ⎟
                                       ⎜ R + ⎛ 5.2 ⎞ ⎟
                                       ⎜ 1 ⎜ IQ 2 ⎟ ⎟
                                              ⎜     ⎟
                                       ⎝      ⎝     ⎠⎠
     19.23I Q1 R1 ( 5.2 )
20 =
        I Q 2 R1 + 5.2
       I Q1
Let           ⋅ R1 = 5V ⇒ I Q1 R1 = 10 V
        2
                 19.23 (10 )( 5.2 )
Then 20 =                                 ⇒ I Q 2 R1 = 44.8 V
                   I Q 2 R1 + 5.2
                                       10
Now I Q1 R1 = 10 ⇒ R1 =
                                       I Q1
         ⎛ 10 ⎞          ⎛ IQ2 ⎞
So I Q 2 ⎜
         ⎜I ⎟ ⎟ = 44.8 ⇒ ⎜
                         ⎜I ⎟  ⎟
                                 = 4.48
         ⎝ Q1 ⎠          ⎝ Q1 ⎠
Let I Q1 = 100 μ A, I Q 2 = 448 μ A
Then
I Q 2 R2 = 3.12 ⇒ R2 = 6.96 k Ω
I Q1 R1 = 10 ⇒ R1 = 100 k Ω

11.30
a.
     20 − VGS 3
                = 0.25 (VGS 3 − 2 )
                                    2
I1 =
         50
20 − VGS 3 = 12.5 (VGS 3 − 4VGS 3 + 4 )
                     2

      2
12.5VGS 3 − 49VGS 3 + 30 = 0

                   ( 49 )       − 4 (12.5 )( 30 )
                            2
            49 ±
VGS 3 =                                             ⇒ VGS 3 = 3.16 V
                       2 (12.5 )
        20 − 3.16
I1 =              ⇒ I1 = I Q = 0.337 mA
            50
         IQ
I D1   =     ⇒ I D1 = 0.168 mA
          2
0.168 = 0.25 (VGS 1 − 2 ) ⇒ VGS1 = 2.82 V
                                   2


VDS 4 = −2.82 − ( −10 ) ⇒ VDS 4 = 7.18 V
VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V
VDS1 = 5.97 − ( −2.82 ) ⇒ VDS 1 = 8.79 V
(b)




(c)
Max vCM ⇒ VDS 1 = VDS 2 = VDS ( sat ) = VGS1 − VTN
                                     2.82 − 2 = 0.82 V
Now VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V
VS ( max ) = 5.97 − VDS1 ( sat ) = 5.97 − 0.82
VS ( max ) = 5.15 V
vCM ( max ) = VS ( max ) + VGS1 = 5.15 + 2.82
vCM ( max ) = 7.97 V
vCM ( min ) = V − + VDS 4 ( sat ) + VGS 1
VDS 4 ( sat ) = VGS 4 − VTN = 3.16 − 2 = 1.16 V
Then vCM ( min ) = −10 + 1.16 + 2.82 ⇒ vCM ( min ) = −6.02 V

11.31
a.
I D1 = I D 2 = 120 μ A = 100 ( VGS1 − 1.2 ) ⇒ VGS 1 = VGS 2 = 2.30 V
                                               2


For v1 = v2 = −5.4 V and VDS1 = VDS 2 = 12 V ⇒ −5.4 − 2.30 + 12 = 4.3 V = VD
      10 − 4.3
RD =               ⇒ RD = 47.5 kΩ
         0.12
I Q = I D1 + I D 2 ⇒ I Q = I1 = 240 μ A

I1 = 240 = 200 (VGS 3 − 1.2 ) ⇒ VGS 3 = 2.30 V
                                     2


        20 − 2.3
R1 =             ⇒ R1 = 73.75 kΩ
         0.24
b.
         1               1
r04 =          =                     = 416.7 kΩ
        λ IQ       ( 0.01)( 0.24 )
          1            5.4
ΔI Q =       ⋅ ΔVDS =       ⇒ ΔI Q ≅ 13 μ A
         r04          416.7

11.32
(a)
  I Q = 160 μ A
        k′ ⎛ W ⎞
  I D = n ⎜ ⎟ (VGS − VTN )
                           2

         2⎝L⎠
        80
 80 = ( 4 )(VOS − 0.5 )
                        2

         2
 80 = 160 (Vo5 − 0.5 )
                             2



          80
VGS =          + 0.5 = 1.207 V
         160
       5−2
 RD =         = 37.5 K VDS = 2 − ( −1.207 ) = 3.21 V
       0.08
(c)
VDS ( sat ) = VGS − VTN = 1.207 − 0.5 = 0.707 V
Then VS = VO 2 − VDS ( sat ) = 2 − 0.707 = +1.29 V
And v1 = v2 = vcm = VGS + VS = 1.207 + 1.29
                      vcm = 2.50 V
(b)
11.33
 vD = 5 − ( 0.2 )( 8 ) = 3.4 V
          ID
VGS =        + VTN
          Kn
        0.2
      =      + 0.8 = 1.694 V
        0.25
          VDS ( sat ) = VGS − VTN = 1.694 − 0.8
                      = 0.894 V
VS = VD − VDS ( sat ) = 3.4 − 0.894
                      = 2.506
vCM = VS + VGS = 2.506 + 1.694 ⇒ vCM = 4.2 V
(b)
                                    Vd
ΔvD = ΔI D ⋅ RD      ΔI D = g m ⋅        gm = 2 Kn I D
                                     2
                                             =2     ( 0.25)( 0.2 ) = 0.4472 mA/V
ΔI D = ( 0.4472 )( 0.05 ) ⇒ 22.36 μ A
ΔvD = ( 22.36 × 10−6 )( 8 × 103 ) = 0.179 V
 vD 2 = 3.4 + ΔvD
  vD 2 = 3.4 + 0.179 ⇒ vD 2 = 3.58 V
(c)
 vd = −50 mV
ΔI D = − ( 0.4472 )( 0.025 ) ⇒ −11.18 μ A
ΔvD = − (11.18 × 10−6 )( 8 × 103 ) = −0.0894 V
vD 2 = 3.4 − 0.0894 ⇒ vD 2 = 3.31 V

11.34
a.
I D1 = I D 2 = 0.5 mA
v01 − v02 = ⎡V + − I D1 RD1 ⎤ − ⎡V + − I D 2 RD 2 ⎤
            ⎣                 ⎦ ⎣                 ⎦
v01 − v02 = I D 2 RD 2 − I D1 RD1 = I D ( RD 2 − RD1 )
i.         RD1 − RD 2 = 6 kΩ, v01 − v02 = 0
ii.        RD1 = 6 kΩ, RD 2 = 5.9 kΩ
v01 − v02 = ( 0.5 )( 5.9 − 6 ) ⇒ v01 − v02 = −0.05 V
b.
K n1 = 0.4 mA / V 2 , K n 2 = 0.44 mA / V 2
VGS1 = VGS 2
I Q = ( K n1 + K n 2 )(VGS − VTN )
                                            2



1 = ( 0.4 + 0.44 )(VGS − VTN ) ⇒ (VGS − VTN ) = 1.19
                                        2                   2


 I D1 = ( 0.4 )(1.19 ) = 0.476 mA
 I D 2 = ( 0.44 )(1.19 ) = 0.524 mA
i.
 RD1 = RD 2 = 6 kΩ
v01 − v02 = ( 0.524 − 0.476 )( 6 ) ⇒ v01 − v02 = 0.288 V
ii.
 RD1 = 6 kΩ,              RD 2 = 5.9 kΩ
v01 − v02 = ( 0.524 )( 5.9 ) − ( 0.476 )( 6 )
             = 3.0916 − 2.856 ⇒ v01 − v02 = 0.236 V

11.35
(a)          From Equation (11.69)
iD 2 1  Kn           ⎛ K                        ⎞ 2
    = −     ⋅ vd 1 − ⎜ n                        ⎟ vd
 IQ 2   2IQ          ⎜ 2IQ                      ⎟
                     ⎝                          ⎠
                               0.1             ⎡ 0.1 ⎤ 2
0.90 = 0.50 −                         ⋅ vd 1 − ⎢            ⎥ vd
                           2 ( 0.25 )          ⎢ 2 ( 0.25 ) ⎥
                                               ⎣            ⎦
+0.40 = − ( 0.4472 ) vd 1 − ( 0.2 ) vd
                                     2



0.8945 = −vd 1 − ( 0.2 ) vd
                          2


Square both sides
0.80 = vd (1 − [ 0.2] vd )
        2              2



( 0.2 ) ( vd2 )
                  2      2
                      − vd + 0.80 = 0

 2
       1 ± 1 − 4 ( 0.2 )( 0.80 )
vd =                                     = 4V 2 or 1V 2
                       2 ( 0.2 )
Then vd = ± 2 V or ± 1 V
                           IQ       0.25
But vd      max
                      =         =        = 1.58
                           kn        0.1
So vd = ±1V, ⇒ vd = −1V
b.           From part (a), vd ,max = 1.58 V

11.36
⎛i ⎞
d ⎜ D1 ⎟
  ⎜I ⎟                   ⎛ K         ⎞ 2
  ⎝ Q⎠=         Kn
                    ⋅ 1− ⎜ n
                         ⎜ 2I        ⎟ vd + (
                                     ⎟          ) vd   vd =0
  dvd           2IQ      ⎝ Q         ⎠
                Kn
           =
                2IQ
               iD1 1  Kn
So linear         = +      ⋅ vd
               IQ 2   2 IQ

     1   Kn                 ⎡1    Kn                      ⎛K ⎞ 2          ⎤
       +     ⋅ vd ( max ) − ⎢ +        ⋅ vd ( max ) ⋅ 1 − ⎜ n ⎟vd ( max ) ⎥
     2   2IQ                ⎢2   2 IQ                     ⎝ 2I n ⎠        ⎥
Then                        ⎣                                             ⎦ = 0.02
                             1   Kn
                               +      ⋅v
                             2   2 I Q d ( max )

     ⎡1  Kn               ⎤ ⎡1    Kn                     ⎛K                  ⎞ 2          ⎤
0.98 ⎢ +     ⋅ vd ( max ) ⎥ = ⎢ +     ⋅ vd ( max ) ⋅ 1 − ⎜ n                 ⎟ vd ( max ) ⎥
     ⎢2  2IQ              ⎥ ⎢2    2IQ                    ⎜ 2I                ⎟            ⎥
     ⎣                    ⎦ ⎣                            ⎝ Q                 ⎠            ⎦
                  0.15                    ⎡1   0.15                        ⎛ 0.15 ⎞ 2               ⎤
0.49 + 0.98                ⋅ vd ( max ) = ⎢ +           ⋅ vd ( max ) ⋅ 1 − ⎜           ⎟ vd ( max ) ⎥
                                                                           ⎜ 2 ( 0.2 ) ⎟
                 2 ( 0.2 )                ⎢2  2 ( 0.2 )                    ⎝           ⎠            ⎥
                                          ⎣                                                         ⎦
0.49 + 0.600 vd ( max ) = 0.50 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max )
                                                                     2



0.600 vd ( max ) = 0.010 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max )
                                                               2



By trial and error vd ( max ) ≈ 0.429 V

11.37
(b)
gm = 2 K p I D = 2        ( 0.05 )( 0.008696 )
      = 0.0417 mA/V
         Vd
ΔI = g m    = ( 0.0417 )( 0.05 ) = 0.002085 mA
          2
ΔvD = ( 0.002085 )( 510 ) = 1.063
vD 2 ↑⇒ vD 2 = 1.063 − 4.565 = −3.502 V
vD1 = −1.063 − 4.565 = −5.628 V
9 = I S RS + VSG + 1
I S = 2I D
8 = 2 K P RS (VSG + VTP ) + VSG
                             2



8 = ( 2 )( 0.05 )( 390 )(VSG − 0.8 ) + VSG
                                         2


8 = 39 (VSG − 1.6VSG + 0.64 ) + VSG
          2


    2
39VSG − 61.4VSG + 16.96 = 0
        61.4 ± 3769.96 − 4 ( 39 )(16.96 )
VSG =
                         2 ( 39 )
      = 1.217 V VS = 2.217
I S = 0.01739 mA          I D1 = I D 2 ⇒ 8.696 μ A
vD1 = vD 2 = ( 8.696 )( 0.510 ) − 9 = −4.565 V
(b)
g m = 2 K P I DQ = 2        ( 0.05 )( 0.008696 ) = 0.0417 mA/V
                                  Vd
        ΔvD = ΔI D ⋅ RD              = ( 0.0417 )( 0.05 ) = 0.002085 mA
                             ΔI D = g m ⋅
                                   2
ΔvD = ( 0.002085 )( 510 ) = 1.063 V
v1 ↑, I D1 ↓, vD1 ↓
vD1 = −4.565 − 1.063 = −5.628 V
vD 2 = −4.565 + 1.063 = −3.502 V

11.38
(a)
 v1 = v2 = 0
I D = K n (VSG + VTP )
                         2


ID = 6 μA
   6
     + 0.4 = VSG
  30
VSG = 0.847 V
 VS = +0.847 V
 vD = I D RD − 3
    = ( 6 )( 0.36 ) − 3 = −0.84 V
VSD = VS − vD = 0.847 − ( −0.84 )
 vSD = 1.69 V
(b)
(i)
 Ad = g m RD g m = 2 K n I D
                      =2     ( 30 )( 6 ) = 26.83 μ A/V
 Ad = ( 26.83)( 0.36 ) ⇒ Ad = 9.66
 Acm = 0
(ii)
        g R       ( 26.83)( 0.36 )
  Ad = m D =                       ⇒ Ad = 4.83
          2               2
         − g m RD      − ( 26.83)( 0.36 )
 Acm =               =                    = −0.0448
       1 + 2 g m RO 1 + 2 ( 26.83)( 4 )

11.39
For v1 = v2 = −0.30 V
I D1 = I D 2 = 0.1 mA
           ID
VSG =         − VTP
           KP
          0.1
      =        +1 = 2 V
          0.1
vD1   = vD 2 = ( 0.1)( 30 ) − 10
      = −7 V
 gm = 2 K p I D = 2       ( 0.1)( 0.1) = 0.2 mA/V
           ⎛V ⎞
ΔI D = g m ⎜ d ⎟ = ( 0.2 )( 0.1) = 0.02 mA
           ⎝ 2⎠
ΔvD = ( ΔI D ) RD = ( 0.02 )( 30 ) = 0.6 V
vD 2 ↑⇒ vD 2 = −7 + 0.6 ⇒ vD 2 = −6.4 V
 vD1 = −7 − 0.6 ⇒ vD1 = −7.6 V

11.40
For v1 = v2 = 0
     0 = VGS + 2 I D RS − 10
      10 = VGS + 2 K n RS (VGS − VTN )
                                         2



          = VGS + 2 ( 0.15 )( 75 )(VGS − 1)
                                              2


      2
22.5VGS − 44VGS + 12.5 = 0
So VGS = 1.61 V and I D = ( 0.15 )(1.61 − 1) ⇒ 55.9 μ A
                                                  2



      gm = 2 Kn I D = 2      ( 0.15 )( 0.0559 )
     g m = 0.1831 mA/V
Use Half-circuits – Differential gain
            ⎛V ⎞⎛        ΔR ⎞
vD1 = − g m ⎜ d ⎟ ⎜ RD +      ⎟
            ⎝ 2 ⎠⎝         2 ⎠
           ⎛V ⎞⎛        ΔR ⎞
vo 2 = g m ⎜ d ⎟ ⎜ RD −     ⎟
           ⎝ 2 ⎠⎝        2 ⎠
 vo = vD1 − vD 2 = − g mVd RD
        v
 Ad = o = − g m RD
       Vd
Now – Common-Mode Gain
Vi = Vgs + g mVgs ( 2 RS ) = Vcm
           Vcm
Vgs =
      1 + g m ( 2 RS )
               ⎛       ΔR ⎞
         − g m ⎜ RD + D ⎟ Vcm
               ⎝          2 ⎠
vD1    =
              1 + g m ( 2 RS )
              ⎛        ΔR ⎞
         − gm ⎜ RD − D ⎟ Vcm
              ⎝          2 ⎠
vD 2   =
             1 + g m ( 2 RS )
vO = vD1 − vD 2
           − g m ( ΔRD ) Vcm
So vo =
            1 + g m ( 2 RD )
          vo   − g m ( ΔRD )
Acm =        =
         Vcm 1 + g m ( 2 RS )
Then
Ad = − ( 0.1831)( 50 ) = −9.16
           − ( 0.1831)( 0.5 )
Acm =                               = −0.003216
         1 + ( 0.1831)( 2 )( 75 )
C M R R ∫ = 69.1 dB
             bB



11.41
a.
 Ad = g m ( r02 r04 )
         VA 2 150
 r02 =        =    = 375 kΩ
         I C 2 0.4
         VA 4 100
 r04 =        =    = 250 kΩ
         I C 4 0.4
         IC 2    0.4
gm =          =       = 15.38 mA/V
         VT     0.026
Ad = (15.38 ) ( 375 250 ) ⇒ Ad = 2307
b.
RL = r02 r04 = 375 250 ⇒ RL = 150 kΩ

11.41
From 11.40
I D1 = I D 2 = 55.9 μ A
 g m = 0.183 mA/V
Vd                    ⎛ +V ⎞
Ad : ΔvD1 = − g m1            ⋅ RD
                                 ΔvD 2 = + g m 2 ⎜ d ⎟ RD
                            2                    ⎝ 2 ⎠
                           V               V
vO = ΔvD1 − ΔvD 2 = − g m1 d RD − g m 2 d RD
                             2              2
     −V                         −V        ⎛        Δg   ⎛ Δg ⎞ ⎞
vO = d ⋅ RD ( g m 2 + g m1 ) = d ⋅ RD ⎜ g m − m + ⎜ g m − m ⎟ ⎟
      2                           2       ⎝         2   ⎝  2 ⎠⎠
Ad = − g m RD = − ( 0.183) ( 50 ) = −9.15
                                           ⎛       Δg ⎞          ⎛     Δg ⎞
                                         − ⎜ g m + M ⎟ RD vcm ⎜ g m − M ⎟ RD vCM
                                           ⎝         2 ⎠         ⎝       2 ⎠
ACM : vO = ΔvD1 − ΔvD 2                =                       +
                                              1 + g m ( 2 RS )     1 + g m ( 2 RS )
          vO    −Δg m RD
Acm =        =                          Δg m = ( 0.01) ( 0.183) = 0.00183
          vcm 1 + g m ( 2 RS )
           − ( 0.00183) ( 50 )
Acm =                                  = −0.003216
        1 + ( 0.183)( 2 ) ( 75 )
 C M R R ∫ = 69.1 dB
              dB


11.42
(a)
 v1 = v2 = 0
5 = 2 I D RS + VSG
5 = 2 K p RS (VSG + VTP ) + VSG
                               2


5 = 2 ( 0.5 )( 2 ) (VSG − 1.6VSG + 0.64 ) + VSG
                      2

       2
5 = 2VSG − 2.2VSG + 1.28
   2
2VSG − 2.2VSG − 3.72 = 0
        2.2 ± 4.84 + 4 ( 2 )( 3.72 )
VSG =
                     2 ( 2)
VSG = 2.02 V
                            5 − 2.02
vS = 2.02 V,         IS =              = 1.49 mA
                                 2
                   I D1   = I D 2 = 0.745 mA
vD1 = vD 2 = ( 0.745 (1) − 5 ) ⇒ vD1 = vD 2 = −4.26 V
(b)
5 = I S RS + VSG 2
5 = ( I D1 + I D 2 ) RS + VSG 2
5 = ⎡ K p (VSG1 + VTP ) + K p (VSG 2 + VTP ) ⎤ RS + VSG 2
                       2                    2
    ⎣                                         ⎦
VSG1 = VSG 2 − 1
5 = ( 0.5 )( 2 ) ⎡(VSG 2 − 1.8 ) + (VSG 2 − 0.8 ) ⎤ + VSG 2
                                   2                 2
                 ⎣                                ⎦
5 = ⎡VSG 2 − 3.6VSG 2 + 3.24 + VSG 2 − 1.6VSG 2 + 0.64 ⎤ + VSG 2
    ⎣
        2                           2
                                                          ⎦
        2
5 = 2VSG 2 − 4.2VSG 2 + 3.88
   2
2VSG 2 − 4.2VSG 2 − 1.12 = 0
          4.2 ± 17.64 + 4 ( 2 ) (1.12 )
VSG 2 =
                          2 ( 2)
VSG 2 = 2.339 V VSG1 = 1.339 V
vS = 2.339 V
       = 0.5 (1.339 − 0.8 )              = 0.5 ( 2.339 − 0.8 )
                              2                                  2
I D1                              I D2
I D1   = 0.1453 mA                I D2   = 1.184 mA
vD1    = ( 0.1453)(1) − 5         vD 2   = (1.184 ) (1) − 5
vD1    = −4.855 V                 vD 2   = −3.816 V
(c)
            Vd
ΔI = g m           gm = 2 K p I D
             2
vS ≈ 2.02 V = 2          ( 0.5 )( 0.745 )
                   g m = 1.22 mA/V
ΔI = (1.22 )( 0.1) = 0.122 mA
ΔvD = ( ΔI ) RD = ( 0.122 )(1) = 0.122 V
vD 2 ↓ vD1 ↑
vD1 = −4.26 + 0.122 vD 2 = −4.26 − 0.122
vD1 = −4.138 V          vD 2 = −4.382 V

11.43




                    IQ
a.          gf =         ⇒ I Q = g f ( 4VT ) = ( 8 )( 4 )( 0.026 )
                   4VT
⇒ I Q = 0.832 mA
Neglecting base currents.
     30 − 0.7
R1 =          ⇒ R1 = 35.2 kΩ
      0.832
                    V     100
b.       r04 = r02 = A =       = 240 kΩ
                    I CQ 0.416
I CQ       0.416
gm =           =         = 16 mA / V
         VT        0.026
Ad = g m ( r02 || r04 ) = 16 ( 240 || 240 )
⇒ Ad = 1920
                      (180 )( 0.026 )
Rid = 2rπ , rπ =                        = 11.25 kΩ
                           0.416
⇒ Rid = 22.5 kΩ
R0 = r02 || r04 ⇒ R0 = 120 kΩ
c.       Max. common-mode voltage when
VCB = 0 for Q1 and Q2 .
Therefore
vcm ( max ) = V + − VEB ( Q3 ) = 15 − 0.7
vcm ( max ) = 14.3 V
          Min. common-mode voltage when
VCB = 0 for Q5 .
Therefore
vcm ( min ) = 0.7 + 0.7 + ( −15 ) = −13.6 V
So −13.6 ≤ vcm ≤ 14.3 V
      1
Ricm ≅  (1 + β )( 2 R0 )
      2
    V       100
R0 = A =           = 120 kΩ
    I Q 0.832
Ricm = (181)(120 ) ⇒ Ricm = 21.7 MΩ

11.43
(a)
 gm = 2 Kn I D
    =2        ( 0.4 )(1)
g m = 1.265 mA/V
      v     1
Ad = o =      = 10
      vd 0.1
Ad = g m RD
10 = (1.265 ) RD
RD = 7.91 K
(b)
 Quiescent v1 = v2 = 0
vD1 = vD 2 = 10 − (1)( 7.91) = 2.09 V
          ID          1
VGS =        + VTN =     + 0.8 = 2.38 V
          Kn         0.4
VDS ( sat ) = 2.38 − 0.8 = 1.58
So vcm = vD − VDS ( sat ) + VGS
       = 2.09 − 1.58 + 2.38
vcm = 2.89 V

11.44
g m RD
Ad =
          2
For vCM = 2.5 V
               IQ
I D1 = I D 2 =    = 0.25 mA
                2
                                             10 − 3
Let VD1 = VD 2 = 3 V , then RD =                    ⇒ RD = 28 k Ω
                                              0.25
               g m ( 28 )
Then 100 =                    ⇒ g m = 7.14 mA / V
              2
            k′ ⎛ W            ⎞
And g m = 2 n ⎜               ⎟ ID
            2⎝L               ⎠
         ⎛ 0.080 ⎞ ⎛ W ⎞
7.14 = 2 ⎜       ⎟ ⎜ ⎟ ( 0.25 ) ⇒
         ⎝ 2 ⎠⎝ L ⎠
⎛W ⎞ ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = 1274 (Extremely large transistors to meet the gain requirement.)
⎝ L ⎠1 ⎝ L ⎠ 2
Need ACM = 0.10
From Eq. (11.64(b))
          g m RD
 ACM =
       1 + 2 g m Ro
             ( 7.14 )( 28)
So 0.10 =                   ⇒ Ro = 140 k Ω
          1 + 2 ( 7.14 ) Ro
For the basic 2-transistor current source
            1            1
Ro = ro =        =             = 200 k Ω
          λ I Q ( 0.01)( 0.5 )
This current source is adequate to meet common-mode gain requirement.

11.45
Not in detail, Approximation looks good.
a.
     −V − ( −5 )
                   and I S = 2 I D = 2 K n (VGS 1 − VTN )
                                                          2
I S = GS 1
          RS
5 − VGS 1
          = 2 ( 0.050 )(VGS 1 − 1)
                                   2

   20
5 − VGS 1 = 2 (VGS1 − 2VGS1 + 1)
                 2

   2
2VGS1 − 3VGS 1 − 3 = 0

              ( 3)       + 4 ( 2 )( 3)
                     2
         3±
VGS1 =                                   ⇒ VGS1 = 2.186 V
                 2 ( 2)
      5 − 2.186
IS =             ⇒ I S = 0.141 mA
           20
              I
I D1 = I D 2 = S ⇒ I D1 = I D 2 = 0.0704 mA
               2
v02 = 5 − ( 0.0704 )( 25 ) ⇒ v02 = 3.24 V
b.
g m = 2 K n (VGS − VTN ) = 2 ( 0.05 )( 2.186 − 1)
g m = 0.119 mA/V
       1              1
r0 =         =                    = 710 kΩ
     λ I DQ ( 0.02 )( 0.0704 )
Vgs1 = v1 − VS , Vgs 2 = v2 − VS
v01              v −V
     + g mVgs1 + 01 S = 0
RD                 r0

    ⎛ 1     1⎞                   V
v01 ⎜     + ⎟ + g m ( v1 − VS ) − S = 0              (1)
    ⎝ RD r0 ⎠                     r0
v02              v − VS
     + g mVgs 2 + 02      =0
RD                   r0
    ⎛ 1    1⎞                   V
v02 ⎜    + ⎟ + g m ( v2 − VS ) − S = 0               (2)
    ⎝ RD r0 ⎠                    r0
         v − V v − VS                    V
g mVgs1 + 01 S + 02          + g mVgs 2 = S
            r0         r0                RS
                    v01 v02 2VS                     V
g m ( v1 − VS ) +      +    −    + g m ( v2 − VS ) = S
                    r0   r0   r0                    RS
                    v01 v02        ⎧       2 1 ⎫
g m ( v1 + v2 ) +      +    = VS   ⎨2 g m + + ⎬            (3)
                    r0   r0        ⎩       r0 RS ⎭
From (1)
        ⎛      1⎞
     VS ⎜ g m + ⎟ − g m v1
v01 = ⎝
               r0 ⎠
          ⎛ 1     1⎞
          ⎜    + ⎟
          ⎝ RD r0 ⎠
Then
                    ⎛       1⎞
                 VS ⎜ g m + ⎟ − g m v1
                                                 ⎧       2 1 ⎫
g m ( v1 + v2 ) + ⎝
                            r0 ⎠        v
                                       + 02 = VS ⎨2 g m + + ⎬ (3)
                        ⎛ 1      1⎞      r0      ⎩       r0 RS ⎭
                     r0 ⎜     + ⎟
                        ⎝ RD r0 ⎠
⎛ 1     1⎞       ⎛       1⎞             ⎛ 1     1⎞     ⎧         2 1 ⎫ ⎛ 1        1⎞
g m ( v1 + v2 ) r0 ⎜    + ⎟ + VS ⎜ g m + ⎟ − g m v1 + v02 ⎜      + ⎟ = VS ⎨2 g m + + ⎬ ⋅ r0 ⎜       + ⎟
                   ⎝ RD r0 ⎠        ⎝       r0 ⎠           ⎝ RD r0 ⎠      ⎩        r0 RS ⎭ ⎝ RD r0 ⎠
                ⎛     r ⎞                ⎛ 1     1⎞     ⎧
                                                        ⎪⎛        2 1 ⎞⎛        r0 ⎞ ⎛       1 ⎞⎪ ⎫
g m ( v1 + v2 ) ⎜ 1 + 0 ⎟ − g m v1 + v02 ⎜     + ⎟ = VS ⎨⎜ 2 g m + +    ⎟ ⎜1 +     ⎟ − ⎜ gm + ⎟⎬
                ⎝     RD ⎠               ⎝ RD r0 ⎠      ⎪⎝
                                                        ⎩         r0 RS ⎠ ⎝ RD ⎠ ⎝           r0 ⎠ ⎪
                                                                                                  ⎭
    ⎛      r             r ⎞       ⎛ 1   1⎞       ⎧         2 1             r   2       r           1⎫
g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜    + ⎟ = VS ⎨2 g m + +         + 2gm ⋅ 0 +    + 0 − gm − ⎬
    ⎝ RD                RD ⎠       ⎝ RD r0 ⎠      ⎩        r0 RS            RD RD RS RD             r0 ⎭
    ⎛                    r ⎞       ⎛ 1   1⎞       ⎧
                                                  ⎪        1 1 ⎛         r0 ⎞ 2               ⎫
                                                                                 (1 + g m r0 )⎪ (4)
           r
g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜    + ⎟ = VS ⎨2 g m + +         ⎜1 +    ⎟+                ⎬
    ⎝ RD                RD ⎠       ⎝ RD r0 ⎠      ⎪
                                                  ⎩        r0 RS ⎝ RD ⎠ RD                    ⎪
                                                                                              ⎭
                                  ⎛ 1    1⎞              ⎛      1⎞
Then substituting into (2), v02 ⎜      + ⎟ + g m v2 = VS ⎜ g m + ⎟
                                  ⎝ RD r0 ⎠              ⎝      r0 ⎠
                              ⎡ 710              710 ⎤       ⎡1       1 ⎤
Substitute numbers: ( 0.119 ) ⎢ v1     + v2 + v2     ⎥ + v02 ⎢ 25 + 710 ⎥                         (4)
                              ⎣ 25                25 ⎦       ⎣          ⎦
                                     ⎧           1     1 ⎛ 710 ⎞ 2                              ⎫
                                = VS ⎨0.119 +       + ⎜1 +          ⎟ + ⎡1 + ( 0.119 )( 710 ) ⎤ ⎬
                                                                          ⎣                   ⎦
                                     ⎩         710 20 ⎝         25 ⎠ 25                         ⎭
( 0.119 ) [ 28.4v1 + 29.4v2 ] + ( 0.0414 ) v02 = VS {0.1204 + 1.470 + 6.8392}
                                               = VS ( 8.4296 )
or VS = 0.4010v1 + 0.4150v2 + 0.00491v02
          ⎛ 1       1 ⎞                       ⎛           1 ⎞
Then v02 ⎜ +            ⎟ + ( 0.119 ) v2 = VS ⎜ 0.119 +     ⎟          (2)
          ⎝ 25 710 ⎠                          ⎝         710 ⎠
v02 ( 0.0414 ) + v2 ( 0.119 ) = ( 0.1204 ) [ 0.401v1 + 0.4150v2 + 0.00491v02 ]
v02 ( 0.0408 ) = ( 0.04828 ) v1 − ( 0.0690 ) v2
v02 = (1.183) v1 − (1.691) v2
                    vd
Now      v1 = vcm +
                     2
                   vd
        v2 = vcm −
                    2
                 ⎛      v ⎞            ⎛      v ⎞
So v02 = (1.183) ⎜ vcm + d ⎟ − (1.691) ⎜ vcm − d ⎟
                 ⎝       2⎠            ⎝       2⎠
Or v02 = 1.437vd − 0.508vcm ⇒ Ad = 1.437, Acm = −0.508
                     ⎛ 1.437 ⎞
C M R RdB = 20 log10 ⎜       ⎟ ⇒ C M R RdB = 9.03 dB
                     ⎝ 0.508 ⎠

11.46




KVL:
v1 = Vgs1 − Vgs 2 + v2
So v1 − v2 = Vgs1 − Vgs 2
KCL:
g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2
           1                      1
So Vgs1 = ( v1 − v2 ) , Vgs 2 = − ( v1 − v2 )
           2                      2
Now
v02 v02 − v01
    +             = − g mVgs 2
RD        RL
                                                       (1)
                        ⎛ 1   1 ⎞ v01
                  = v02 ⎜   +   ⎟−
                        ⎝ RD RL ⎠ RL
v01 v01 − v02
   +          = − g mVgs1
RD     RL
                                                       (2)
                     ⎛ 1     1 ⎞ v02
               = v01 ⎜    +    ⎟−
                     ⎝ RD RL ⎠ RL
                    ⎛    R ⎞
From (1): v01 = v02 ⎜ 1 + L ⎟ + g m RLVgs 2
                    ⎝    RD ⎠
Substitute into (2):
                   ⎛     R ⎞⎛ 1       1 ⎞           ⎛ 1      1 ⎞         v02
− g mVgs1 = v02 ⎜1 + L ⎟ ⎜         +     ⎟ + g m RL ⎜     +    ⎟ Vgs 2 −
                   ⎝     RD ⎠ ⎝ RD RL ⎠             ⎝ RD RL ⎠            RL
                          ⎛     R ⎞⎛ 1 ⎞                  ⎛ 1    R        1 ⎞
− g m ⋅ ( v1 − v2 ) + g m ⎜ 1 + L ⎟ ⎜ ⎟ ( v1 − v2 ) = v02 ⎜    + L +
                                                                   2         ⎟
                          ⎝ RD ⎠ ⎝ 2 ⎠                    ⎝ RD RD RD ⎠
                                                 1
                                                   ⋅ g m RL
1 ⎛ RL ⎞              v02 ⎛ RL ⎞          v02
 gm ⎜  ⎟ ( v1 − v2 ) = ⎜ 2 + ⎟ ⇒ Ad 2 =        = 2
2 ⎝ RD ⎠              RD ⎝  RD ⎠        v1 − v2 ⎛      RL ⎞
                                                ⎜2+        ⎟
                                                ⎝      RD ⎠
                               1
                             − ⋅ g m RL
                       v01
From symmetry Ad 1 =        = 2
                     v1 − v2 ⎛    RL ⎞
                             ⎜2+      ⎟
                             ⎝    RD ⎠
              v02 − v01     g m RL
Then Av =               =
               v1 − v2    ⎛     RL ⎞
                          ⎜2+      ⎟
                          ⎝     RD ⎠

11.47
v1 − v2 = Vgs1 − Vgs 2 and g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2
Then v1 − v2 = −2Vgs 2
                   1
Or Vgs 2 = −         ( v1 − v2 )
                   2
                                      gm
v0 = − g mVgs 2 ( RD RL ) =              ( RD RL ) ( v1 − v2 )
                                       2
               gm
Or Ad =
                2
                  ( RD RL )

11.48
                                                  Kn IQ
From Equation (11.64(a)), Ad =                             ⋅ RD
                                                       2
                        2
We need Ad =               = 10
                       0.2
                    K n ( 0.5 )
Then 10 =             ⋅ RD or K n ⋅ RD = 20
                2
If we set RD = 20 k Ω, then K n = 1 mA / V 2
For this case VD = 10 − ( 0.25 )( 20 ) = 5 V
         0.25
VGS =          + 1 = 1.5 V
            1
VDS ( sat ) = VGS − VTN = 1.5 − 1 = 0.5 V
Then vcm ( max ) = VD − VDS ( sat ) + VGS
                        = 5 − 0.5 + 1.5
Or vcm ( max ) = 6 V

11.49
Vd 1 = − g mVgs1 RD = − g m RD (V1 − Vs )
Vd 2 = − g mVgs 2 RD = − g m RD (V2 − Vs )
Now Vo = Vd 2 − Vd 1 = − g m RD (V2 − Vs ) − ( − g m RD (V1 − Vs ) )
Vo = g m RD (V1 − V2 )
Define V1 − V2 ≡ Vd
             V
Then Ad = o = g m RD and Acm = 0
             Vd

11.49
 Ad = g m ( r02 r04 )
g m = 2 kn I DQ          =2        ( 0.12 )( 0.075 )
                  = 0.1897 mA/V
         1            1
r02 =        =                   = 889 kΩ
      λn I DQ ( 0.015 )( 0.075 )
           1                   1
r04 =              =                     = 667 kΩ
        λ p I DQ       ( 0.02 )( 0.075 )
Ad = ( 0.1897 ) ( 889 667 ) ⇒ Ad = 72.3

11.50
(a)
⎛ K′ ⎞⎛W      ⎞ ⎛ 0.080 ⎞
                                       ⎟ (10 ) = 0.40 mA / V
                                                             2
K n1 = K n 2 = ⎜ n ⎟ ⎜       ⎟=⎜
               ⎝ 2 ⎠⎝ L      ⎠ ⎝ 2 ⎠
                   ID         0.1
VGS1 = VGS 2 =        + VTN =     + 1 = 1.5 V
                   Kn         0.4
VDS1 ( sat ) = 1.5 − 1 = 0.5 V
For vCM = +3 V ⇒ VD1 = VD 2 = vCM − VGS 1 + VDS 1 ( sat )
= 3 − 1.5 + 0.5 ⇒ VD1 = VD 2 = 2 V
       10 − 2
RD =          ⇒ RD = 80 k Ω
        0.1
(b)
     1
Ad =   g m RD and g m = 2 ( 0.4 )( 0.1) = 0.4 mA / V
     2
            1
Then Ad = ( 0.4 )( 80 ) = 16
            2
                                         16
C M R RdB = 45 ⇒ C M R R = 177.8 =
                                         Acm
So Acm = 0.090
            g m RD
 Acm =
         1 + 2 g m Ro
            ( 0.4 )(80 )
0.090 =                      ⇒ Ro = 443 k Ω
          1 + 2 ( 0.4 ) Ro
If we assume λ = 0.01 V −1 for the current source transistor, then
       1          1
 ro =      =               = 500 k Ω
      λ I Q ( 0.01)( 0.2 )
So the CMRR specification can be met by a 2-transistor current source.
    ⎛W ⎞ ⎛W ⎞
Let ⎜ ⎟ = ⎜ ⎟ = 1
    ⎝ L ⎠3 ⎝ L ⎠ 4
                     ⎛ 0.080 ⎞                                 IQ             0.2
                             ⎟ (1) = 0.040 mA / V and VGS 3 =
                                                 2
Then K n 3 = K n 4 = ⎜                                             + VTN =         + 1 = 3.24 V
                     ⎝   2 ⎠                                  K n3            0.04
For vCM = −3 V , VD 3 = −3 − VGS1 = −3 − 1.5 = −4.5 V ⇒ VDS 3 ( min ) = −4.5 − ( −10 ) = 5.5 V > VDS 3 ( sat )

So design is OK.
                         ⎛W ⎞
On reference side: For ⎜ ⎟ ≥ 1, VGS ( max ) = 3.24 V
                         ⎝L⎠
20 − VGS 3 = 20 − 3.24 = 16.76 V
       16.67
Then         = 5.17 ⇒ We need six transistors in series.
        3.24
20 − 3.24
VGS =              = 2.793 V
             6
          ⎛ K′ ⎞⎛W ⎞
        = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                                 2
I REF
          ⎝ 2 ⎠⎝ L ⎠
      ⎛ 0.080 ⎞⎛ W ⎞              ⎛W ⎞
              ⎟⎜ ⎟ ( 2.793 − 1) ⇒ ⎜ ⎟ = 1.56 for each of the 6 transistors.
                               2
0.2 = ⎜
      ⎝ 2 ⎠⎝ L ⎠                  ⎝L⎠

11.51




        1
Ad =      g m RD
        2
gm = 2 Kn I D = 2      ( 0.25 )( 0.25) = 0.50 mA / V
     1
Ad =   ( 0.50 )( 3) = 0.75
     2
From Problem 11.26
5 (1 + δ )
V1 = VA =                       , V2 = VB = 2.5 V and V1 − V2 = 1.25δ
                   2+δ
Then
Vo 2 = Ad ⋅ (V1 − V2 ) = ( 0.75 )(1.25δ ) = 0.9375δ
So for −0.01 ≤ δ ≤ 0.01
−9.375 ≤ Vo 2 ≤ 9.375 mV

11.52
From previous results
       v −v
 Ad 1 = o 2 o1 = g m1 R1 = 2 K n1 I Q1 ⋅ R1 = 20
        v1 − v2
                      vo3    1           1
and Ad 2 =                  = g m 3 R2 =   2 K n3 I Q 2 ⋅ R2 = 30
                  vo 2 − vo1 2           2
       I Q1 R1                          I Q 2 R2
Set              = 5 V and                          = 2.5 V
         2                                  2
Let I Q1 = I Q 2 = 0.1 mA
Then R1 = 100 k Ω, R2 = 50 k Ω
                                                               2
       ⎛ 0.06 ⎞ ⎛ W ⎞        ⎛ 20 ⎞    ⎛W ⎞ ⎛W ⎞
Then 2 ⎜      ⎟ ⎜ ⎟ ( 0.1) = ⎜     ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 6.67
       ⎝ 2 ⎠ ⎝ L ⎠1          ⎝ 100 ⎠   ⎝ L ⎠1 ⎝ L ⎠ 2
                                                                     2
      ⎛ 0.060 ⎞ ⎛ W ⎞        ⎛ 2 ( 30 ) ⎞   ⎛W ⎞ ⎛W ⎞
and 2 ⎜       ⎟ ⎜ ⎟ ( 0.1) = ⎜          ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 240
      ⎝ 2 ⎠ ⎝ L ⎠3           ⎝ 50 ⎠         ⎝ L ⎠3 ⎝ L ⎠ 4

11.53
                                                    2
                               ⎛ v ⎞
a.               iD1   = I DSS ⎜ 1 − GS 1 ⎟
                               ⎝     VP ⎠
                                    2
             ⎛ v ⎞
iD 2 = I DSS ⎜ 1 − GS 2 ⎟
             ⎝     VP ⎠
                                ⎛ v ⎞               ⎛ v ⎞
     iD1 − iD 2         = I DSS ⎜1 − GS 1 ⎟ − I DSS ⎜ 1 − GS 2 ⎟
                                ⎝    VP ⎠           ⎝     VP ⎠
                                I DSS
                        =                ( vGS 2 − vGS1 )
                             VP
                                    I DSS                  I DSS
                        =−                   ⋅ vd =                 ⋅ vd
                                    VP                   ( −VP )
iD1 + iD 2 = I Q ⇒ iD 2 = I Q − iD1

(                           )
                                2           I DSS          2
      iD1 − I Q − iD1               =                   ⋅ vd
                                         ( −VP )
                                                    2



iD1 − 2 iD1 ( I Q − iD1 ) + ( I Q − iD1 ) =
                                                                   I DSS          2
                                                                               ⋅ vd
                                                               ( −VP )
                                                                           2



                                          1⎡                  ⎤
Then iD1 ( I Q − iD1 ) =
                                                    I
                                           ⎢ I Q − DSS 2 ⋅ vd ⎥
                                                            2

                                          2⎢
                                           ⎣      ( −VP ) ⎦   ⎥
Square both sides
2
             1⎡        I         ⎤
i − iD1 I Q + ⎢ I Q − DSS 2 ⋅ vd ⎥ = 0
 2
 D1
                               2

             4⎢
              ⎣      ( −VP ) ⎥   ⎦
                                                            2
                    ⎛ 1⎞⎡        I         ⎤
        I Q ± I − 4 ⎜ ⎟ ⎢ I Q − DSS 2 ⋅ vd ⎥
                   2                     2

                               ( −VP ) ⎥
                   Q
                    ⎝ 4⎠⎢
                        ⎣                  ⎦
iD1 =
                                2
                 ⎡                              2
                                                  ⎤
           1 2 ⎢ 2 2 I Q I DSS vd ⎛ I DSS vd ⎞ ⎥
                                 2         2
        IQ
iD1 =    ±   IQ − IQ −             +⎜         ⎟
                 ⎢     ( −VP ) ⎜ ( −VP ) ⎟ ⎥
                               2            2
      2 2                           ⎝         ⎠ ⎦
                 ⎣
Use + sign
                                                                2
        IQ 1 2 I Q I DSS 2                ⎛ I          ⎞
iD1   =  +              ⋅ vd            − ⎜ DSS 2 ⋅ vd ⎟
                                                     2

        2 2 ( −VP )2                      ⎜ ( −V )     ⎟
                                          ⎝     P      ⎠
                                                        2               2
        IQ       1 IQ         2 I DSS ⎛ I DSS          ⎞ ⎛v ⎞
iD1 =        +             vd        −⎜                ⎟ ⎜ d ⎟
        2        2 ( −VP )            ⎜ I              ⎟ V
                                IQ    ⎝ Q              ⎠ ⎝ P⎠
Or
                                                        2               2
iD1 1 ⎛ 1                ⎞      2 I DSS ⎛ I DSS        ⎞ ⎛ vd ⎞
   = +⎜                  ⎟ ⋅ vd        −⎜              ⎟ ⎜ ⎟
I Q 2 ⎝ −2VP                            ⎜ I            ⎟ V
                         ⎠        IQ    ⎝ Q            ⎠ ⎝ P⎠
We had
iD 2 = I Q − iD1
Then
                                                        2               2
iD 2 1 ⎛ 1               ⎞      2 I DSS ⎛ I DSS        ⎞ ⎛ vd ⎞
     = −⎜                ⎟ ⋅ vd        −⎜              ⎟ ⎜ ⎟
 I Q 2 ⎝ −2VP                           ⎜ I            ⎟ V
                         ⎠        IQ    ⎝ Q            ⎠ ⎝ P⎠
b.
If iD1 = I Q , then
                                                   2                2
  1 ⎛ 1                ⎞      2 I DSS ⎛ I DSS     ⎞ ⎛ vd ⎞
1= +⎜                  ⎟ ⋅ vd        −⎜           ⎟ ⎜ ⎟
  2 ⎝ −2VP                            ⎜ I         ⎟ V
                       ⎠        IQ    ⎝ Q         ⎠ ⎝ P⎠
                                    2         2
          2 I DSS ⎛ I DSS        ⎞ ⎛ vd ⎞
VP = vd          −⎜              ⎟ ⎜ ⎟
                  ⎜ I            ⎟ V
            IQ    ⎝ Q            ⎠ ⎝ P⎠
Square both sides
⎡ 2I    ⎛I                      ⎞ ⎛ vd ⎞ ⎤
                                               2      2

          = v ⎢ DSS − ⎜ DSS                   ⎟ ⎜ ⎟ ⎥
     2         2
VP
              ⎢ IQ    ⎜ I                     ⎟ V
                                              ⎠ ⎝ P⎠ ⎥
               d

              ⎣       ⎝ Q                               ⎦
           2           2
⎛ I DSS   ⎞ ⎛ 1 ⎞ 2 2 2 I DSS 2
          ⎟ ⎜ ⎟ ( vd ) −
                                                                2
⎜                            ⋅ vd + VP                              =0
⎜ I       ⎟ V
⎝ Q       ⎠ ⎝ P⎠         IQ
                                          2                 2        2
          2 I DSS   ⎛ 2I                 ⎞     ⎛I       ⎞ ⎛ 1 ⎞
                                                        ⎟ ⎜ ⎟ (VP )
                                                                    2
                  ± ⎜ DSS                ⎟ − 4 ⎜ DSS
                    ⎜ I                  ⎟     ⎜ I      ⎟ V
 2
            IQ      ⎝ Q                  ⎠     ⎝ Q      ⎠ ⎝ P⎠
vd =                                             2          2
                                   ⎛ 2I         ⎞ ⎛ 1 ⎞
                                 2 ⎜ DSS        ⎟ ⎜ ⎟
                                   ⎜ IQ         ⎟ ⎝ VP ⎠
                                   ⎝            ⎠
          2 ⎛ IQ ⎞
vd = (VP ) ⎜
 2
                    ⎟
            ⎝ I DSS ⎠
                                  1/ 2
             ⎛ IQ ⎞
Or vd = VP ⎜         ⎟
             ⎝ I DSS ⎠
c.       For vd small,
       IQ 1 IQ              2 I DSS
 iD1 ≈   + ⋅           ⋅ vd
        2 2 ( −VP )           IQ

          diD1                  1 IQ        2 I DSS
gf =                        =    ⋅        ⋅
                                2 ( −VP )
                   vd → 0
          d vd                                IQ

                   ⎛ 1 ⎞ I Q I DSS
Or ⇒ g f ( max ) = ⎜     ⎟
                   ⎝ −VP ⎠   2

11.53
 Ad = g m ( ro 2 Ro )
Want Ad = 400
From Example 11.15, ro 2 = 1 M Ω
Assuming that g m = 0.283 mA / V for the PMOS from Example 11.15, then Ro = 285 M Ω.
                                                      ⎛ k ′ ⎞⎛ W ⎞
So 400 = g m (1000 285000 ) ⇒ g m = 0.4014 mA / V = 2 ⎜ n ⎟ ⎜ ⎟ I DQ
                                                      ⎝ 2 ⎠ ⎝ L ⎠1
          ⎛ 0.080 ⎞ ⎛ W ⎞        ⎛W ⎞ ⎛W ⎞
0.04028 = ⎜       ⎟ ⎜ ⎟ ( 0.1) ⇒ ⎜ ⎟ = ⎜ ⎟ = 10.1
          ⎝ 2 ⎠ ⎝ L ⎠1           ⎝ L ⎠1 ⎝ L ⎠ 2

11.54
a.
I Q = I D1 + I D 2 ⇒ I Q = 1 mA
v0 = 7 = 10 − ( 0.5 ) RD ⇒ RD = 6 kΩ
b.
              ⎛ 1 ⎞ I Q ⋅ I DSS
g f ( max ) = ⎜     ⎟
              ⎝ −VP ⎠    2

               ⎛ 1 ⎞ (1)( 2 )
 g f ( max ) = ⎜ ⎟            ⇒ g f ( max ) = 0.25 mA/V
               ⎝ 4⎠     2
c.
        g R
 Ad = m D = g f ( max ) ⋅ RD
          2
 Ad = ( 0.25 )( 6 ) ⇒ Ad = 1.5
11.55
a.
       −VGS − ( −5 )
                                                     2
                                        ⎛ V ⎞
IS =                      = ( 2 ) I DSS ⎜ 1 − GS ⎟
             RS                         ⎝    VP ⎠
                                             2
                             ⎛     V ⎞
5 − VGS = ( 2 )( 0.8 )( 20 ) ⎜ 1 − GS ⎟
                             ⎜ ( −2 ) ⎟
                             ⎝         ⎠
                  ⎛              1 2 ⎞
5 − VGS = ( 2 )16 ⎜1 + VGS + VGS ⎟
                  ⎝              4   ⎠
   2
8VGS + 33VGS + 27 = 0
         −33 ± 1089 − 4 ( 8 )( 27 )
VGS =
                      2 (8)
      = −1.125 V
         5 − ( −1.125 )
  IS =
             20
      = 0.306 mA
 I D1 = I D 2 = 0.153 mA
 vo 2 = 1.17 V
(b)

11.56
Equivalent circuit and analysis is identical to that in problem 11.36.
        1
          ⋅ g m RL
 Ad 2 = 2
       ⎛      RL ⎞
       ⎜2+        ⎟
       ⎝      RD ⎠
         1
       − ⋅ g m RL
 Ad 1 = 2
       ⎛    RL ⎞
       ⎜2+      ⎟
       ⎝    RD ⎠
         v02 − v01     g m RL
  Av =             =
            vd       ⎛     RL ⎞
                     ⎜2+      ⎟
                     ⎝     RD ⎠

11.57
(a)
 Ad = g m ( ro 2 ro 4 )
         0.1
gm =           = 3.846 mA/V
       0.026
       120
ro 2 =      = 1200 K
       0.1
       80
ro 4 =     = 800 K
       0.1
Ad = ( 3.846 ) (1200 800 )
Ad = 1846
(b)
For Ad = 923 = ( 3.846 ) (1200 800 RL )
                                  480 RL
      240 = 480 RL =                      ⇒ RL = 480 K
                                 480 + RL

11.58
(a)
                               ⎛       2⎞
 I Q = 250 μ A I REF = I Q ⎜ 1 + ⎟
                               ⎝ β⎠
                                 ⎛       2 ⎞
                           = 250 ⎜1 +       ⎟ = 252.8 μ A
                                 ⎝ 180 ⎠
       5 − ( 0.7 ) − ( −5 )
 R1 =                       ⇒ R1 = 36.8 K
            0.2528
(b)
                                          0.125
 Ad = g m ( ro 2 ro 4 )           gm =           = 4.808 mA/V
                                          0.026
                                          150
                                  ro 2 =        = 1200 K
                                         0.125
                                          100
 Ad = ( 4.808 ) (1200 800 ) ro 4 =              = 800 K
                                         0.125
 Ad = 2308
(c)
                     2 (180 )( 0.026 )
Rid = 2rπ =                              ⇒ Rid = 74.9 K
                          0.125
 Ro = ro 2 ro 4 = 1200 800 = 480 K = Ro
(d)
 vcm ( max ) = 5 − 0.7 = 4.3 V
 vcm ( min ) = 0.7 + 0.7 − 5 = −3.6 V

11.59
a.
                       ⎛ IQ ⎞ ⎛ 1 ⎞
I 0 = I B3 + I B 4 ≈ 2 ⎜ ⎟ ⎜ ⎟
                       ⎝ 2 ⎠⎝ β ⎠
      I Q 0.2
I0 =       =        ⇒ I0 = 2 μ A
       β 100
b.
              V       100
 r02 = r04 = A =            = 1000 kΩ
              I CQ 0.1
        I CQ          0.1
gm =             =         = 3.846 mA/V
        VT           0.026
Ad = g m ( r02 r04 ) = ( 3.846 ) (1000 1000 ) ⇒ Ad = 1923
c.
             (
 Ad = g m r02 r04 RL         )
Ad = ( 3.846 ) (1000 1000 250 ) ⇒ Ad = 641

11.60
a.
Ad = g m ( r02 r04 RL )
         I CQ       IQ
gm =            =
         VT         2VT
     V      125
r02 = A 2 =
     I CQ I CQ
         VA 4 80
r04 =        =
         I CQ I CQ
If I Q = 2 mA, then g m = 38.46 mA/V
r02 = 125 kΩ, r04 = 80 kΩ
So Ad = 38.46 ⎡125 80 200 ⎤
               ⎣             ⎦
Or Ad = 1508
For each gain of 1000. lower the current level
For I Q = 0.60 mA, I CQ = 0.30 mA
        0.3
gm =          = 11.54 mA/V
       0.026
      125
r02 =      = 417 kΩ
      0.3
      80
r04 =     = 267 kΩ
      0.3
Ad = 11.54 ⎡ 417 267 200 ⎤ = 1036
            ⎣             ⎦
So I Q = 0.60 mA is adequate
b.
For V + = 10 V, VBE = VEB = 0.6 V
For VCB = 0, vcm ( max ) = V + − 2VEB = 10 − 2 ( 0.6 )
Or vcm ( max ) = 8.8 V

11.61
a.            From symmetry.
                                      0.1
VGS 3 = VGS 4 = VDS 3 = VDS 4 =           +1
                                      0.1
Or VDS 3 = VDS 4 = 2 V
                    0.1
VSG1 = VSG 2 =          +1 = 2 V
                    0.1
VSD1   = VSD 2 = VSG1 − (VDS 3 − 10 )
       = 2 − ( 2 − 10 )
Or VSD1 = VSD 2 = 10 V
b.
           1                  1
r0 n =              =                 ⇒ 1 MΩ
         λn I DQ        ( 0.01)( 0.1)
            1                1
r0 p =              =                ⇒ 0.667 MΩ
         λP I DQ ( 0.015 )( 0.1)
g m = 2 K p (VSG + VTP )
    = 2 ( 0.1)( 2 − 1) = 0.2 mA / V
Ad = g m ( ron rop ) = ( 0.2 ) (1000 667 ) ⇒ Ad   = 80
(c)
IQ
I D 2 = I D1 =            = 0.1 mA
                     2
            1            1
 ro 4 =           =              = 1000 k Ω
          λn I D 4 ( 0.01)( 0.1)
             1                  1
 ro 2 =              =                     = 667 k Ω
          λP I D 2        ( 0.015)( 0.1)
 Ro = ro 2 ro 4 = 667 1000 = 400 k Ω

11.62
 Ad = g m ( ro 4 ro 2 )

           ⎛ 0.08 ⎞
gm = 2 ⎜           ⎟ ( 2.5 )( 0.05 )
           ⎝ 2 ⎠
     = 0.1414 mA/V
              1
ro 4 =                   = 1000 K
       ( 0.02 )( 0.05 )
                 1
ro 2 =                     = 1333 K
          ( 0.015)( 0.05 )
Ad = ( 0.1414 ) (1000 1333)
Ad = 80.8

11.63
 R04 = r04 ⎡1 + g m 4 ( R rπ 4 ) ⎤
           ⎣                     ⎦
        80
  r04 =     = 800 K
        0.1
         0.1
gm4 =          = 3.846
        0.026
        (100 )( 0.026 )
 rπ 4 =
              0.1
      = 26 K
R rπ 4 = 1 26 = 0.963 K
Assume β = 100
           (100 )( 0.026 )
 rπ 3 =                         = 26 kΩ
                 0.1
        0.1
g m3 =        = 3.846 mA/V
       0.026
 R04 = 800 ⎡1 + ( 3.846 )( 0.963) ⎤ ⇒ 3.763 MΩ
           ⎣                      ⎦
⇒ R0 = 3.763MΩ
 Then
 Av = − g m ( r02 R0 )
      120
 r02 =      = 1200 kΩ
      0.1
       0.1
 gm =         = 3.846 mA/V
      0.026
 Av = − ( 3.846 ) ⎡1200 3763⎤ ⇒ Av = −3499
                  ⎣         ⎦
b.
For
80
 R = 0, r04 =              = 800 kΩ
                     0.1
Av = − g m ( r02     r04 )
      = − ( 3.846 ) ⎡1200 800 ⎤ ⇒ Av = −1846
                    ⎣         ⎦
(c)        For part (a), Ro = ( 3.763 1.2 ) = 0.910 M Ω
For part (b), Ro = (1.2 0.8 ) = 0.48 M Ω

11.64
          IE5  I +I     I +I
I B5 =        = B3 B4 = C 3 C 4
         1+ β   1+ β   β (1 + β )
Now I C 3 + I C 4 ≈ I Q
              IQ
So I B 5 ≈
           β (1 + β )
          IE6     I Q1
I B6 =        =
         1 + β β (1 + β )
For balance, we want I B 6 = I B 5
So that I Q1 = I Q

11.65
Resistance looking into drain of M4.




Vsg 4 ≅ I X R1
                     VX − Vsg 4
I X ± g m 4Vsg 4 =
                         r04
    ⎡              R ⎤ V
I X ⎢1 + g m 4 R1 + 1 ⎥ = X
    ⎣              r04 ⎦ r04
               ⎡           R ⎤
Or R0 = r04 ⎢1 + g m 4 R1 + 1 ⎥
               ⎣           r04 ⎦
a.
Ad = g m 2 ( ro 2 Ro )
g m 2 = 2 K n I DQ = 2       ( 0.080 )( 0.1)
                  = 0.179 mA / V
           1          1
 ro 2 =        =                = 667 k Ω
        λn I DQ ( 0.015 )( 0.1)
g m 4 = 2 K P I DQ = 2       ( 0.080 )( 0.1)
                         = 0.179 mA / V
             1               1
 ro 4 =              =                = 500 k Ω
          λ p I DQ     ( 0.02 )( 0.1)
           ⎡                   1 ⎤
 R0 = 500 ⎢1 + ( 0.179 )(1) +       = 590.5 kΩ
           ⎣                  500 ⎥
                                  ⎦
 Ad = ( 0.179 ) ⎡667 590.5⎤ ⇒ Ad = 56.06
                ⎣           ⎦
b.
When R1 = 0, R0 = r04 = 500 kΩ
 Ad = ( 0.179 ) ⎡667 500 ⎤ ⇒ Ad = 51.15
                ⎣        ⎦
(c)         For part (a), Ro = ro 2 Ro = 667 590.5 ⇒ Ro = 313 k Ω
For part (b), Ro = ro 2 ro 4 = 667 500 ⇒ Ro = 286 kΩ

11.66
Let β = 100, VA = 100 V
VA 100
ro 2 =       =    = 1000 k Ω
         I CQ 0.1
Ro 4 = ro 4 [1 + g m RE ] where RE = rπ RE
                      ′          ′
Now
         (100 )( 0.026 )
rπ =                = 26 k Ω
          0.1
      0.1
gm =         = 3.846 mA / V
     0.026
 ′
RE = 26 1 = 0.963 k Ω
Then Ro 4 = 1000 ⎡1 + ( 3.846 )( 0.963) ⎤ = 4704 k Ω
                  ⎣                     ⎦
Ad = g m ( ro 2 Ro 4 ) = 3.846 (1000 4704 ) ⇒ Ad = 3172

11.67
(a) For Q2, Q4




                    Vx − Vπ 4                          V
(1)          Ix =             + g m 2Vπ 2 + g m 4Vπ 4 + x
                       ro 2                            ro 4
                            Vx − Vπ 4    V
(2)           g m 2Vπ 2 +             = π4
                               ro 2    rπ 4 rπ 2
(3)          Vπ 4 = −Vπ 2
              Vx          ⎡ 1          1         ⎤
From (2)           = Vπ 4 ⎢          +     + gm2 ⎥
              ro 2        ⎢
                          ⎣ rπ 4 rπ 2 ro 2       ⎥
                                                 ⎦
Now
       ⎛ β      ⎞ ⎛ IQ
                     ⎞ ⎛ 120 ⎞
IC 4 = ⎜        ⎟⎜   ⎟=⎜      ⎟ ( 0.5 ) = 0.496 mA
       ⎝ 1+ β   ⎠⎝ 2 ⎠ ⎝ 121 ⎠
         ⎛ IQ ⎞ ⎛ 1 ⎞ ⎛ β ⎞              ⎛ 120 ⎞
IC 2   = ⎜ ⎟⎜        ⎟⎜      ⎟ = ( 0.5 ) ⎜        ⎟ ⇒ I C 2 = 0.0041 mA
                                         ⎜ (121)2 ⎟
         ⎝ 2 ⎠⎝ 1+ β ⎠⎝ 1+ β ⎠           ⎝        ⎠
So
         (120 )( 0.026 )
rπ 2 =                  = 761 k Ω
           0.0041
        0.0041
gm2 =             = 0.158 mA/V
         0.026
        100
ro 2 =          ⇒ 24.4 M Ω
       0.0041
       (120 ) ( 0.026 )
rπ 4 =                  = 6.29 k Ω
           0.496
        0.496
gm4 =            = 19.08 mA / V
        0.026
        100
ro 4 =         = 202 k Ω
       0.496
Now
Vx          ⎡     1      1          ⎤                            Vx
     = Vπ 4 ⎢         +      + 0.158⎥ ⇒ which yields Vπ 4 =
ro 2        ⎢ 6.29 761 24400
            ⎣                       ⎥
                                    ⎦                       ( 0.318) ro 2
From (1),
     V V           ⎛                 1 ⎞
I x = x + x + Vπ 4 ⎜ g m 4 − g m 2 − ⎟
     ro 2 ro 4     ⎝                ro 2 ⎠
    ⎡                 ⎛                   1 ⎞⎤
Ix ⎢ 1                ⎜ 19.08 − 0.158 −       ⎟
                 1                      24400 ⎠ ⎥
                    +⎝
                                                                     V
  =⎢          +                                 ⎥ which yields Ro 2 = x = 135 k Ω
Vx ⎢ 24400 202             ( 0.318)( 24400 ) ⎥                       Ix
    ⎢                                           ⎥
    ⎣                                           ⎦
           80
Now ro 6 =     = 160 k Ω
           0.5
Then Ro = Ro 2 ro 6 = 135 160 ⇒ Ro = 73.2 k Ω
(b)
                            Δi
Ad = g m Ro where g m =
       c            c

                           vd / 2
vd
Δi = g m1Vπ 1 + g m 3Vπ 3 and Vπ 1 + Vπ 3 =
                                              2
      ⎛V               ⎞
Also ⎜ π 1 + g m1Vπ 1 ⎟ rπ 3 = Vπ 3
      ⎝ rπ 1           ⎠
        ⎛1+ β ⎞
So Vπ 1 ⎜      ⎟ rπ 3 = Vπ 3
        ⎝ rπ 1 ⎠
        ⎛ 121 ⎞
Or Vπ 1 ⎜     ⎟ ( 6.29 ) = Vπ 3 ≅ Vπ 1
        ⎝ 761 ⎠
               v               v
Then 2Vπ 1 = d ⇒ Vπ 1 = d
                2              4
                                                  ⎛v ⎞         ⎛v ⎞
So Δi = ( g m1 + g m 3 ) Vπ 1 = ( 0.158 + 19.08 ) ⎜ d ⎟ = 9.62 ⎜ d ⎟
                                                  ⎝ 4⎠         ⎝ 2⎠
           Δi
So g m =
     c
                = 9.62 ⇒ Ad = ( 9.62 )( 73.2 ) ⇒ Ad = 704
         vd / 2
Now Rid = 2 Ri where Ri = rπ 1 + (1 + β ) rπ 3
Ri = 761 + (121)( 6.29 ) = 1522 k Ω
Then Rid = 3.044 M Ω



11.69
(a)
 Ad = 100 = g m ( ro 2 ro 4 )
Let I Q = 0.5 mA
         1           1
ro 2 =       =                 = 200 k Ω
       λn I D ( 0.02 )( 0.25 )
           1           1
ro 4 =         =                  = 160 k Ω
         λP I D ( 0.025 )( 0.25 )
Then 100 = g m ( 200 160 ) ⇒ g m = 1.125 mA / V

       ⎛ K′ ⎞⎛W        ⎞
gm = 2 ⎜ n ⎟ ⎜         ⎟ ID
       ⎝ 2 ⎠⎝ L        ⎠
          ⎛ 0.080 ⎞ ⎛ W ⎞          ⎛W ⎞
1.125 = 2 ⎜       ⎟ ⎜ ⎟ ( 0.25 ) ⇒ ⎜ ⎟ = 31.6
          ⎝ 2 ⎠⎝ L ⎠               ⎝ L ⎠n
    ⎛W ⎞                        ⎛W ⎞
Now ⎜ ⎟ somewhat arbitrary. Let ⎜ ⎟ = 31.6
    ⎝ L ⎠P                      ⎝ L ⎠P

11.70
Ad = g m ( ro 2 ro 4 )
P = ( I Q + I REF ) (V + − V − )
Let I Q = I REF
Then 0.5 = 2 I Q ( 3 − ( −3) ) ⇒ I Q = I REF = 0.0417 mA
           1             1
ro 2 =         =                    = 3205 k Ω
         λn I D ( 0.015 )( 0.0208 )
           1             1
ro 4 =         =                   = 2404 k Ω
         λP I D ( 0.02 )( 0.0208 )
Then
Ad = 80 = g m ( 3205 2404 ) ⇒ g m = 0.0582 mA/V

       ⎛ k ′ ⎞⎛ W ⎞
gm = 2 ⎜ n ⎟ ⎜ ⎟ I D
       ⎝ 2 ⎠ ⎝ L ⎠n
           ⎛ 0.080 ⎞⎛ W ⎞            ⎛W ⎞
0.0582 = 2 ⎜       ⎟⎜ ⎟ ( 0.0208 ) ⇒ ⎜ ⎟ = 1.02
           ⎝ 2 ⎠⎝ L ⎠ n              ⎝ L ⎠n

11.71
 Ad = g m ( ro 2 Ro )
     ≈ g m ro 2
         1
ro 2 =
       λn I D
               1
    =                   = 666.7 K
         ( 0.015)( 0.1)
Ad = 400 = g m ( 666.7 )
      g m = 0.60 mA/V
    ⎛ k′ ⎞⎛ W     ⎞
= 2 ⎜ n ⎟⎜        ⎟ ID
    ⎝ 2 ⎠⎝ L      ⎠
          ⎛ 0.08 ⎞ ⎛ W ⎞
0.60 = 2 ⎜       ⎟ ⎜ ⎟ ( 0.1)
          ⎝ 2 ⎠⎝ L ⎠
               ⎛W ⎞
0.090 = 0.004 ⎜ ⎟
               ⎝L⎠
⎛W ⎞ ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = 22.5
⎝ L ⎠1 ⎝ L ⎠ 2

11.72
Ad = g m ( Ro 4 Ro 6 )
where
Ro 4 = ro 4 + ro 2 [1 + g m 4 ro 4 ]
Ro 6 = ro 6 + ro8 [1 + g m 6 ro 6 ]
We have
                       1
ro 2 = ro 4 =                       = 1667 k Ω
              ( 0.015 )( 0.040 )
                        1
ro 6 = ro8 =                      = 1250 k Ω
                ( 0.02 )( 0.040 )
        ⎛ 0.060 ⎞
gm4 = 2 ⎜       ⎟ (15 )( 0.040 ) = 0.268 mA/V
        ⎝ 2 ⎠
        ⎛ 0.025 ⎞
gm6 = 2 ⎜       ⎟ (10 )( 0.040 ) = 0.141 mA/V
        ⎝ 2 ⎠
Then
Ro 4 = 1667 + 1667 ⎡1 + ( 0.268 )(1667 ) ⎤ ⇒ 748 M Ω
                   ⎣                     ⎦
Ro 6 = 1250 + 1250 ⎡1 + ( 0.141)(1250 ) ⎤ ⇒ 222.8 M Ω
                   ⎣                    ⎦
(a)
Ro = Ro 4 Ro 6 = 748 222.8 ⇒               Ro = 172 M Ω
(b)
 Ad = g m 4 ( Ro 4 Ro 6 ) = ( 0.268 )(172000 ) ⇒ Ad = 46096

11.73
 Ad = g m ( ro 2 ro 4 )
                 1
ro 2 = ro 4 =
                λ ID
                1
      =                    = 500 K
          ( 0.02 )( 0.1)
gm = 2 Kn I D = 2           ( 0.5)( 0.1)
    = 0.4472 mA/V
 Ad = ( 0.4472 ) ( 500 500 ) ⇒ Ad = 112
 Ro = ro 2 ro 4 = 500 500 ⇒ Ro = 250 K

11.74
(a)
I DP = K p (VSG + VTP )
                              2



   0.4
       + 1 = VSG 3 = 1.894 V
   0.5
I DN = K n (VGS − VTN )
                              2



  0.4
       + 1 = VGS 1 = 1.894 V
  0.5
VDS1 ( sat ) = VGS1 − VTN = 1.894 − 1 = 0.894 V
V + = VSG 3 + VDS1 ( sat ) − VGS 1 + vCM
V + = 1.894 + 0.894 − 1.894 + 4 ⇒ V + = 4.89 V = −V −
(b)
Ad = g m ( ro 2 ro 4 )
                    1                1
ro 2 = ro 4 =            =                   = 166.7 K
                λ ID       ( 0.015 )( 0.4 )
gm = 2 Kn I D           = 2 ( 0.5 )( 0.4 ) = 0.8944 mA/V
Ad = ( 0.8944 ) (166.7 166.7 ) ⇒ Ad = 74.5

11.75
(a)         For vcm = +2V ⇒ V + = 2.7 V
 If I Q is a 2-transistor current source,
V − = vcm − 0.7 − 0.7
V − = −3.4 V ⇒ V + = −V − = 3.4 V
(b)
                               100
 Ad = g m ( ro 2 ro 4 ) ro 2 =     = 1000 K
                               0.1
                               60
                        ro 4 =     = 600 K
                               0.1
                                0.1
                        gm =          = 3.846 mA/V
                               0.026
 Ad = ( 3.846 ) (1000 600 ) ⇒ Ad = 1442

11.76
(a)         V + = −V − = 3.4 V
(b)
        75
ro 2 =      = 1250 K
       0.06
        40
ro 4 =      = 666.7 K
       0.06
        0.06
gm =         = 2.308 mA/V
       0.026
Ad = ( 2.308 ) (1250 666.7 )
Ad = 1004

11.77
g m1 = 2 K n I Bias1 = 2            ( 0.2 )( 0.25 ) = 0.447 mA/V
         I CQ        0.75
gm2 =           =         = 28.85 mA/V
          VT        0.026
         β VT       (120 )( 0.026 )
rπ 2 =          =                        = 4.16 kΩ
         I CQ                0.75
i0 = g m1Vgs1 + g m 2Vπ 2
Vπ 2 = g m1Vgs1rπ 2 and vi = Vgs1 + Vπ 2
i0 = Vgs1 ( g m1 + g m 2 ⋅ g m1rπ 2 )
                                                  vi
vi = Vgs1 + g m1Vgs1rπ 2 and Vgs1 =
                                              1 + g m1rπ 2
            g m1 (1 + β )
i0 = vi ⋅
            1 + g m1rπ 2
        i0 g m1 (1 + β )     ( 0.447 )(121)
gm =
 C
           =             =
        vi   1 + g m1rπ 2 1 + ( 0.447 )( 4.16 )
⇒ g m = 18.9 mA/V
    C




11.78
                  1                1
r0 ( M 2 ) =             =                    = 500 kΩ
               λn I DQ       ( 0.01)( 0.2 )
               VA    80
 r0 ( Q2 ) =       =    = 400 kΩ
               I CQ 0.2
g m ( M 2 ) = 2 K n I DQ = 2           ( 0.2 )( 0.2 )
             = 0.4 mA/V
Ad = g m ( M 2 ) ⎡ r0 ( M 2 ) r0 ( Q2 ) ⎤
                 ⎣                      ⎦
     = 0.4 ⎡500 400 ⎤ ⇒ Ad = 88.9
           ⎣        ⎦
If the IQ current source is ideal, Acm = 0 and C M RRdB = ∞

11.79
a.




b.           Assume RL is capacitively coupled. Then
I CQ + I DQ = I Q
          VBE 0.7
I DQ =        =   = 0.0875 mA
           R1   8
 I CQ = 0.9 − 0.0875 = 0.8125 mA
 g m1 = 2 K P I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V
          I CQ        0.8125
gm2 =             =          ⇒ g m 2 = 31.25 mA/V
           VT         0.026
          β VT         (100 )( 0.026 )
 rπ 2 =           =                      ⇒ rπ 2 = 3.2 kΩ
           I CQ           0.8125
c.
V0 = ( − g m1Vsg − g m 2Vπ 2 ) RL
Vi + Vsg = V0 ⇒ Vsg = V0 − Vi
Vπ 2 = ( g m1Vsg ) ( R1 rπ 2 )
V0 = − ⎡ g m1Vsg + g m 2 g m1Vsg ( R1 rπ 2 ) ⎤ RL
       ⎣                                     ⎦
V0 = − (V0 − Vi ) ⎣ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL
                  ⎡                               ⎤
          ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL
                                          ⎤
        = ⎣
    V0
Av =
    Vi 1 + ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤ RL
            ⎣                               ⎦
We find
g m1 + g m 2 g m1 ( R1 rπ 2 ) = 0.592 + ( 31.25 )( 0.592 ) ( 8 3.2 )
                                  = 42.88
                    ( 42.88 )( RL )
Then Av =
                  1 + ( 42.88 )( RL )

11.80
a.          Assume RL is capacitively coupled.
         0.7
I DQ   =      = 0.0875 mA
          8
I CQ   = 1.2 − 0.0875 = 1.11 mA
g m1 = 2 K p I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V
          I CQ        1.11
gm2 =             =         ⇒ g m 2 = 42.7 mA/V
           VT         0.026
          β VT        (100 )( 0.026 )
rπ 2 =            =                     ⇒ rπ 2 = 2.34 kΩ
          I CQ             1.11
b.
Vsg = VX
I X = g m 2Vπ 2 + g m1Vsg
(g    V
     m1 sg   )(R1   rπ 2 ) = Vπ 2
I X = VX ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤
         ⎣                               ⎦
      VX                   1
R0 =      =
      IX     g m1 + g m 2 g m1 ( R1 rπ 2 )
                              1
      =                                           ⇒ R0 = 21.6 Ω
          0.592 + ( 0.592 )( 42.7 ) ( 8 2.34 )

11.81
(a)




                          Vo − ( −Vπ )
(1)           g m 2Vπ +                  =0
                               ro 2
                          Vo − ( −Vπ )                −Vπ −Vπ                      ⎛ 1 1⎞
(2)           g m 2Vπ +                  = g m1Vi +        +    or 0 = g m1Vi − Vπ ⎜ + ⎟
                               ro 2                    ro1   rπ                    ⎝ ro1 rπ ⎠
                   g m1Vi
Then Vπ =
                ⎛ 1 1⎞
                ⎜ + ⎟
                ⎝ ro1 rπ ⎠
From (1)
⎛         1 ⎞    Vo
⎜ g m 2 + ⎟ Vπ +      =0
⎝        ro 2 ⎠  ro 2
                                         ⎛       1 ⎞
                                         ⎜ gm2 + ⎟
           ⎛         1 ⎞
Vo = −ro 2 ⎜ g m 2 + ⎟ Vπ = −ro 2 g m1Vi ⎝
                                                ro 2 ⎠
           ⎝        ro 2 ⎠                ⎛ 1 1⎞
                                          ⎜ + ⎟
                                          ⎝ ro1 rπ ⎠
                    ⎛         1 ⎞
         − g m1ro 2 ⎜ g m 2 + ⎟
    V
Av = o =            ⎝        ro 2 ⎠
    Vi         ⎛ 1 1⎞
               ⎜ + ⎟
               ⎝ ro1 rπ ⎠
Now
g m1 = 2 K n I Q = 2           ( 0.25)( 0.025 ) = 0.158 mA / V
          IQ        0.025
gm2 =           =         = 0.9615 mA / V
          VT        0.026
          1                1
ro1 =           =                      = 2000 k Ω
         λ IQ       ( 0.02 )( 0.025)
         VA   50
ro 2 =      =      = 2000 k Ω
         I Q 0.025
         β VT       (100 )( 0.026 )
rπ =            =                     = 104 k Ω
         IQ             0.025
Then
                          ⎛           1 ⎞
      − ( 0.158 )( 2000 ) ⎜ 0.9615 +      ⎟
Av =                      ⎝          2000 ⎠
                                            ⇒ Av = −30039
                 ⎛ 1          1 ⎞
                 ⎜        +     ⎟
                 ⎝ 2000 104 ⎠
To find Ro; set Vi = 0 ⇒ g m1Vi = 0
Vx − ( −Vπ )
I x = g m 2Vπ +
                         ro 2
Vπ = − I x ( ro1 rπ )
Then
      ⎛         1 ⎞                     V
I x = ⎜ g m 2 + ⎟ ( − I x ) ( ro1 rπ ) + x
      ⎝        ro 2 ⎠                   ro 2
Combining terms,
        Vx        ⎡               ⎛         1 ⎞⎤
 Ro =      = ro 2 ⎢1 + ( ro1 rπ ) ⎜ g m 2 + ⎟ ⎥
        Ix        ⎣               ⎝        ro 2 ⎠ ⎦
             ⎡                 ⎛           1 ⎞⎤
      = 2000 ⎢1 + ( 2000 104 ) ⎜ 0.9615 +      ⎟ ⇒ Ro = 192.2 M Ω
             ⎣                 ⎝          2000 ⎠ ⎥
                                                 ⎦

(b)




                           Vo − ( −Vgs 3 )
(1)         g m 3Vgs 3 +                       =0
                                  ro3
                           Vo − ( −Vgs 3 )                     −Vgs 3 − ( −Vπ 2 )               ⎛         1 ⎞ Vgs 3
(2)         g m 3Vgs 3 +                       = g m 2Vπ 2 +                        or 0 = Vπ 2 ⎜ g m 2 + ⎟ −
                                  ro3                                 ro 2                      ⎝        ro 2 ⎠ ro 2
            Vπ 2               −Vgs 3 − ( −Vπ 2 )            ( −Vπ 2 )
(3)              + g m 2Vπ 2 +                    = g m1Vi +
            rπ 2                      ro 2                      ro1
                                Vgs 3
From (2), Vπ 2 =
                             ⎛         1 ⎞
                        ro 2 ⎜ g m 2 + ⎟
                             ⎝        ro 2 ⎠
Then
                 ⎛ 1             1    1⎞           Vgs 3
(3)         Vπ 2 ⎜      + gm2 +     + ⎟ = g m1Vi +
                 ⎝ rπ 2         ro 2 ro1 ⎠          ro 2
or
Vgs 3           ⎡ 1          1    1⎤           Vgs 3
                      ⎢ + gm2 +       + ⎥ = g m1Vi +
     ⎛          1 ⎞ r
ro 2 ⎜ g m 2 + ⎟ ⎣ π 2
                                  ro 2 ro1 ⎦          ro 2
     ⎝         ro 2 ⎠
              Vgs 3           ⎡ 1              1        1 ⎤              Vgs 3
        ⎛                1 ⎞⎣ ⎢104 + 0.9615 + 2000 + 2000 ⎥ = 0.9615Vi + 2000
2000 ⎜ 0.9615 +                                            ⎦
                            ⎟
        ⎝              2000 ⎠
Then Vgs 3 = 1.83 × 105 Vi
          ⎛         1 ⎞      −V               ⎛          1 ⎞
                                                             ⎟ (1.83 ×10 ) Vi
                                                                        5
From (1), ⎜ g m 3 + ⎟ Vgs 3 = o or Vo = −2000 ⎜ 0.158 +
          ⎝        ro 3 ⎠    ro3              ⎝         2000 ⎠
    V
Av = o = −5.80 × 107
    Vi




To find Ro
                                   Vx − ( −Vgs 3 )
(1)           I x = g m 3Vgs 3 +
                                          ro3
                             Vx − ( −Vgs 3 )                    −Vgs 3 − ( −Vπ 2 )
(2)           g m 3Vgs 3 +                      = g m 2Vπ 2 +
                                   ro 3                                ro 2
(3)       Vπ 2 = − I x ( ro1 rπ 2 )
                      ⎛         1 ⎞ V
From (1) I x = Vgs 3 ⎜ g m 3 + ⎟ + x
                      ⎝        ro 3 ⎠ ro3
            ⎛           1 ⎞ Vx
I x = Vgs 3 ⎜ 0.158 +        ⎟+
            ⎝         2000 ⎠ 2000
                   V
              Ix − x
So Vgs 3 =        2000
               0.1585
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s
Ch11s

More Related Content

What's hot

Ee ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-finalEe ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-finalVenugopala Rao P
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutionskhemraj298
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutionskhemraj298
 
Gate ee 2011 with solutions
Gate ee 2011 with solutionsGate ee 2011 with solutions
Gate ee 2011 with solutionskhemraj298
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutionskhemraj298
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfGabrielRodriguez171709
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutionskhemraj298
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutionskhemraj298
 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutionskhemraj298
 
Gate ee 2010 with solutions
Gate ee 2010 with solutionsGate ee 2010 with solutions
Gate ee 2010 with solutionskhemraj298
 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutionskhemraj298
 
structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.IMALONE1
 

What's hot (20)

Ch13s
Ch13sCh13s
Ch13s
 
Ee ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-finalEe ies'2014-objective paper i (set-a)-final
Ee ies'2014-objective paper i (set-a)-final
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
 
Ch15p
Ch15pCh15p
Ch15p
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
 
Gate ee 2011 with solutions
Gate ee 2011 with solutionsGate ee 2011 with solutions
Gate ee 2011 with solutions
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
Gate ee 2005 with solutions
Gate ee 2005 with solutionsGate ee 2005 with solutions
Gate ee 2005 with solutions
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutions
 
Gate ee 2010 with solutions
Gate ee 2010 with solutionsGate ee 2010 with solutions
Gate ee 2010 with solutions
 
Ch14p
Ch14pCh14p
Ch14p
 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.
 

Viewers also liked

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Bilal Sarwar
 
The Rich and The Rest
The Rich and The RestThe Rich and The Rest
The Rich and The RestTom Ferry
 
O3b Networks Company Info
O3b Networks Company InfoO3b Networks Company Info
O3b Networks Company Infococonutwireless
 
O3b Networks presentation
O3b Networks presentationO3b Networks presentation
O3b Networks presentationDmitry Tseitlin
 
Samsung UHD TV 2014 Communication Review
Samsung UHD TV 2014 Communication ReviewSamsung UHD TV 2014 Communication Review
Samsung UHD TV 2014 Communication ReviewDan Nguyen
 
Telecommunications: Wireless Networks
Telecommunications: Wireless NetworksTelecommunications: Wireless Networks
Telecommunications: Wireless NetworksNapier University
 
Next generation of satellite connectivity solutions for railway
Next generation of satellite connectivity solutions for railwayNext generation of satellite connectivity solutions for railway
Next generation of satellite connectivity solutions for railwaytechUK
 
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...Alpen-Adria-Universität
 
High-Dynamic Range (HDR) Demystified
High-Dynamic Range (HDR) DemystifiedHigh-Dynamic Range (HDR) Demystified
High-Dynamic Range (HDR) DemystifiedIntel® Software
 
Multi Channel Marketing Approach
Multi Channel Marketing Approach Multi Channel Marketing Approach
Multi Channel Marketing Approach Tom Ferry
 
MPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
MPEG-DASH: Overview, State-of-the-Art, and Future RoadmapMPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
MPEG-DASH: Overview, State-of-the-Art, and Future RoadmapAlpen-Adria-Universität
 

Viewers also liked (18)

Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch15s
Ch15sCh15s
Ch15s
 
Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
The Rich and The Rest
The Rich and The RestThe Rich and The Rest
The Rich and The Rest
 
HDR Workshop
HDR WorkshopHDR Workshop
HDR Workshop
 
O3b Networks Company Info
O3b Networks Company InfoO3b Networks Company Info
O3b Networks Company Info
 
O3b Networks presentation
O3b Networks presentationO3b Networks presentation
O3b Networks presentation
 
Channel Bonding
Channel BondingChannel Bonding
Channel Bonding
 
Samsung UHD TV 2014 Communication Review
Samsung UHD TV 2014 Communication ReviewSamsung UHD TV 2014 Communication Review
Samsung UHD TV 2014 Communication Review
 
iptv over ngn
iptv over ngniptv over ngn
iptv over ngn
 
Telecommunications: Wireless Networks
Telecommunications: Wireless NetworksTelecommunications: Wireless Networks
Telecommunications: Wireless Networks
 
Next generation of satellite connectivity solutions for railway
Next generation of satellite connectivity solutions for railwayNext generation of satellite connectivity solutions for railway
Next generation of satellite connectivity solutions for railway
 
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
 
High-Dynamic Range (HDR) Demystified
High-Dynamic Range (HDR) DemystifiedHigh-Dynamic Range (HDR) Demystified
High-Dynamic Range (HDR) Demystified
 
Multi Channel Marketing Approach
Multi Channel Marketing Approach Multi Channel Marketing Approach
Multi Channel Marketing Approach
 
MPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
MPEG-DASH: Overview, State-of-the-Art, and Future RoadmapMPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
MPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
 

Similar to Ch11s

130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfGollapalli Sreenivasulu
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copyKitTrnTun5
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edMobin Hossain
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
 
Formulario Trigonometria.pdf
Formulario Trigonometria.pdfFormulario Trigonometria.pdf
Formulario Trigonometria.pdfAntonio Guasco
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuitsMangi Lal
 
HA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational AmplifierHA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational AmplifierYong Heui Cho
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition명중 김
 

Similar to Ch11s (20)

Ch06p
Ch06pCh06p
Ch06p
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch02s
Ch02sCh02s
Ch02s
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Ch03s
Ch03sCh03s
Ch03s
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch07p
Ch07pCh07p
Ch07p
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th ed
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
Formulario Trigonometria.pdf
Formulario Trigonometria.pdfFormulario Trigonometria.pdf
Formulario Trigonometria.pdf
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuits
 
Ch02p
Ch02pCh02p
Ch02p
 
HA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational AmplifierHA17741 General Purpose Operational Amplifier
HA17741 General Purpose Operational Amplifier
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 

More from Bilal Sarwar (7)

Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch04p
Ch04pCh04p
Ch04p
 

Recently uploaded

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 

Ch11s

  • 1. Chapter 11 Problem Solutions 11.1 (a) −0.7 − ( −3) = 0.1 ⇒ RE = 23 K RE 3 − 1.5 = 0.05 ⇒ RC = 30 K RC (b) vCE 2 = 6 − iC 2 ( RC + 2 RE ) = 6 − iC 2 ( 76 ) (c) vcm ( max ) ⇒ vCB 2 = 0 ⇒ vCE 2 = 0.7 V So 0.7 = 6 − iC 2 ( 76 ) ⇒ iC 2 = 69.74 μ A ( v ( max ) − 0.7 ) − ( −3) = 2 CM ( 0.06974 ) ⇒ vCM ( max ) = 0.908 V 23 vCM ( min ) ⇒ VS = −3 V ⇒ vCM ( min ) = −2.3 V 11.2 Ad = 180, C M RRdB = 85 dB Ad 180 C M RR = 17, 783 = = ⇒ Acm = 0.01012 Acm Acm Assume the common-mode gain is negative. v0 = Ad vd + Acm vcm = 180vd − 0.01012vcm v0 = 180 ( 2sin ω t ) mV − ( 0.01012 )( 2sin ω t ) V v0 = 0.36sin ω t − 0.02024sin ω t Ideal Output: v0 = 0.360sin ω t ( V ) Actual Output: v0 = 0.340sin ω t ( V ) 11.3 a.
  • 2. 10 − 2 ( 0.7 ) I1 = ⇒ I1 = 1.01 mA 8.5 I1 1.01 IC 2 = = ⇒ I C 2 ≅ 1.01 mA 2 2 1+ 1+ β (1 + β ) (100 )(101) ⎛ 100 ⎞ ⎛ 1.01 ⎞ IC 4 = ⎜ ⎟⎜ ⎟ ⇒ I C 4 ≅ 0.50 mA ⎝ 101 ⎠ ⎝ 2 ⎠ VCE 2 = ( 0 − 0.7 ) − ( −5 ) ⇒ VCE 2 = 4.3 V VCE 4 = ⎡5 − ( 0.5 )( 2 ) ⎤ − ( −0.7 ) ⇒ VCE 4 = 4.7 V ⎣ ⎦ b. For VCE 4 = 2.5 V ⇒ VC 4 = −0.7 + 2.5 = 1.8 V 5 − 1.8 IC 4 = ⇒ I C 4 = 1.6 mA 2 ⎛ 1+ β ⎞ ⎛ 101 ⎞ IC 2 + ⎜ ⎟ ( 2IC 4 ) = ⎜ ⎟ ( 2 )(1.6 ) ⇒ I C 2 = 3.23 mA ⎝ β ⎠ ⎝ 100 ⎠ I1 ≈ I C 2 = 3.23 mA 10 − 2 ( 0.7 ) R1 = ⇒ R1 = 2.66 kΩ 3.23 11.4 a. Neglecting base currents 30 − 0.7 I1 = I 3 = 400 μ A ⇒ R1 = ⇒ R1 = 73.25 kΩ 0.4 VCE1 = 10 V ⇒ VC1 = 9.3 V 15 − 9.3 RC = ⇒ RC = 28.5 kΩ 0.2 b. (100 )( 0.026 ) rπ = = 13 kΩ 0.2 50 r0 ( Q3 ) = = 125 kΩ 0.4 We have β RC (100 )( 28.5) Ad = = ⇒ Ad = 62 2 ( rπ + RB ) 2 (13 + 10 ) ⎧ ⎫ ⎪ ⎪ β RC ⎪ 1 ⎪ Acm = − ⎨ ⎬ rπ + RB ⎪ 2r0 (1 + β ) ⎪ 1+ ⎪ ⎩ rπ + RB ⎪ ⎭ ⎧ ⎫ (100 )( 28.5 ) ⎪ ⎪ 1 ⎪ ⎪ =− ⎨ ⎬ ⇒ Acm = −0.113 13 + 10 ⎪ 2 (125 )(101) ⎪ 1+ ⎪ ⎩ ⎪ 13 + 10 ⎭ ⎛ 62 ⎞ C M RRdB = 20 log10 ⎜ ⎟ ⇒ C M RRdB = 54.8 dB ⎝ 0.113 ⎠ c.
  • 3. Rid = 2 ( rπ + RB ) = 2 (13 + 10 ) ⇒ Rid = 46 kΩ 1 Ricm = ⎡ rπ + RB + 2 (1 + β ) r0 ⎤ 2⎣ ⎦ 1 = ⎡13 + 10 + 2 (101)(125 ) ⎤ ⇒ Ricm = 12.6 MΩ 2⎣ ⎦ 11.5 IQ ( 0.5) (a) vCM ( max ) ⇒ VCB = 0 so that vCM ( max ) = 5 − ( RC ) = 5 − (8) 2 2 vCM ( max ) = 3 V (b) Vd ⎛ I CQ ⎞ Vd ⎛ 0.25 ⎞ ⎛ 0.018 ⎞ ΔI = g m ⋅ =⎜ ⎟⋅ =⎜ ⎟⎜ ⎟ = 0.08654 mA 2 ⎝ VT ⎠ 2 ⎝ 0.026 ⎠ ⎝ 2 ⎠ ΔVC 2 = ΔI ⋅ RC = ( 0.08654 ) ( 8 ) = 0.692 V (c) ⎛ 0.25 ⎞ ⎛ 0.010 ⎞ ΔI = ⎜ ⎟⎜ ⎟ = 0.04808 mA ⎝ 0.026 ⎠ ⎝ 2 ⎠ ΔVC 2 = ( 0.04808 )( 8 ) = 0.385 V 11.6 P = ( I1 + I C 4 ) (V + − V − ) I1 ≅ I C 4 so 1.2 = 2 I1 ( 6 ) ⇒ I1 = I C 4 = 0.1 mA 3 − 0.7 − ( −3) R1 = ⇒ R1 = 53 k Ω 0.1 3 −1 For vCM = +1V ⇒ VC1 = VC 2 = 1 V ⇒ RC = ⇒ RC = 40 k Ω 0.05 One-sided output 1 0.05 Ad = g m RC where g m = = 1.923 mA / V 2 0.026 Then 1 Ad = (1.923)( 40 ) ⇒ Ad = 38.5 2 11.7 a. IE 0 = 0.7 + ( 2 ) + I E (85) − 5 2 5 − 0.7 IE = ⇒ I E = 0.050 mA 85 + 1 ⎛ β ⎞ ⎛ I E ⎞ ⎛ 100 ⎞⎛ 0.050 ⎞ I C1 = I C 2 = ⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ 1 + β ⎠ ⎝ 2 ⎠ ⎝ 101 ⎠⎝ 2 ⎠ Or I C1 = I C 2 = 0.0248 mA VCE1 = VCE 2 = ⎡5 − I C1 (100 ) ⎤ − ( −0.7 ) ⎣ ⎦ So VCE1 = VCE 2 = 3.22 V b. vcm ( max ) for VCB = 0 and VC = 5 − I C1 (100 ) = 2.52 V So vcm ( max ) = 2.52 V vcm ( min ) for Q1 and Q2 at the edge of cutoff ⇒ vcm ( min ) = −4.3 V (c) Differential-mode half circuits
  • 4. vd ⎛V ⎞ − ′ = Vπ + ⎜ π + g mVπ ⎟ .RE 2 ⎝ rπ ⎠ ⎡ (1 + β ) ⎤ = Vπ ⎢1 + ′ RE ⎥ ⎣ rπ ⎦ Then − ( vd / 2 ) Vπ = ⎡ (1 + β ) ⎤ ⎢1 + ′ RE ⎥ ⎣ rπ ⎦ 1 β RC vo = − g mVπ RC ⇒ Ad = ⋅ 2 rπ + (1 + β ) RE ′ β VT (100 )( 0.026 ) ′ rπ = = = 105 k Ω RE = 2 k Ω I CQ 0.0248 Then 1 (100 )(100 ) Ad = ⋅ ⇒ Ad = 16.3 2 105 + (101)( 2 ) 11.8 a. For v1 = v2 = 0 and neglecting base currents −0.7 − ( −10 ) RE = ⇒ RE = 62 kΩ 0.15 b. v02 β RC Ad = = vd 2 ( rπ + RB ) β VT (100 )( 0.026 ) rπ = = = 34.7 kΩ I CQ 0.075 (100 )( 50 ) Ad = ⇒ Ad = 71.0 2 ( 34.7 + 0.5 ) ⎡ ⎤ ⎢ ⎥ β RC ⎢ 1 ⎥ Acm = − rπ + RB ⎢ 2 RE (1 + β ) ⎥ ⎢1 + ⎥ ⎢ ⎣ rπ + RB ⎥ ⎦ ⎡ ⎤ (100 )( 50 ) ⎢ 1 ⎥ =− ⎢ ⎥ ⇒ Acm = −0.398 34.7 + 0.5 ⎢ 2 ( 62 )(101) ⎥ ⎢1 + 34.7 + 0.5 ⎥ ⎣ ⎦ 71.0 C M RRdB = 20 log10 ⇒ C M RRdB = 45.0 dB 0.398 c. Rid = 2 ( rπ + RB ) Rid = 2 ( 34.7 + 0.5 ) ⇒ Rid = 70.4 kΩ Common-mode input resistance 1 Ricm = ⎡ rπ + RB + 2 (1 + β ) RE ⎤ 2⎣ ⎦ 1 = ⎡34.7 + 0.5 + 2 (101)( 62 ) ⎤ ⇒ Ricm = 6.28 MΩ 2⎣ ⎦ 11.9
  • 5. (a) v1 = v2 = 1 V ⇒ VE = 1.6 9 − 1.6 IE = ⇒ 18.97 μ A 390 IE = 9.49 μ A I C1 = I C 2 = 9.39 μ A 2 vC1 = vC 2 = ( 9.39 )( 0.51) − 9 = −4.21 V (b) 9.39 gm = ⇒ 0.361 mA/V 0.026 ΔI = g m d = ( 0.361× 10−3 ) ( 0.005 ) = 1.805 μ A V 2 ΔvC = (1.805 × 10−6 )( 510 × 103 ) = 0.921 V ⇒ vC 2 = −4.21 + 0.921 ⇒ −3.29 V vC1 = −4.21 − 0.921 ⇒ −5.13 V 11.10 (a) v1 = v2 = 0 I E1 = I E 2 ≅ 6 μ A β = 60 I C1 = I C 2 = 5.90 μ A vC1 = vC 2 = ( 5.90 )( 0.360 ) − 3 = −0.875 V VEC1 = VEC 2 = +0.6 − ( −0.875 ) = 1.475 V (b) (i) 5.90 gm = ⇒ 0.227 mA/V 0.026 Ad = g m RC = ( 0.227 )( 360 ) = 81.7 Acm = 0 (ii) g R ( 60 )( 0.026 ) Ad = m C = 40.8 rπ = 2 0.0059 = 264 K − ( 0.227 )( 360 ) Acm = = −0.0442 2 ( 61)( 4000 ) 1+ 264 11.11
  • 6. For v1 = v2 = 0.20 V I C1 = I C 2 = 0.1 mA vC1 = vC 2 = ( 0.1)( 30 ) − 10 = −7 V 0.1 gm = = 3.846 mA/V 0.026 v ΔI = g m d = ( 3.846 )( 0.008 ) ⇒ 30.77 μ A 2 ΔvC = ΔI ⋅ RC = ( 30.77 × 10−6 )( 30 × 103 ) = 0.923 V v2 ↑⇒ I C 2 ↓⇒ vC 2 ↓⇒ vC1 = −7 + 0.923 = −6.077 V vC 2 = −7 − 0.923 = −7.923 V 11.12 RC = 50 K For v1 = v2 = 0 −0.7 − ( −10 ) IE = 75 = 0.124 mA I C1 = I C 2 = 0.0615 mA 0.0615 gm = = 2.365 mA/V 0.026 (120 )( 0.026 ) rπ = = 50.7 K 0.0615 Differential Input v V v1 = d v2 = − d 2 2 Half-circuit. V ⎛ ΔR ⎞ ΔI = + g m d ⇒ ΔvC1 = −ΔI ⎜ RC + ⎟ 2 ⎝ 2 ⎠ ⎛ ΔR ⎞ ΔvC 2 = +ΔI ⎜ RC − ⎟ ⎝ 2 ⎠ ⎛ ΔR ⎞ ⎛ ΔR ⎞ vo = ΔvC1 − ΔvC 2 = −ΔI ⎜ RC + ⎟ − ΔI ⎜ RC − ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = −2ΔIRC ⎛ V ⎞ = −2 ⎜ g m d ⎟ RC ⎝ 2⎠ Ad = − g m RC = − ( 2.365 )( 50 ) = −118.25 Common-mode input.
  • 7. ⎛V ⎞ vcm = Vπ + ⎜ π + g mVπ ⎟ ( 2 RE ) ⎝ rπ ⎠ vcm Vπ = ⎛ β⎞ 1 + ⎜ 1 + ⎟ ( 2 RE ) ⎝ rπ ⎠ g m vcm β vcm ΔI = g mVπ = = ⎛1+ β ⎞ rπ + (1 + β )( 2 RE ) 1+ ⎜ ⎟ ( 2 RE ) ⎝ rπ ⎠ ⎛ ΔR ⎞ − β ⎜ RC + ⎟ ⋅ vcm ΔvC1 = −ΔIR1 = ⎝ 2 ⎠ rπ + (1 + β )( 2 RE ) ⎛ ΔR ⎞ − β ⎜ RC − ⎟ vcm ⎝ 2 ⎠ ΔvC 2 = −ΔIR2 = rπ + (1 + β )( 2 RE ) ⎛ ΔR ⎞ ⎛ ΔR ⎞ − β ⎜ RC + ⎟ vcm + β ⎜ RC − ⎟ vcm vo = ΔvC1 − ΔvC 2 = ⎝ 2 ⎠ ⎝ 2 ⎠ [ ] [ ] ⎛ ΔR ⎞ −2 β ⎜ ⎟ vcm = ⎝ 2 ⎠ rπ + (1 + β )( 2 RE ) − βΔR − (120 )( 0.5 ) Acm = = rπ + (1 + β )( 2 RE ) 50.7 + (121)( 2 )( 75 ) = −0.0032966 118.25 C M RR = = 35,870.5 0.0032966 C M R R ∫ = 91.1 dB dB 11.13 v1 = v2 = 0 −0.7 − ( −10 ) IE = 75 = 0.124 mA I C1 = I C 2 = 0.0615 mA 0.0615 gm = = 2.365 mA/V 0.026 Δg m = 0.01 gm g m1 = 2.377 mA/V g m 2 = 2.353 mA/V (120 )( 0.026 ) rπ = = 50.7 K 0.0615
  • 8. Vd ΔI = g m 2 V ΔvC1 = − g m1 d Rc 2 Vd ΔvC 2 = + gm2 Rc 2 Vd V vo = ΔvC1 − ΔvC 2 = − g m1 RC − g m 2 d RC 2 2 Vd =− RC ( g m1 + g m 2 ) 2 R −50 Ad = − C ( g m1 + g m 2 ) = ( 2.377 + 2.353) ⇒ Ad = −118.25 2 2 Common-Mode − g m1 RC vcm − g m 2 RC vcm ΔvC1 = ΔvC 2 = ⎛ 1+ β ⎞ ⎛ 1+ β ⎞ 1+ ⎜ ⎟ ( 2 RE ) 1+ ⎜ ⎟ ( 2 RE ) ⎝ rπ ⎠ ⎝ rπ ⎠ vo − ( g m1 − g m 2 ) RC − ( 2.377 − 2.353) ( 50 ) = Acm = = vcm ⎛ 1+ β ⎞ ⎛ 121 ⎞ 1+ ⎜ ⎟ ( 2 RE ) 1+ ⎜ ⎟ ( 2 )( 75 ) ⎝ rπ ⎠ ⎝ 50.7 ⎠ −1.2 = ⇒ Acm = −0.003343 358.99 C M R R ∫ = 91 dB dB 11.14 (a) v1 = v2 = 0 vE = +0.7 V 5 − 0.7 IE = = 4.3 mA 1 I C1 = I C 2 = 2.132 mA vC1 = vC 2 = ( 2.132 )(1) − 5 = −2.87 V (b) v1 = 0.5, v2 = 0 Q2 on Q1 off ⎛ 120 ⎞ I C1 = 0, I C 2 = 4.3 ⎜ ⎟ mA = 4.264 mA ⎝ 121 ⎠ vC1 = −5 V vC 2 = ( 4.264 ) (1) − 5 vC 2 = −0.736 V 2.132 (c) vE ≈ 0.7 V gm == 82.0 mA/V 0.026 v V (82.0 ) ΔI = g m d ΔvC = ΔI ⋅ RC = g m d ⋅ RC = ⋅ Vd (1) = 41.0Vd 2 2 2 Vd = 0.015 ⇒ Δvc = 0.615 V vC 2 ↓ vC1 ↑ vC1 = −2.87 + 0.615 = −2.255 V vC 2 = −2.87 − 0.615 = −3.485 V 11.15
  • 9. (a) IC 1 gm = = = 38.46 mA/V VT 0.026 vo 1 Ad = = = 100 vd 0.01 Ad = g m RC 100 = 38.46 RC Rc = 2.6 K (b) With v1 = v2 = 0 vC1 = vC 2 = 10 − (1)( 2.6 ) = 7.4 V ⇒ vcm ( max ) = 7.4 V 11.16 a. i. ( v01 − v02 ) = 0 ii. I C1 = I C 2 = 1 mA v01 − v02 = ⎡V + − I C1 RC1 ⎤ − ⎡V + − I C 2 RC 2 ⎤ ⎣ ⎦ ⎣ ⎦ = I C ( RC 2 − RC1 ) = (1)( 7.9 − 8 ) ⇒ v01 − v02 = −0.1 V b. ⎛v ⎞ I 0 = ( I S 1 + I S 2 ) exp ⎜ BE ⎟ ⎝ VT ⎠ ⎛v ⎞ 2 × 10−3 So exp ⎜ BE ⎟ = −13 −13 ⎝ VT ⎠ 10 + 1.1× 10 = 9.524 × 109 ⎛v ⎞ ⎟ = (10 )( 9.524 × 10 ) ⇒ I C1 = 0.952 mA −13 9 I C1 = I S 1 exp ⎜ BE ⎝ VT ⎠ I C 2 = (1.1× 10−13 )( 9.524 × 109 ) ⇒ I C 2 = 1.048 mA i. v01 − v02 = I C 2 RC 2 − I C1 RC1 ⇒ v01 − v02 = (1.048 − 0.952 )( 8 ) ⇒ v01 − v02 = 0.768 V ii. v01 − v02 = (1.048 )( 7.9 ) − ( 0.952 )( 8 ) v01 − v02 = 8.279 − 7.616 ⇒ v01 − v02 = 0.663 V 11.17 From Equation (11.12(b)) IQ iC 2 = 1 + evd / VT 1 0.90 = 1 + evd / VT 1 So evd / VT = − 1 = 0.111 0.90 vd = VT ln ( 0.111) = ( 0.026 ) ln ( 0.111) ⇒ vd = −0.0571 V 11.18 From Example 11.2, we have
  • 10. vd ( max ) 1 0.5 + − 4 ( 0.026 ) 1 + e − vd ( max ) / 0.026 = 0.02 v ( max ) 0.5 + d 4 ( 0.026 ) ⎡ v ( max ) ⎤ 1 0.98 ⎢ 0.5 + d ⎥= ⎢ ⎣ 4 ( 0.026 ) ⎥ 1 + e ⎦ − vd ( max ) / 0.026 1 0.490 + 9.423vd ( max ) = − vd ( max ) / 0.026 1+ e By trial and error vd ( max ) = 23.7 mV 11.19 a. For I1 = 1 mA, VBE3 = 0.7 V 20 − 0.7 R1 = ⇒ R1 = 19.3 kΩ 1 V ⎛ I ⎞ 0.026 ⎛ 1 ⎞ R2 = T ⋅ ln ⎜ 1 ⎟ = ⎜I ⎟ ⋅ ln ⎜ ⎟ ⇒ R2 = 0.599 kΩ IQ ⎝ Q⎠ 0.1 ⎝ 0.1 ⎠ b. (180 )( 0.026 ) rπ 4 = = 46.8 kΩ 0.1 0.1 gm = = 3.846 mA/V 0.026 100 r04 = ⇒ 1 MΩ 0.1 From Chapter 10 R0 = r04 ⎡1 + g m ( RE rπ 4 ) ⎤ ⎣ ⎦ RE rπ 4 = 0.599 46.8 = 0.591 R0 = (1) ⎡1 + ( 3.846 )( 0.591) ⎤ = 3.27 MΩ ⎣ ⎦ 100 r01 = ⇒ 2 MΩ 0.05 ⎡ ⎛ r ⎞⎤ Ricm ≅ ⎡(1 + β ) R0 ⎤ ⎢(1 + β ) ⎜ 01 ⎟⎥ ⎣ ⎦ ⎣ ⎝ 2 ⎠⎦ = ⎣(181)( 3.27 ) ⎦ ⎣(181)(1) ⎤ ⎡ ⎤ ⎡ ⎦ = 592 181 ⇒ Ricm = 139 MΩ (c) From Eq. (11.32(b)) − g m RC Acm = 2 (1 + β ) Ro 1+ rπ + RB 0.05 gm = = 1.923 mA / V 0.026 (180 )( 0.026 ) rπ = = 93.6 k Ω 0.05 RB = 0 Then − (1.923)( 50 ) Acm = ⇒ Acm = −0.00760 2 (181)( 3270 ) 1+ 93.6
  • 11. 11.19 For vCM = 3.5 V and a maximum peak-to-peak swing in the output voltage of 2 V, we need the quiescent collector voltage to be VC = 3.5 + 1 = 4.5 V Assume the bias is ±10 V , and I Q = 0.5 mA. Then I C = 0.25 mA 10 − 4.5 Now RC = ⇒ RC = 22 k Ω 0.25 (100 )( 0.026 ) In this case, rπ = = 10.4 k Ω 0.25 Then (100 )( 22 ) Ad = = 101 So gain specification is met. 2 (10.4 + 0.5 ) For CMRRdB = 80 dB ⇒ 1 ⎡ (1 + β ) I Q Ro ⎤ 1 ⎡ (101)( 0.5 ) Ro ⎤ CMRR = 104 = ⎢1 + ⎥ = ⎢1 + ⎥ ⇒ Ro = 1.03 M Ω 2⎣ VT β ⎦ 2 ⎢ ( 0.026 )(100 ) ⎥ ⎣ ⎦ Need to use a Modified Widlar current source. Ro = ro ⎡1 + g m ( RE1 rπ ) ⎤ ⎣ ⎦ 100 If VA = 100V , then ro = = 200 k Ω 0.5 (100 )( 0.026 ) rπ = = 5.2 k Ω 0.5 0.5 gm = = 19.23 mA / V 0.026 Then 1030 = 200 ⎡1 + (19.23)( RE1 rπ ) ⎤ ⇒ RE1 rπ = 0.216 k Ω = RE1 5.2 ⇒ RE1 = 225 Ω ⎣ ⎦ Also let RE 2 = 225 Ω and I REF ≅ 0.5 mA 11.20 −0.7 − ( −10 ) (a) RE = ⇒ RE = 37.2 k Ω 0.25 (b)
  • 12. Vπ 1 V V ⎛1+ β ⎞ Ve + g mVπ 1 + π 2 + g mVπ 2 = e or (1) ⎜ ⎟ (Vπ 1 + Vπ 2 ) = rπ rπ RE ⎝ rπ ⎠ RE Vπ 1 V1 − Ve ⎛ r ⎞ = ⇒ Vπ 1 = ⎜ π ⎟ (V1 − Ve ) rπ RB + rπ ⎝ rπ + RB ⎠ Vπ 2 = V2 − Ve Then ⎛1+ β ⎞ ⎡ rπ ⎤ V (1) ⎜ ⎟⎢ (V1 − Ve ) + (V2 − Ve )⎥ = e ⎠ ⎣ rπ + RB ⎝ rπ ⎦ RE From this, we find rπ + RB V1 + ⋅ V2 rπ Ve = ⎡ rπ + RB r + RB ⎤ ⎢ +1+ π ⎥ ⎣ RE (1 + β ) rπ ⎦ Now Vo = − g mVπ 2 RC = − g m RC (V2 − Ve ) We have (120 )( 0.026 ) 0.125 rπ = ≅ 25 k Ω, gm = = 4.81 mA / V 0.125 0.026 (i) Vd V Set V1 = and V2 = − d 2 2 Then ⎛ ⎛ 25 + 0.5 ⎞ ⎞ Vd Vd ⎜ 1 − ⎜ 25 ⎟ ⎟ 2 ( −0.02 ) ⎝ ⎝ ⎠⎠ Ve = = 2 ⎡ 25 + 0.5 25 + 0.5 ⎤ 2.026 ⎢ +1+ ⎥ ⎣ ( 37.2 )(121) 25 ⎦ So Ve = −0.00494Vd Now ⎛ V ⎞ V Vo = − ( 4.81)( 50 ) ⎜ − d − ( −0.00494 )Vd ⎟ ⇒ Ad = o = 119 ⎝ 2 ⎠ Vd (ii) Set V1 = V2 = Vcm Then ⎛ 25 + 0.5 ⎞ Vcm ⎜ 1 + ⎟ ⎝ 25 ⎠ V ( −2.02 ) Ve = = cm ⎡ 25 + 0.5 25 + 0.5 ⎤ 2.02567 ⎢ +1+ ⎥ ⎣ ( 37.2 )(121) 25 ⎦ Ve = Vcm ( 0.9972 ) Then Vo = − ( 4.81)( 50 ) ⎡Vcm − Vcm ( 0.9972 ) ⎤ ⎣ ⎦ Vo or Acm = = −0.673 Vcm 11.21 From Equation (11.18)
  • 13. v0 = vC 2 − vC1 = g m RC vd I CQ gm = VT For I Q = 2 mA, I CQ = 1 mA 1 Then g m = = 38.46 mA/V 0.026 Now 2 = ( 38.46 ) RC ( 0.015 ) So RC = 3.47 kΩ Now VC = V + − I C RC = 10 − (1)( 3.47 ) = 6.53 V For VCB = 0 ⇒ vcm ( max ) = 6.53 V 11.22 The small-signal equivalent circuit is A KVL equation: v1 = Vπ 1 − Vπ 2 + v2 v1 − v2 = Vπ 1 − Vπ 2 A KCL equation Vπ 1 V + g mVπ 1 + π 2 + g mVπ 2 = 0 rπ rπ ⎛1 ⎞ (Vπ 1 + Vπ 2 ) ⎜ + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2 ⎝ rπ ⎠ 1 1 Then v1 − v2 = 2Vπ 1 ⇒ Vπ 1 = ( v1 − v2 ) and Vπ 2 = − ( v1 − v2 ) 2 2 At the v01 node: v01 v01 − v02 + + g mVπ 1 = 0 RC RL ⎛ 1 1 ⎞ ⎛ 1 ⎞ 1 v01 ⎜ + ⎟ − v02 ⎜ ⎟ = g m ( v2 − v1 ) (1) ⎝ RC RL ⎠ ⎝ RL ⎠ 2 At the v02 node: v02 v02 − v01 + + g mVπ 2 = 0 RC RL ⎛ 1 1 ⎞ ⎛ 1 ⎞ 1 v02 ⎜ + ⎟ − v01 ⎜ ⎟ = g m ( v1 − v2 ) (2) ⎝ RC RL ⎠ ⎝ RL ⎠ 2 From (1):
  • 14. ⎛ R ⎞ 1 v02 = v01 ⎜ 1 + L ⎟ − g m RL ( v2 − v1 ) ⎝ RC ⎠ 2 Substituting into (2) ⎛ R ⎞⎛ 1 1 ⎞ 1 ⎛ 1 1 ⎞ ⎛ 1 ⎞ 1 v01 ⎜1 + L ⎟ ⎜ + ⎟ − g m RL ( v2 − v1/ ) ⎜ + ⎟ − v01 ⎜ ⎟ = g m ( v1 − v2 ) ⎝ RC ⎠ ⎝ RC RL ⎠ 2 ⎝ RC RL ⎠ ⎝ RL ⎠ 2 ⎛ 1 RL 1 ⎞ 1 ⎡ ⎛ RL ⎞⎤ v01 ⎜ + 2 + ⎟ = g m ( v1 − v2 ) ⎢1 − ⎜ + 1⎟ ⎥ ⎝ RC RC RC ⎠ 2 ⎣ ⎝ RC ⎠⎦ v01 ⎛ RL ⎞ 1 ⎛ RL ⎞ ⎜2+ ⎟ = − gm ⎜ ⎟ ( v1 − v2 ) RC ⎝ RC ⎠ 2 ⎝ RC ⎠ For v1 − v2 = vd 1 − g m RL v01 Av1 = = 2 vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RC ⎠ 1 g m RL v02 From symmetry: Av 2 = = 2 vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RC ⎠ v02 − v01 g m RL Then Av = = vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RC ⎠ 11.23 The small-signal equivalent circuit is KVL equation: v1 = Vπ 1 − Vπ 2 + v2 or v1 − v2 = Vπ 1 − Vπ 2 KCL equation:
  • 15. Vπ 1 V + g mVπ 1 + g mVπ 2 + π 2 = 0 rπ rπ ⎛1 ⎞ (Vπ 1 + Vπ 2 ) ⎜ + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2 ⎝ rπ ⎠ 1 Then v1 − v2 = −2Vπ 2 or Vπ 2 = − ( v1 − v2 ) 2 Now v0 = − g mVπ 2 ( RC RL ) 1 = g m ( RC RL )( v1 − v2 ) 2 v0 1 For v1 − v2 ≡ vd ⇒ Ad = = g m ( RC RL ) vd 2 11.23 a. 10 − 7 RD = ⇒ RD = 6 kΩ 0.5 I Q = I D1 + I D 2 ⇒ I Q = 1 mA b. 10 = I D ( 6 ) + VDS − VGS ID and VGS = + VTN Kn 0.5 For I D = 0.5 mA, VGS = + 2 = 3.12 V 0.4 and VDS = 10.12 Load line is actually nonlinear. c. Maximum common-mode voltage when M 1 and M 2 reach the transition point, or VDS ( sat ) = VGS − VTN = 3.12 = 2 = 1.12V Then vcm = v02 − vDS ( sat ) + VGS = 7 − 1.12 + 3.12 Or vcm ( max ) = 9 V Minimum common-mode voltage, voltage across I Q becomes zero. So vcm ( min ) = −10 + 3.12 ⇒ vcm ( min ) = −6.88 V 11.24
  • 16. We have VC 2 = − g mVπ 2 RC = − g m (Vb 2 − Ve ) RC and VC1 = − g mVπ 1 RC = − g m (Vb1 − Ve ) RC Then V0 = VC 2 − VC1 = − g m (Vb 2 − Ve ) RC − ⎡ − g m (Vb1 − Ve ) RC ⎤ ⎣ ⎦ = g m RC (Vb1 − Vb 2 ) V0 Differential gain Ad = = g m RC Vb1 − Vb 2 Common-mode gain Acm = 0 11.25 (a) vcm = 3 V ⇒ VC1 = VC 2 = 3 V 10 − 3 Then RC = ⇒ RC = 70 k Ω 0.1 (b) CMRRdB = 75 dB ⇒ CMRR = 5623 Now 1 ⎡ (1 + β ) I Q Ro ⎤ CMRR = ⎢1 + ⎥ 2⎣ β VT ⎦ 1 ⎡ (151)( 0.2 ) Ro ⎤ 5623 = ⎢1 + ⎥ ⇒ Ro = 1.45 M Ω 2 ⎢ (150 )( 0.026 ) ⎥ ⎣ ⎦ Use a Widlar current source. Ro = ro [1 + g m RE ] ′ Let VA of current source transistor be 100 V. 100 0.2 Then ro = = 500 k Ω, g m = = 7.69 mA / V 0.2 0.026 (150 )( 0.026 ) rπ = = 19.5 k Ω 0.2 So 1450 = 500 ⎡1 + ( 7.69 ) RE ⎤ ⇒ RE = 0.247 k Ω ⎣ ′⎦ ′ ′ Now RE = RE rπ ⇒ 0.247 = RE 19.5 ⇒ RE = 250Ω ⎛I ⎞ Then I Q RE = VT ln ⎜ REF ⎟ ⎜ I ⎟ ⎝ Q ⎠ ⎛ I REF ⎞ ( 0.2 )( 0.250 ) = ( 0.026 ) ln ⎜ ⎜ ⎟ ⇒ I REF = 1.37 mA ⎟ ⎝ ( 0.2 ) ⎠ 10 − 0.7 − ( −10 ) Then R1 = ⇒ R1 = 14.1 k Ω 1.37 11.26 At terminal A. R (1 + δ ) ⋅ R R (1 + δ ) R RTHA = RA R = = ≅ = 5 kΩ R (1 + δ ) + R 2+δ 2 Variation in RTH is not significant ⎛ RA ⎞ + R (1 + δ )( 5 ) 5 (1 + δ ) VTHA = ⎜ ⎟V = = ⎝ RA + R ⎠ R (1 + δ ) + R 2+δ
  • 17. At terminal B. R RTHB = R R = = 5 kΩ 2 ⎛ R ⎞ + VTHB = ⎜ ⎟ V = 2.5 V ⎝R+R⎠ From Eq. (11.27) − β RC (V2 − V1 ) VO = where V2 = VTHB and V1 = VTHA 2 ( rπ + RB ) (120 )( 0.026 ) RB = 5 k Ω, rπ = = 12.5 k Ω 0.25 − (120 )( 3)(V2 − V1 ) So VO = = −10.3 (V2 − V1 ) 2 (12.5 + 5 ) We can find V2 − V1 = VTHB − VTHA ⎡ 5 (1 + δ ) ⎤ VTHB − VTHA = 2.5 − ⎢ ⎥ ⎣ 2+δ ⎦ 2.5 ( 2 + δ ) − 5 (1 + δ ) 2.5δ − 5δ = = 2+δ 2+δ −2.5δ ≅ = −1.25δ 2 Then VO = − (10.3)( −1.25 ) δ = 12.9δ So for −0.01 ≤ δ ≤ 0.01 We have −0.129 ≤ VO 2 ≤ 0.129 V 11.27 a. Rid = 2rπ (180 )( 0.026 ) rπ = = 23.4 kΩ 0.2 So Rid = 46.8 kΩ b. Assuming rμ → ∞, then Ricm ≅ ⎡(1 + β ) R0 ⎤ ⎣ ⎦ Ricm = ⎡(181)(1) ⎤ ⎣ ⎦ = 181 ⇒ Ricm = 181 MΩ 11.28 (a) 10 − 0.7 − ( −10 ) I1 = = 0.5 ⇒ R1 = 38.6 K R1 0.026 ⎛ 0.5 ⎞ R2 = ln ⎜ ⎟ ⇒ R2 = 236 Ω 0.14 ⎝ 0.14 ⎠ (b)
  • 18. Ricm ≈ (1 + β ) Ro 0.14 Ro = ro 4 (1 + g m 4 RE ) g m 4 = ′ = 5.385 mA/V 0.026 (180 )( 0.026 ) rπ 4 = = 33.4 K 0.14 ′ RE = 33.4 0.236 = 0.234 K 100 ro 4 = = 714 K 0.14 Ro = 714 ⎡1 + ( 5.385 )( 0.234 ) ⎤ ⎣ ⎦ = 1614 K Ricm = (181)(1614 ) ≈ 292 MΩ (c) − g m1 RC 0.07 Acm = g m1 = = 2.692 mA/V 2 (1 + β ) Ro 0.026 1+ rπ 1 (180 )( 0.026 ) rπ 1 = = 66.86 K 0.07 − ( 2.692 )( 40 ) Acm = 2 (181)(1614 ) 1+ 66.86 Acm = −0.0123 11.29 Ad 1 = g m1 ( R1 rπ 3 ) I Q1 / 2 g m1 = = 19.23I Q1 VT β VT 2 (100 )( 0.026 ) 5.2 rπ 3 = = = IQ2 / 2 IQ 2 IQ 2 g m 3 R2 IQ 2 / 2 Ad 2 = , g m3 = = 19.23I Q 2 2 VT (19.23) I Q 2 Then 30 = ⋅ R2 ⇒ I Q 2 R2 = 3.12 V 2 Maximum vo 2 − vo1 = ±18 mV for linearity vo3 ( max ) = ( ±18 )( 30 ) mV ⇒ ±0.54 V so I Q 2 R2 = 3.12 V is OK. From Ad 1 :
  • 19. ⎛ 5.2 ⎞ ⎞ ⎜ R1 ⎜ ⎜I ⎟ ⎟⎟ ⎜ ⎝ Q2 ⎠ ⎟ 20 = 19.23I Q1 ( R1 rπ 3 ) = 19.23I Q1 ⎜ ⎟ ⎜ R + ⎛ 5.2 ⎞ ⎟ ⎜ 1 ⎜ IQ 2 ⎟ ⎟ ⎜ ⎟ ⎝ ⎝ ⎠⎠ 19.23I Q1 R1 ( 5.2 ) 20 = I Q 2 R1 + 5.2 I Q1 Let ⋅ R1 = 5V ⇒ I Q1 R1 = 10 V 2 19.23 (10 )( 5.2 ) Then 20 = ⇒ I Q 2 R1 = 44.8 V I Q 2 R1 + 5.2 10 Now I Q1 R1 = 10 ⇒ R1 = I Q1 ⎛ 10 ⎞ ⎛ IQ2 ⎞ So I Q 2 ⎜ ⎜I ⎟ ⎟ = 44.8 ⇒ ⎜ ⎜I ⎟ ⎟ = 4.48 ⎝ Q1 ⎠ ⎝ Q1 ⎠ Let I Q1 = 100 μ A, I Q 2 = 448 μ A Then I Q 2 R2 = 3.12 ⇒ R2 = 6.96 k Ω I Q1 R1 = 10 ⇒ R1 = 100 k Ω 11.30 a. 20 − VGS 3 = 0.25 (VGS 3 − 2 ) 2 I1 = 50 20 − VGS 3 = 12.5 (VGS 3 − 4VGS 3 + 4 ) 2 2 12.5VGS 3 − 49VGS 3 + 30 = 0 ( 49 ) − 4 (12.5 )( 30 ) 2 49 ± VGS 3 = ⇒ VGS 3 = 3.16 V 2 (12.5 ) 20 − 3.16 I1 = ⇒ I1 = I Q = 0.337 mA 50 IQ I D1 = ⇒ I D1 = 0.168 mA 2 0.168 = 0.25 (VGS 1 − 2 ) ⇒ VGS1 = 2.82 V 2 VDS 4 = −2.82 − ( −10 ) ⇒ VDS 4 = 7.18 V VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V VDS1 = 5.97 − ( −2.82 ) ⇒ VDS 1 = 8.79 V (b) (c)
  • 20. Max vCM ⇒ VDS 1 = VDS 2 = VDS ( sat ) = VGS1 − VTN 2.82 − 2 = 0.82 V Now VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V VS ( max ) = 5.97 − VDS1 ( sat ) = 5.97 − 0.82 VS ( max ) = 5.15 V vCM ( max ) = VS ( max ) + VGS1 = 5.15 + 2.82 vCM ( max ) = 7.97 V vCM ( min ) = V − + VDS 4 ( sat ) + VGS 1 VDS 4 ( sat ) = VGS 4 − VTN = 3.16 − 2 = 1.16 V Then vCM ( min ) = −10 + 1.16 + 2.82 ⇒ vCM ( min ) = −6.02 V 11.31 a. I D1 = I D 2 = 120 μ A = 100 ( VGS1 − 1.2 ) ⇒ VGS 1 = VGS 2 = 2.30 V 2 For v1 = v2 = −5.4 V and VDS1 = VDS 2 = 12 V ⇒ −5.4 − 2.30 + 12 = 4.3 V = VD 10 − 4.3 RD = ⇒ RD = 47.5 kΩ 0.12 I Q = I D1 + I D 2 ⇒ I Q = I1 = 240 μ A I1 = 240 = 200 (VGS 3 − 1.2 ) ⇒ VGS 3 = 2.30 V 2 20 − 2.3 R1 = ⇒ R1 = 73.75 kΩ 0.24 b. 1 1 r04 = = = 416.7 kΩ λ IQ ( 0.01)( 0.24 ) 1 5.4 ΔI Q = ⋅ ΔVDS = ⇒ ΔI Q ≅ 13 μ A r04 416.7 11.32 (a) I Q = 160 μ A k′ ⎛ W ⎞ I D = n ⎜ ⎟ (VGS − VTN ) 2 2⎝L⎠ 80 80 = ( 4 )(VOS − 0.5 ) 2 2 80 = 160 (Vo5 − 0.5 ) 2 80 VGS = + 0.5 = 1.207 V 160 5−2 RD = = 37.5 K VDS = 2 − ( −1.207 ) = 3.21 V 0.08 (c) VDS ( sat ) = VGS − VTN = 1.207 − 0.5 = 0.707 V Then VS = VO 2 − VDS ( sat ) = 2 − 0.707 = +1.29 V And v1 = v2 = vcm = VGS + VS = 1.207 + 1.29 vcm = 2.50 V (b)
  • 21. 11.33 vD = 5 − ( 0.2 )( 8 ) = 3.4 V ID VGS = + VTN Kn 0.2 = + 0.8 = 1.694 V 0.25 VDS ( sat ) = VGS − VTN = 1.694 − 0.8 = 0.894 V VS = VD − VDS ( sat ) = 3.4 − 0.894 = 2.506 vCM = VS + VGS = 2.506 + 1.694 ⇒ vCM = 4.2 V (b) Vd ΔvD = ΔI D ⋅ RD ΔI D = g m ⋅ gm = 2 Kn I D 2 =2 ( 0.25)( 0.2 ) = 0.4472 mA/V ΔI D = ( 0.4472 )( 0.05 ) ⇒ 22.36 μ A ΔvD = ( 22.36 × 10−6 )( 8 × 103 ) = 0.179 V vD 2 = 3.4 + ΔvD vD 2 = 3.4 + 0.179 ⇒ vD 2 = 3.58 V (c) vd = −50 mV ΔI D = − ( 0.4472 )( 0.025 ) ⇒ −11.18 μ A ΔvD = − (11.18 × 10−6 )( 8 × 103 ) = −0.0894 V vD 2 = 3.4 − 0.0894 ⇒ vD 2 = 3.31 V 11.34 a. I D1 = I D 2 = 0.5 mA v01 − v02 = ⎡V + − I D1 RD1 ⎤ − ⎡V + − I D 2 RD 2 ⎤ ⎣ ⎦ ⎣ ⎦ v01 − v02 = I D 2 RD 2 − I D1 RD1 = I D ( RD 2 − RD1 ) i. RD1 − RD 2 = 6 kΩ, v01 − v02 = 0 ii. RD1 = 6 kΩ, RD 2 = 5.9 kΩ v01 − v02 = ( 0.5 )( 5.9 − 6 ) ⇒ v01 − v02 = −0.05 V b.
  • 22. K n1 = 0.4 mA / V 2 , K n 2 = 0.44 mA / V 2 VGS1 = VGS 2 I Q = ( K n1 + K n 2 )(VGS − VTN ) 2 1 = ( 0.4 + 0.44 )(VGS − VTN ) ⇒ (VGS − VTN ) = 1.19 2 2 I D1 = ( 0.4 )(1.19 ) = 0.476 mA I D 2 = ( 0.44 )(1.19 ) = 0.524 mA i. RD1 = RD 2 = 6 kΩ v01 − v02 = ( 0.524 − 0.476 )( 6 ) ⇒ v01 − v02 = 0.288 V ii. RD1 = 6 kΩ, RD 2 = 5.9 kΩ v01 − v02 = ( 0.524 )( 5.9 ) − ( 0.476 )( 6 ) = 3.0916 − 2.856 ⇒ v01 − v02 = 0.236 V 11.35 (a) From Equation (11.69) iD 2 1 Kn ⎛ K ⎞ 2 = − ⋅ vd 1 − ⎜ n ⎟ vd IQ 2 2IQ ⎜ 2IQ ⎟ ⎝ ⎠ 0.1 ⎡ 0.1 ⎤ 2 0.90 = 0.50 − ⋅ vd 1 − ⎢ ⎥ vd 2 ( 0.25 ) ⎢ 2 ( 0.25 ) ⎥ ⎣ ⎦ +0.40 = − ( 0.4472 ) vd 1 − ( 0.2 ) vd 2 0.8945 = −vd 1 − ( 0.2 ) vd 2 Square both sides 0.80 = vd (1 − [ 0.2] vd ) 2 2 ( 0.2 ) ( vd2 ) 2 2 − vd + 0.80 = 0 2 1 ± 1 − 4 ( 0.2 )( 0.80 ) vd = = 4V 2 or 1V 2 2 ( 0.2 ) Then vd = ± 2 V or ± 1 V IQ 0.25 But vd max = = = 1.58 kn 0.1 So vd = ±1V, ⇒ vd = −1V b. From part (a), vd ,max = 1.58 V 11.36
  • 23. ⎛i ⎞ d ⎜ D1 ⎟ ⎜I ⎟ ⎛ K ⎞ 2 ⎝ Q⎠= Kn ⋅ 1− ⎜ n ⎜ 2I ⎟ vd + ( ⎟ ) vd vd =0 dvd 2IQ ⎝ Q ⎠ Kn = 2IQ iD1 1 Kn So linear = + ⋅ vd IQ 2 2 IQ 1 Kn ⎡1 Kn ⎛K ⎞ 2 ⎤ + ⋅ vd ( max ) − ⎢ + ⋅ vd ( max ) ⋅ 1 − ⎜ n ⎟vd ( max ) ⎥ 2 2IQ ⎢2 2 IQ ⎝ 2I n ⎠ ⎥ Then ⎣ ⎦ = 0.02 1 Kn + ⋅v 2 2 I Q d ( max ) ⎡1 Kn ⎤ ⎡1 Kn ⎛K ⎞ 2 ⎤ 0.98 ⎢ + ⋅ vd ( max ) ⎥ = ⎢ + ⋅ vd ( max ) ⋅ 1 − ⎜ n ⎟ vd ( max ) ⎥ ⎢2 2IQ ⎥ ⎢2 2IQ ⎜ 2I ⎟ ⎥ ⎣ ⎦ ⎣ ⎝ Q ⎠ ⎦ 0.15 ⎡1 0.15 ⎛ 0.15 ⎞ 2 ⎤ 0.49 + 0.98 ⋅ vd ( max ) = ⎢ + ⋅ vd ( max ) ⋅ 1 − ⎜ ⎟ vd ( max ) ⎥ ⎜ 2 ( 0.2 ) ⎟ 2 ( 0.2 ) ⎢2 2 ( 0.2 ) ⎝ ⎠ ⎥ ⎣ ⎦ 0.49 + 0.600 vd ( max ) = 0.50 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max ) 2 0.600 vd ( max ) = 0.010 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max ) 2 By trial and error vd ( max ) ≈ 0.429 V 11.37 (b) gm = 2 K p I D = 2 ( 0.05 )( 0.008696 ) = 0.0417 mA/V Vd ΔI = g m = ( 0.0417 )( 0.05 ) = 0.002085 mA 2 ΔvD = ( 0.002085 )( 510 ) = 1.063 vD 2 ↑⇒ vD 2 = 1.063 − 4.565 = −3.502 V vD1 = −1.063 − 4.565 = −5.628 V 9 = I S RS + VSG + 1 I S = 2I D 8 = 2 K P RS (VSG + VTP ) + VSG 2 8 = ( 2 )( 0.05 )( 390 )(VSG − 0.8 ) + VSG 2 8 = 39 (VSG − 1.6VSG + 0.64 ) + VSG 2 2 39VSG − 61.4VSG + 16.96 = 0 61.4 ± 3769.96 − 4 ( 39 )(16.96 ) VSG = 2 ( 39 ) = 1.217 V VS = 2.217 I S = 0.01739 mA I D1 = I D 2 ⇒ 8.696 μ A vD1 = vD 2 = ( 8.696 )( 0.510 ) − 9 = −4.565 V (b)
  • 24. g m = 2 K P I DQ = 2 ( 0.05 )( 0.008696 ) = 0.0417 mA/V Vd ΔvD = ΔI D ⋅ RD = ( 0.0417 )( 0.05 ) = 0.002085 mA ΔI D = g m ⋅ 2 ΔvD = ( 0.002085 )( 510 ) = 1.063 V v1 ↑, I D1 ↓, vD1 ↓ vD1 = −4.565 − 1.063 = −5.628 V vD 2 = −4.565 + 1.063 = −3.502 V 11.38 (a) v1 = v2 = 0 I D = K n (VSG + VTP ) 2 ID = 6 μA 6 + 0.4 = VSG 30 VSG = 0.847 V VS = +0.847 V vD = I D RD − 3 = ( 6 )( 0.36 ) − 3 = −0.84 V VSD = VS − vD = 0.847 − ( −0.84 ) vSD = 1.69 V (b) (i) Ad = g m RD g m = 2 K n I D =2 ( 30 )( 6 ) = 26.83 μ A/V Ad = ( 26.83)( 0.36 ) ⇒ Ad = 9.66 Acm = 0 (ii) g R ( 26.83)( 0.36 ) Ad = m D = ⇒ Ad = 4.83 2 2 − g m RD − ( 26.83)( 0.36 ) Acm = = = −0.0448 1 + 2 g m RO 1 + 2 ( 26.83)( 4 ) 11.39
  • 25. For v1 = v2 = −0.30 V I D1 = I D 2 = 0.1 mA ID VSG = − VTP KP 0.1 = +1 = 2 V 0.1 vD1 = vD 2 = ( 0.1)( 30 ) − 10 = −7 V gm = 2 K p I D = 2 ( 0.1)( 0.1) = 0.2 mA/V ⎛V ⎞ ΔI D = g m ⎜ d ⎟ = ( 0.2 )( 0.1) = 0.02 mA ⎝ 2⎠ ΔvD = ( ΔI D ) RD = ( 0.02 )( 30 ) = 0.6 V vD 2 ↑⇒ vD 2 = −7 + 0.6 ⇒ vD 2 = −6.4 V vD1 = −7 − 0.6 ⇒ vD1 = −7.6 V 11.40 For v1 = v2 = 0 0 = VGS + 2 I D RS − 10 10 = VGS + 2 K n RS (VGS − VTN ) 2 = VGS + 2 ( 0.15 )( 75 )(VGS − 1) 2 2 22.5VGS − 44VGS + 12.5 = 0 So VGS = 1.61 V and I D = ( 0.15 )(1.61 − 1) ⇒ 55.9 μ A 2 gm = 2 Kn I D = 2 ( 0.15 )( 0.0559 ) g m = 0.1831 mA/V Use Half-circuits – Differential gain ⎛V ⎞⎛ ΔR ⎞ vD1 = − g m ⎜ d ⎟ ⎜ RD + ⎟ ⎝ 2 ⎠⎝ 2 ⎠ ⎛V ⎞⎛ ΔR ⎞ vo 2 = g m ⎜ d ⎟ ⎜ RD − ⎟ ⎝ 2 ⎠⎝ 2 ⎠ vo = vD1 − vD 2 = − g mVd RD v Ad = o = − g m RD Vd Now – Common-Mode Gain
  • 26. Vi = Vgs + g mVgs ( 2 RS ) = Vcm Vcm Vgs = 1 + g m ( 2 RS ) ⎛ ΔR ⎞ − g m ⎜ RD + D ⎟ Vcm ⎝ 2 ⎠ vD1 = 1 + g m ( 2 RS ) ⎛ ΔR ⎞ − gm ⎜ RD − D ⎟ Vcm ⎝ 2 ⎠ vD 2 = 1 + g m ( 2 RS ) vO = vD1 − vD 2 − g m ( ΔRD ) Vcm So vo = 1 + g m ( 2 RD ) vo − g m ( ΔRD ) Acm = = Vcm 1 + g m ( 2 RS ) Then Ad = − ( 0.1831)( 50 ) = −9.16 − ( 0.1831)( 0.5 ) Acm = = −0.003216 1 + ( 0.1831)( 2 )( 75 ) C M R R ∫ = 69.1 dB bB 11.41 a. Ad = g m ( r02 r04 ) VA 2 150 r02 = = = 375 kΩ I C 2 0.4 VA 4 100 r04 = = = 250 kΩ I C 4 0.4 IC 2 0.4 gm = = = 15.38 mA/V VT 0.026 Ad = (15.38 ) ( 375 250 ) ⇒ Ad = 2307 b. RL = r02 r04 = 375 250 ⇒ RL = 150 kΩ 11.41 From 11.40 I D1 = I D 2 = 55.9 μ A g m = 0.183 mA/V
  • 27. Vd ⎛ +V ⎞ Ad : ΔvD1 = − g m1 ⋅ RD ΔvD 2 = + g m 2 ⎜ d ⎟ RD 2 ⎝ 2 ⎠ V V vO = ΔvD1 − ΔvD 2 = − g m1 d RD − g m 2 d RD 2 2 −V −V ⎛ Δg ⎛ Δg ⎞ ⎞ vO = d ⋅ RD ( g m 2 + g m1 ) = d ⋅ RD ⎜ g m − m + ⎜ g m − m ⎟ ⎟ 2 2 ⎝ 2 ⎝ 2 ⎠⎠ Ad = − g m RD = − ( 0.183) ( 50 ) = −9.15 ⎛ Δg ⎞ ⎛ Δg ⎞ − ⎜ g m + M ⎟ RD vcm ⎜ g m − M ⎟ RD vCM ⎝ 2 ⎠ ⎝ 2 ⎠ ACM : vO = ΔvD1 − ΔvD 2 = + 1 + g m ( 2 RS ) 1 + g m ( 2 RS ) vO −Δg m RD Acm = = Δg m = ( 0.01) ( 0.183) = 0.00183 vcm 1 + g m ( 2 RS ) − ( 0.00183) ( 50 ) Acm = = −0.003216 1 + ( 0.183)( 2 ) ( 75 ) C M R R ∫ = 69.1 dB dB 11.42 (a) v1 = v2 = 0 5 = 2 I D RS + VSG 5 = 2 K p RS (VSG + VTP ) + VSG 2 5 = 2 ( 0.5 )( 2 ) (VSG − 1.6VSG + 0.64 ) + VSG 2 2 5 = 2VSG − 2.2VSG + 1.28 2 2VSG − 2.2VSG − 3.72 = 0 2.2 ± 4.84 + 4 ( 2 )( 3.72 ) VSG = 2 ( 2) VSG = 2.02 V 5 − 2.02 vS = 2.02 V, IS = = 1.49 mA 2 I D1 = I D 2 = 0.745 mA vD1 = vD 2 = ( 0.745 (1) − 5 ) ⇒ vD1 = vD 2 = −4.26 V (b) 5 = I S RS + VSG 2 5 = ( I D1 + I D 2 ) RS + VSG 2 5 = ⎡ K p (VSG1 + VTP ) + K p (VSG 2 + VTP ) ⎤ RS + VSG 2 2 2 ⎣ ⎦ VSG1 = VSG 2 − 1 5 = ( 0.5 )( 2 ) ⎡(VSG 2 − 1.8 ) + (VSG 2 − 0.8 ) ⎤ + VSG 2 2 2 ⎣ ⎦ 5 = ⎡VSG 2 − 3.6VSG 2 + 3.24 + VSG 2 − 1.6VSG 2 + 0.64 ⎤ + VSG 2 ⎣ 2 2 ⎦ 2 5 = 2VSG 2 − 4.2VSG 2 + 3.88 2 2VSG 2 − 4.2VSG 2 − 1.12 = 0 4.2 ± 17.64 + 4 ( 2 ) (1.12 ) VSG 2 = 2 ( 2)
  • 28. VSG 2 = 2.339 V VSG1 = 1.339 V vS = 2.339 V = 0.5 (1.339 − 0.8 ) = 0.5 ( 2.339 − 0.8 ) 2 2 I D1 I D2 I D1 = 0.1453 mA I D2 = 1.184 mA vD1 = ( 0.1453)(1) − 5 vD 2 = (1.184 ) (1) − 5 vD1 = −4.855 V vD 2 = −3.816 V (c) Vd ΔI = g m gm = 2 K p I D 2 vS ≈ 2.02 V = 2 ( 0.5 )( 0.745 ) g m = 1.22 mA/V ΔI = (1.22 )( 0.1) = 0.122 mA ΔvD = ( ΔI ) RD = ( 0.122 )(1) = 0.122 V vD 2 ↓ vD1 ↑ vD1 = −4.26 + 0.122 vD 2 = −4.26 − 0.122 vD1 = −4.138 V vD 2 = −4.382 V 11.43 IQ a. gf = ⇒ I Q = g f ( 4VT ) = ( 8 )( 4 )( 0.026 ) 4VT ⇒ I Q = 0.832 mA Neglecting base currents. 30 − 0.7 R1 = ⇒ R1 = 35.2 kΩ 0.832 V 100 b. r04 = r02 = A = = 240 kΩ I CQ 0.416
  • 29. I CQ 0.416 gm = = = 16 mA / V VT 0.026 Ad = g m ( r02 || r04 ) = 16 ( 240 || 240 ) ⇒ Ad = 1920 (180 )( 0.026 ) Rid = 2rπ , rπ = = 11.25 kΩ 0.416 ⇒ Rid = 22.5 kΩ R0 = r02 || r04 ⇒ R0 = 120 kΩ c. Max. common-mode voltage when VCB = 0 for Q1 and Q2 . Therefore vcm ( max ) = V + − VEB ( Q3 ) = 15 − 0.7 vcm ( max ) = 14.3 V Min. common-mode voltage when VCB = 0 for Q5 . Therefore vcm ( min ) = 0.7 + 0.7 + ( −15 ) = −13.6 V So −13.6 ≤ vcm ≤ 14.3 V 1 Ricm ≅ (1 + β )( 2 R0 ) 2 V 100 R0 = A = = 120 kΩ I Q 0.832 Ricm = (181)(120 ) ⇒ Ricm = 21.7 MΩ 11.43 (a) gm = 2 Kn I D =2 ( 0.4 )(1) g m = 1.265 mA/V v 1 Ad = o = = 10 vd 0.1 Ad = g m RD 10 = (1.265 ) RD RD = 7.91 K (b) Quiescent v1 = v2 = 0 vD1 = vD 2 = 10 − (1)( 7.91) = 2.09 V ID 1 VGS = + VTN = + 0.8 = 2.38 V Kn 0.4 VDS ( sat ) = 2.38 − 0.8 = 1.58 So vcm = vD − VDS ( sat ) + VGS = 2.09 − 1.58 + 2.38 vcm = 2.89 V 11.44
  • 30. g m RD Ad = 2 For vCM = 2.5 V IQ I D1 = I D 2 = = 0.25 mA 2 10 − 3 Let VD1 = VD 2 = 3 V , then RD = ⇒ RD = 28 k Ω 0.25 g m ( 28 ) Then 100 = ⇒ g m = 7.14 mA / V 2 k′ ⎛ W ⎞ And g m = 2 n ⎜ ⎟ ID 2⎝L ⎠ ⎛ 0.080 ⎞ ⎛ W ⎞ 7.14 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.25 ) ⇒ ⎝ 2 ⎠⎝ L ⎠ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 1274 (Extremely large transistors to meet the gain requirement.) ⎝ L ⎠1 ⎝ L ⎠ 2 Need ACM = 0.10 From Eq. (11.64(b)) g m RD ACM = 1 + 2 g m Ro ( 7.14 )( 28) So 0.10 = ⇒ Ro = 140 k Ω 1 + 2 ( 7.14 ) Ro For the basic 2-transistor current source 1 1 Ro = ro = = = 200 k Ω λ I Q ( 0.01)( 0.5 ) This current source is adequate to meet common-mode gain requirement. 11.45 Not in detail, Approximation looks good. a. −V − ( −5 ) and I S = 2 I D = 2 K n (VGS 1 − VTN ) 2 I S = GS 1 RS 5 − VGS 1 = 2 ( 0.050 )(VGS 1 − 1) 2 20 5 − VGS 1 = 2 (VGS1 − 2VGS1 + 1) 2 2 2VGS1 − 3VGS 1 − 3 = 0 ( 3) + 4 ( 2 )( 3) 2 3± VGS1 = ⇒ VGS1 = 2.186 V 2 ( 2) 5 − 2.186 IS = ⇒ I S = 0.141 mA 20 I I D1 = I D 2 = S ⇒ I D1 = I D 2 = 0.0704 mA 2 v02 = 5 − ( 0.0704 )( 25 ) ⇒ v02 = 3.24 V b. g m = 2 K n (VGS − VTN ) = 2 ( 0.05 )( 2.186 − 1) g m = 0.119 mA/V 1 1 r0 = = = 710 kΩ λ I DQ ( 0.02 )( 0.0704 )
  • 31. Vgs1 = v1 − VS , Vgs 2 = v2 − VS v01 v −V + g mVgs1 + 01 S = 0 RD r0 ⎛ 1 1⎞ V v01 ⎜ + ⎟ + g m ( v1 − VS ) − S = 0 (1) ⎝ RD r0 ⎠ r0 v02 v − VS + g mVgs 2 + 02 =0 RD r0 ⎛ 1 1⎞ V v02 ⎜ + ⎟ + g m ( v2 − VS ) − S = 0 (2) ⎝ RD r0 ⎠ r0 v − V v − VS V g mVgs1 + 01 S + 02 + g mVgs 2 = S r0 r0 RS v01 v02 2VS V g m ( v1 − VS ) + + − + g m ( v2 − VS ) = S r0 r0 r0 RS v01 v02 ⎧ 2 1 ⎫ g m ( v1 + v2 ) + + = VS ⎨2 g m + + ⎬ (3) r0 r0 ⎩ r0 RS ⎭ From (1) ⎛ 1⎞ VS ⎜ g m + ⎟ − g m v1 v01 = ⎝ r0 ⎠ ⎛ 1 1⎞ ⎜ + ⎟ ⎝ RD r0 ⎠ Then ⎛ 1⎞ VS ⎜ g m + ⎟ − g m v1 ⎧ 2 1 ⎫ g m ( v1 + v2 ) + ⎝ r0 ⎠ v + 02 = VS ⎨2 g m + + ⎬ (3) ⎛ 1 1⎞ r0 ⎩ r0 RS ⎭ r0 ⎜ + ⎟ ⎝ RD r0 ⎠
  • 32. ⎛ 1 1⎞ ⎛ 1⎞ ⎛ 1 1⎞ ⎧ 2 1 ⎫ ⎛ 1 1⎞ g m ( v1 + v2 ) r0 ⎜ + ⎟ + VS ⎜ g m + ⎟ − g m v1 + v02 ⎜ + ⎟ = VS ⎨2 g m + + ⎬ ⋅ r0 ⎜ + ⎟ ⎝ RD r0 ⎠ ⎝ r0 ⎠ ⎝ RD r0 ⎠ ⎩ r0 RS ⎭ ⎝ RD r0 ⎠ ⎛ r ⎞ ⎛ 1 1⎞ ⎧ ⎪⎛ 2 1 ⎞⎛ r0 ⎞ ⎛ 1 ⎞⎪ ⎫ g m ( v1 + v2 ) ⎜ 1 + 0 ⎟ − g m v1 + v02 ⎜ + ⎟ = VS ⎨⎜ 2 g m + + ⎟ ⎜1 + ⎟ − ⎜ gm + ⎟⎬ ⎝ RD ⎠ ⎝ RD r0 ⎠ ⎪⎝ ⎩ r0 RS ⎠ ⎝ RD ⎠ ⎝ r0 ⎠ ⎪ ⎭ ⎛ r r ⎞ ⎛ 1 1⎞ ⎧ 2 1 r 2 r 1⎫ g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜ + ⎟ = VS ⎨2 g m + + + 2gm ⋅ 0 + + 0 − gm − ⎬ ⎝ RD RD ⎠ ⎝ RD r0 ⎠ ⎩ r0 RS RD RD RS RD r0 ⎭ ⎛ r ⎞ ⎛ 1 1⎞ ⎧ ⎪ 1 1 ⎛ r0 ⎞ 2 ⎫ (1 + g m r0 )⎪ (4) r g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜ + ⎟ = VS ⎨2 g m + + ⎜1 + ⎟+ ⎬ ⎝ RD RD ⎠ ⎝ RD r0 ⎠ ⎪ ⎩ r0 RS ⎝ RD ⎠ RD ⎪ ⎭ ⎛ 1 1⎞ ⎛ 1⎞ Then substituting into (2), v02 ⎜ + ⎟ + g m v2 = VS ⎜ g m + ⎟ ⎝ RD r0 ⎠ ⎝ r0 ⎠ ⎡ 710 710 ⎤ ⎡1 1 ⎤ Substitute numbers: ( 0.119 ) ⎢ v1 + v2 + v2 ⎥ + v02 ⎢ 25 + 710 ⎥ (4) ⎣ 25 25 ⎦ ⎣ ⎦ ⎧ 1 1 ⎛ 710 ⎞ 2 ⎫ = VS ⎨0.119 + + ⎜1 + ⎟ + ⎡1 + ( 0.119 )( 710 ) ⎤ ⎬ ⎣ ⎦ ⎩ 710 20 ⎝ 25 ⎠ 25 ⎭ ( 0.119 ) [ 28.4v1 + 29.4v2 ] + ( 0.0414 ) v02 = VS {0.1204 + 1.470 + 6.8392} = VS ( 8.4296 ) or VS = 0.4010v1 + 0.4150v2 + 0.00491v02 ⎛ 1 1 ⎞ ⎛ 1 ⎞ Then v02 ⎜ + ⎟ + ( 0.119 ) v2 = VS ⎜ 0.119 + ⎟ (2) ⎝ 25 710 ⎠ ⎝ 710 ⎠ v02 ( 0.0414 ) + v2 ( 0.119 ) = ( 0.1204 ) [ 0.401v1 + 0.4150v2 + 0.00491v02 ] v02 ( 0.0408 ) = ( 0.04828 ) v1 − ( 0.0690 ) v2 v02 = (1.183) v1 − (1.691) v2 vd Now v1 = vcm + 2 vd v2 = vcm − 2 ⎛ v ⎞ ⎛ v ⎞ So v02 = (1.183) ⎜ vcm + d ⎟ − (1.691) ⎜ vcm − d ⎟ ⎝ 2⎠ ⎝ 2⎠ Or v02 = 1.437vd − 0.508vcm ⇒ Ad = 1.437, Acm = −0.508 ⎛ 1.437 ⎞ C M R RdB = 20 log10 ⎜ ⎟ ⇒ C M R RdB = 9.03 dB ⎝ 0.508 ⎠ 11.46 KVL:
  • 33. v1 = Vgs1 − Vgs 2 + v2 So v1 − v2 = Vgs1 − Vgs 2 KCL: g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2 1 1 So Vgs1 = ( v1 − v2 ) , Vgs 2 = − ( v1 − v2 ) 2 2 Now v02 v02 − v01 + = − g mVgs 2 RD RL (1) ⎛ 1 1 ⎞ v01 = v02 ⎜ + ⎟− ⎝ RD RL ⎠ RL v01 v01 − v02 + = − g mVgs1 RD RL (2) ⎛ 1 1 ⎞ v02 = v01 ⎜ + ⎟− ⎝ RD RL ⎠ RL ⎛ R ⎞ From (1): v01 = v02 ⎜ 1 + L ⎟ + g m RLVgs 2 ⎝ RD ⎠ Substitute into (2): ⎛ R ⎞⎛ 1 1 ⎞ ⎛ 1 1 ⎞ v02 − g mVgs1 = v02 ⎜1 + L ⎟ ⎜ + ⎟ + g m RL ⎜ + ⎟ Vgs 2 − ⎝ RD ⎠ ⎝ RD RL ⎠ ⎝ RD RL ⎠ RL ⎛ R ⎞⎛ 1 ⎞ ⎛ 1 R 1 ⎞ − g m ⋅ ( v1 − v2 ) + g m ⎜ 1 + L ⎟ ⎜ ⎟ ( v1 − v2 ) = v02 ⎜ + L + 2 ⎟ ⎝ RD ⎠ ⎝ 2 ⎠ ⎝ RD RD RD ⎠ 1 ⋅ g m RL 1 ⎛ RL ⎞ v02 ⎛ RL ⎞ v02 gm ⎜ ⎟ ( v1 − v2 ) = ⎜ 2 + ⎟ ⇒ Ad 2 = = 2 2 ⎝ RD ⎠ RD ⎝ RD ⎠ v1 − v2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 1 − ⋅ g m RL v01 From symmetry Ad 1 = = 2 v1 − v2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ v02 − v01 g m RL Then Av = = v1 − v2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 11.47
  • 34. v1 − v2 = Vgs1 − Vgs 2 and g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2 Then v1 − v2 = −2Vgs 2 1 Or Vgs 2 = − ( v1 − v2 ) 2 gm v0 = − g mVgs 2 ( RD RL ) = ( RD RL ) ( v1 − v2 ) 2 gm Or Ad = 2 ( RD RL ) 11.48 Kn IQ From Equation (11.64(a)), Ad = ⋅ RD 2 2 We need Ad = = 10 0.2 K n ( 0.5 ) Then 10 = ⋅ RD or K n ⋅ RD = 20 2 If we set RD = 20 k Ω, then K n = 1 mA / V 2 For this case VD = 10 − ( 0.25 )( 20 ) = 5 V 0.25 VGS = + 1 = 1.5 V 1 VDS ( sat ) = VGS − VTN = 1.5 − 1 = 0.5 V Then vcm ( max ) = VD − VDS ( sat ) + VGS = 5 − 0.5 + 1.5 Or vcm ( max ) = 6 V 11.49 Vd 1 = − g mVgs1 RD = − g m RD (V1 − Vs ) Vd 2 = − g mVgs 2 RD = − g m RD (V2 − Vs ) Now Vo = Vd 2 − Vd 1 = − g m RD (V2 − Vs ) − ( − g m RD (V1 − Vs ) ) Vo = g m RD (V1 − V2 ) Define V1 − V2 ≡ Vd V Then Ad = o = g m RD and Acm = 0 Vd 11.49 Ad = g m ( r02 r04 ) g m = 2 kn I DQ =2 ( 0.12 )( 0.075 ) = 0.1897 mA/V 1 1 r02 = = = 889 kΩ λn I DQ ( 0.015 )( 0.075 ) 1 1 r04 = = = 667 kΩ λ p I DQ ( 0.02 )( 0.075 ) Ad = ( 0.1897 ) ( 889 667 ) ⇒ Ad = 72.3 11.50 (a)
  • 35. ⎛ K′ ⎞⎛W ⎞ ⎛ 0.080 ⎞ ⎟ (10 ) = 0.40 mA / V 2 K n1 = K n 2 = ⎜ n ⎟ ⎜ ⎟=⎜ ⎝ 2 ⎠⎝ L ⎠ ⎝ 2 ⎠ ID 0.1 VGS1 = VGS 2 = + VTN = + 1 = 1.5 V Kn 0.4 VDS1 ( sat ) = 1.5 − 1 = 0.5 V For vCM = +3 V ⇒ VD1 = VD 2 = vCM − VGS 1 + VDS 1 ( sat ) = 3 − 1.5 + 0.5 ⇒ VD1 = VD 2 = 2 V 10 − 2 RD = ⇒ RD = 80 k Ω 0.1 (b) 1 Ad = g m RD and g m = 2 ( 0.4 )( 0.1) = 0.4 mA / V 2 1 Then Ad = ( 0.4 )( 80 ) = 16 2 16 C M R RdB = 45 ⇒ C M R R = 177.8 = Acm So Acm = 0.090 g m RD Acm = 1 + 2 g m Ro ( 0.4 )(80 ) 0.090 = ⇒ Ro = 443 k Ω 1 + 2 ( 0.4 ) Ro If we assume λ = 0.01 V −1 for the current source transistor, then 1 1 ro = = = 500 k Ω λ I Q ( 0.01)( 0.2 ) So the CMRR specification can be met by a 2-transistor current source. ⎛W ⎞ ⎛W ⎞ Let ⎜ ⎟ = ⎜ ⎟ = 1 ⎝ L ⎠3 ⎝ L ⎠ 4 ⎛ 0.080 ⎞ IQ 0.2 ⎟ (1) = 0.040 mA / V and VGS 3 = 2 Then K n 3 = K n 4 = ⎜ + VTN = + 1 = 3.24 V ⎝ 2 ⎠ K n3 0.04 For vCM = −3 V , VD 3 = −3 − VGS1 = −3 − 1.5 = −4.5 V ⇒ VDS 3 ( min ) = −4.5 − ( −10 ) = 5.5 V > VDS 3 ( sat ) So design is OK. ⎛W ⎞ On reference side: For ⎜ ⎟ ≥ 1, VGS ( max ) = 3.24 V ⎝L⎠ 20 − VGS 3 = 20 − 3.24 = 16.76 V 16.67 Then = 5.17 ⇒ We need six transistors in series. 3.24
  • 36. 20 − 3.24 VGS = = 2.793 V 6 ⎛ K′ ⎞⎛W ⎞ = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 I REF ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.080 ⎞⎛ W ⎞ ⎛W ⎞ ⎟⎜ ⎟ ( 2.793 − 1) ⇒ ⎜ ⎟ = 1.56 for each of the 6 transistors. 2 0.2 = ⎜ ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ 11.51 1 Ad = g m RD 2 gm = 2 Kn I D = 2 ( 0.25 )( 0.25) = 0.50 mA / V 1 Ad = ( 0.50 )( 3) = 0.75 2 From Problem 11.26
  • 37. 5 (1 + δ ) V1 = VA = , V2 = VB = 2.5 V and V1 − V2 = 1.25δ 2+δ Then Vo 2 = Ad ⋅ (V1 − V2 ) = ( 0.75 )(1.25δ ) = 0.9375δ So for −0.01 ≤ δ ≤ 0.01 −9.375 ≤ Vo 2 ≤ 9.375 mV 11.52 From previous results v −v Ad 1 = o 2 o1 = g m1 R1 = 2 K n1 I Q1 ⋅ R1 = 20 v1 − v2 vo3 1 1 and Ad 2 = = g m 3 R2 = 2 K n3 I Q 2 ⋅ R2 = 30 vo 2 − vo1 2 2 I Q1 R1 I Q 2 R2 Set = 5 V and = 2.5 V 2 2 Let I Q1 = I Q 2 = 0.1 mA Then R1 = 100 k Ω, R2 = 50 k Ω 2 ⎛ 0.06 ⎞ ⎛ W ⎞ ⎛ 20 ⎞ ⎛W ⎞ ⎛W ⎞ Then 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) = ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 6.67 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ 100 ⎠ ⎝ L ⎠1 ⎝ L ⎠ 2 2 ⎛ 0.060 ⎞ ⎛ W ⎞ ⎛ 2 ( 30 ) ⎞ ⎛W ⎞ ⎛W ⎞ and 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) = ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 240 ⎝ 2 ⎠ ⎝ L ⎠3 ⎝ 50 ⎠ ⎝ L ⎠3 ⎝ L ⎠ 4 11.53 2 ⎛ v ⎞ a. iD1 = I DSS ⎜ 1 − GS 1 ⎟ ⎝ VP ⎠ 2 ⎛ v ⎞ iD 2 = I DSS ⎜ 1 − GS 2 ⎟ ⎝ VP ⎠ ⎛ v ⎞ ⎛ v ⎞ iD1 − iD 2 = I DSS ⎜1 − GS 1 ⎟ − I DSS ⎜ 1 − GS 2 ⎟ ⎝ VP ⎠ ⎝ VP ⎠ I DSS = ( vGS 2 − vGS1 ) VP I DSS I DSS =− ⋅ vd = ⋅ vd VP ( −VP ) iD1 + iD 2 = I Q ⇒ iD 2 = I Q − iD1 ( ) 2 I DSS 2 iD1 − I Q − iD1 = ⋅ vd ( −VP ) 2 iD1 − 2 iD1 ( I Q − iD1 ) + ( I Q − iD1 ) = I DSS 2 ⋅ vd ( −VP ) 2 1⎡ ⎤ Then iD1 ( I Q − iD1 ) = I ⎢ I Q − DSS 2 ⋅ vd ⎥ 2 2⎢ ⎣ ( −VP ) ⎦ ⎥ Square both sides
  • 38. 2 1⎡ I ⎤ i − iD1 I Q + ⎢ I Q − DSS 2 ⋅ vd ⎥ = 0 2 D1 2 4⎢ ⎣ ( −VP ) ⎥ ⎦ 2 ⎛ 1⎞⎡ I ⎤ I Q ± I − 4 ⎜ ⎟ ⎢ I Q − DSS 2 ⋅ vd ⎥ 2 2 ( −VP ) ⎥ Q ⎝ 4⎠⎢ ⎣ ⎦ iD1 = 2 ⎡ 2 ⎤ 1 2 ⎢ 2 2 I Q I DSS vd ⎛ I DSS vd ⎞ ⎥ 2 2 IQ iD1 = ± IQ − IQ − +⎜ ⎟ ⎢ ( −VP ) ⎜ ( −VP ) ⎟ ⎥ 2 2 2 2 ⎝ ⎠ ⎦ ⎣ Use + sign 2 IQ 1 2 I Q I DSS 2 ⎛ I ⎞ iD1 = + ⋅ vd − ⎜ DSS 2 ⋅ vd ⎟ 2 2 2 ( −VP )2 ⎜ ( −V ) ⎟ ⎝ P ⎠ 2 2 IQ 1 IQ 2 I DSS ⎛ I DSS ⎞ ⎛v ⎞ iD1 = + vd −⎜ ⎟ ⎜ d ⎟ 2 2 ( −VP ) ⎜ I ⎟ V IQ ⎝ Q ⎠ ⎝ P⎠ Or 2 2 iD1 1 ⎛ 1 ⎞ 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ = +⎜ ⎟ ⋅ vd −⎜ ⎟ ⎜ ⎟ I Q 2 ⎝ −2VP ⎜ I ⎟ V ⎠ IQ ⎝ Q ⎠ ⎝ P⎠ We had iD 2 = I Q − iD1 Then 2 2 iD 2 1 ⎛ 1 ⎞ 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ = −⎜ ⎟ ⋅ vd −⎜ ⎟ ⎜ ⎟ I Q 2 ⎝ −2VP ⎜ I ⎟ V ⎠ IQ ⎝ Q ⎠ ⎝ P⎠ b. If iD1 = I Q , then 2 2 1 ⎛ 1 ⎞ 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ 1= +⎜ ⎟ ⋅ vd −⎜ ⎟ ⎜ ⎟ 2 ⎝ −2VP ⎜ I ⎟ V ⎠ IQ ⎝ Q ⎠ ⎝ P⎠ 2 2 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ VP = vd −⎜ ⎟ ⎜ ⎟ ⎜ I ⎟ V IQ ⎝ Q ⎠ ⎝ P⎠ Square both sides
  • 39. ⎡ 2I ⎛I ⎞ ⎛ vd ⎞ ⎤ 2 2 = v ⎢ DSS − ⎜ DSS ⎟ ⎜ ⎟ ⎥ 2 2 VP ⎢ IQ ⎜ I ⎟ V ⎠ ⎝ P⎠ ⎥ d ⎣ ⎝ Q ⎦ 2 2 ⎛ I DSS ⎞ ⎛ 1 ⎞ 2 2 2 I DSS 2 ⎟ ⎜ ⎟ ( vd ) − 2 ⎜ ⋅ vd + VP =0 ⎜ I ⎟ V ⎝ Q ⎠ ⎝ P⎠ IQ 2 2 2 2 I DSS ⎛ 2I ⎞ ⎛I ⎞ ⎛ 1 ⎞ ⎟ ⎜ ⎟ (VP ) 2 ± ⎜ DSS ⎟ − 4 ⎜ DSS ⎜ I ⎟ ⎜ I ⎟ V 2 IQ ⎝ Q ⎠ ⎝ Q ⎠ ⎝ P⎠ vd = 2 2 ⎛ 2I ⎞ ⎛ 1 ⎞ 2 ⎜ DSS ⎟ ⎜ ⎟ ⎜ IQ ⎟ ⎝ VP ⎠ ⎝ ⎠ 2 ⎛ IQ ⎞ vd = (VP ) ⎜ 2 ⎟ ⎝ I DSS ⎠ 1/ 2 ⎛ IQ ⎞ Or vd = VP ⎜ ⎟ ⎝ I DSS ⎠ c. For vd small, IQ 1 IQ 2 I DSS iD1 ≈ + ⋅ ⋅ vd 2 2 ( −VP ) IQ diD1 1 IQ 2 I DSS gf = = ⋅ ⋅ 2 ( −VP ) vd → 0 d vd IQ ⎛ 1 ⎞ I Q I DSS Or ⇒ g f ( max ) = ⎜ ⎟ ⎝ −VP ⎠ 2 11.53 Ad = g m ( ro 2 Ro ) Want Ad = 400 From Example 11.15, ro 2 = 1 M Ω Assuming that g m = 0.283 mA / V for the PMOS from Example 11.15, then Ro = 285 M Ω. ⎛ k ′ ⎞⎛ W ⎞ So 400 = g m (1000 285000 ) ⇒ g m = 0.4014 mA / V = 2 ⎜ n ⎟ ⎜ ⎟ I DQ ⎝ 2 ⎠ ⎝ L ⎠1 ⎛ 0.080 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ 0.04028 = ⎜ ⎟ ⎜ ⎟ ( 0.1) ⇒ ⎜ ⎟ = ⎜ ⎟ = 10.1 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 ⎝ L ⎠ 2 11.54 a. I Q = I D1 + I D 2 ⇒ I Q = 1 mA v0 = 7 = 10 − ( 0.5 ) RD ⇒ RD = 6 kΩ b. ⎛ 1 ⎞ I Q ⋅ I DSS g f ( max ) = ⎜ ⎟ ⎝ −VP ⎠ 2 ⎛ 1 ⎞ (1)( 2 ) g f ( max ) = ⎜ ⎟ ⇒ g f ( max ) = 0.25 mA/V ⎝ 4⎠ 2 c. g R Ad = m D = g f ( max ) ⋅ RD 2 Ad = ( 0.25 )( 6 ) ⇒ Ad = 1.5
  • 40. 11.55 a. −VGS − ( −5 ) 2 ⎛ V ⎞ IS = = ( 2 ) I DSS ⎜ 1 − GS ⎟ RS ⎝ VP ⎠ 2 ⎛ V ⎞ 5 − VGS = ( 2 )( 0.8 )( 20 ) ⎜ 1 − GS ⎟ ⎜ ( −2 ) ⎟ ⎝ ⎠ ⎛ 1 2 ⎞ 5 − VGS = ( 2 )16 ⎜1 + VGS + VGS ⎟ ⎝ 4 ⎠ 2 8VGS + 33VGS + 27 = 0 −33 ± 1089 − 4 ( 8 )( 27 ) VGS = 2 (8) = −1.125 V 5 − ( −1.125 ) IS = 20 = 0.306 mA I D1 = I D 2 = 0.153 mA vo 2 = 1.17 V (b) 11.56 Equivalent circuit and analysis is identical to that in problem 11.36. 1 ⋅ g m RL Ad 2 = 2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 1 − ⋅ g m RL Ad 1 = 2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ v02 − v01 g m RL Av = = vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 11.57 (a) Ad = g m ( ro 2 ro 4 ) 0.1 gm = = 3.846 mA/V 0.026 120 ro 2 = = 1200 K 0.1 80 ro 4 = = 800 K 0.1 Ad = ( 3.846 ) (1200 800 ) Ad = 1846 (b)
  • 41. For Ad = 923 = ( 3.846 ) (1200 800 RL ) 480 RL 240 = 480 RL = ⇒ RL = 480 K 480 + RL 11.58 (a) ⎛ 2⎞ I Q = 250 μ A I REF = I Q ⎜ 1 + ⎟ ⎝ β⎠ ⎛ 2 ⎞ = 250 ⎜1 + ⎟ = 252.8 μ A ⎝ 180 ⎠ 5 − ( 0.7 ) − ( −5 ) R1 = ⇒ R1 = 36.8 K 0.2528 (b) 0.125 Ad = g m ( ro 2 ro 4 ) gm = = 4.808 mA/V 0.026 150 ro 2 = = 1200 K 0.125 100 Ad = ( 4.808 ) (1200 800 ) ro 4 = = 800 K 0.125 Ad = 2308 (c) 2 (180 )( 0.026 ) Rid = 2rπ = ⇒ Rid = 74.9 K 0.125 Ro = ro 2 ro 4 = 1200 800 = 480 K = Ro (d) vcm ( max ) = 5 − 0.7 = 4.3 V vcm ( min ) = 0.7 + 0.7 − 5 = −3.6 V 11.59 a. ⎛ IQ ⎞ ⎛ 1 ⎞ I 0 = I B3 + I B 4 ≈ 2 ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠⎝ β ⎠ I Q 0.2 I0 = = ⇒ I0 = 2 μ A β 100 b. V 100 r02 = r04 = A = = 1000 kΩ I CQ 0.1 I CQ 0.1 gm = = = 3.846 mA/V VT 0.026 Ad = g m ( r02 r04 ) = ( 3.846 ) (1000 1000 ) ⇒ Ad = 1923 c. ( Ad = g m r02 r04 RL ) Ad = ( 3.846 ) (1000 1000 250 ) ⇒ Ad = 641 11.60 a.
  • 42. Ad = g m ( r02 r04 RL ) I CQ IQ gm = = VT 2VT V 125 r02 = A 2 = I CQ I CQ VA 4 80 r04 = = I CQ I CQ If I Q = 2 mA, then g m = 38.46 mA/V r02 = 125 kΩ, r04 = 80 kΩ So Ad = 38.46 ⎡125 80 200 ⎤ ⎣ ⎦ Or Ad = 1508 For each gain of 1000. lower the current level For I Q = 0.60 mA, I CQ = 0.30 mA 0.3 gm = = 11.54 mA/V 0.026 125 r02 = = 417 kΩ 0.3 80 r04 = = 267 kΩ 0.3 Ad = 11.54 ⎡ 417 267 200 ⎤ = 1036 ⎣ ⎦ So I Q = 0.60 mA is adequate b. For V + = 10 V, VBE = VEB = 0.6 V For VCB = 0, vcm ( max ) = V + − 2VEB = 10 − 2 ( 0.6 ) Or vcm ( max ) = 8.8 V 11.61 a. From symmetry. 0.1 VGS 3 = VGS 4 = VDS 3 = VDS 4 = +1 0.1 Or VDS 3 = VDS 4 = 2 V 0.1 VSG1 = VSG 2 = +1 = 2 V 0.1 VSD1 = VSD 2 = VSG1 − (VDS 3 − 10 ) = 2 − ( 2 − 10 ) Or VSD1 = VSD 2 = 10 V b. 1 1 r0 n = = ⇒ 1 MΩ λn I DQ ( 0.01)( 0.1) 1 1 r0 p = = ⇒ 0.667 MΩ λP I DQ ( 0.015 )( 0.1) g m = 2 K p (VSG + VTP ) = 2 ( 0.1)( 2 − 1) = 0.2 mA / V Ad = g m ( ron rop ) = ( 0.2 ) (1000 667 ) ⇒ Ad = 80 (c)
  • 43. IQ I D 2 = I D1 = = 0.1 mA 2 1 1 ro 4 = = = 1000 k Ω λn I D 4 ( 0.01)( 0.1) 1 1 ro 2 = = = 667 k Ω λP I D 2 ( 0.015)( 0.1) Ro = ro 2 ro 4 = 667 1000 = 400 k Ω 11.62 Ad = g m ( ro 4 ro 2 ) ⎛ 0.08 ⎞ gm = 2 ⎜ ⎟ ( 2.5 )( 0.05 ) ⎝ 2 ⎠ = 0.1414 mA/V 1 ro 4 = = 1000 K ( 0.02 )( 0.05 ) 1 ro 2 = = 1333 K ( 0.015)( 0.05 ) Ad = ( 0.1414 ) (1000 1333) Ad = 80.8 11.63 R04 = r04 ⎡1 + g m 4 ( R rπ 4 ) ⎤ ⎣ ⎦ 80 r04 = = 800 K 0.1 0.1 gm4 = = 3.846 0.026 (100 )( 0.026 ) rπ 4 = 0.1 = 26 K R rπ 4 = 1 26 = 0.963 K Assume β = 100 (100 )( 0.026 ) rπ 3 = = 26 kΩ 0.1 0.1 g m3 = = 3.846 mA/V 0.026 R04 = 800 ⎡1 + ( 3.846 )( 0.963) ⎤ ⇒ 3.763 MΩ ⎣ ⎦ ⇒ R0 = 3.763MΩ Then Av = − g m ( r02 R0 ) 120 r02 = = 1200 kΩ 0.1 0.1 gm = = 3.846 mA/V 0.026 Av = − ( 3.846 ) ⎡1200 3763⎤ ⇒ Av = −3499 ⎣ ⎦ b. For
  • 44. 80 R = 0, r04 = = 800 kΩ 0.1 Av = − g m ( r02 r04 ) = − ( 3.846 ) ⎡1200 800 ⎤ ⇒ Av = −1846 ⎣ ⎦ (c) For part (a), Ro = ( 3.763 1.2 ) = 0.910 M Ω For part (b), Ro = (1.2 0.8 ) = 0.48 M Ω 11.64 IE5 I +I I +I I B5 = = B3 B4 = C 3 C 4 1+ β 1+ β β (1 + β ) Now I C 3 + I C 4 ≈ I Q IQ So I B 5 ≈ β (1 + β ) IE6 I Q1 I B6 = = 1 + β β (1 + β ) For balance, we want I B 6 = I B 5 So that I Q1 = I Q 11.65 Resistance looking into drain of M4. Vsg 4 ≅ I X R1 VX − Vsg 4 I X ± g m 4Vsg 4 = r04 ⎡ R ⎤ V I X ⎢1 + g m 4 R1 + 1 ⎥ = X ⎣ r04 ⎦ r04 ⎡ R ⎤ Or R0 = r04 ⎢1 + g m 4 R1 + 1 ⎥ ⎣ r04 ⎦ a.
  • 45. Ad = g m 2 ( ro 2 Ro ) g m 2 = 2 K n I DQ = 2 ( 0.080 )( 0.1) = 0.179 mA / V 1 1 ro 2 = = = 667 k Ω λn I DQ ( 0.015 )( 0.1) g m 4 = 2 K P I DQ = 2 ( 0.080 )( 0.1) = 0.179 mA / V 1 1 ro 4 = = = 500 k Ω λ p I DQ ( 0.02 )( 0.1) ⎡ 1 ⎤ R0 = 500 ⎢1 + ( 0.179 )(1) + = 590.5 kΩ ⎣ 500 ⎥ ⎦ Ad = ( 0.179 ) ⎡667 590.5⎤ ⇒ Ad = 56.06 ⎣ ⎦ b. When R1 = 0, R0 = r04 = 500 kΩ Ad = ( 0.179 ) ⎡667 500 ⎤ ⇒ Ad = 51.15 ⎣ ⎦ (c) For part (a), Ro = ro 2 Ro = 667 590.5 ⇒ Ro = 313 k Ω For part (b), Ro = ro 2 ro 4 = 667 500 ⇒ Ro = 286 kΩ 11.66 Let β = 100, VA = 100 V
  • 46. VA 100 ro 2 = = = 1000 k Ω I CQ 0.1 Ro 4 = ro 4 [1 + g m RE ] where RE = rπ RE ′ ′ Now (100 )( 0.026 ) rπ = = 26 k Ω 0.1 0.1 gm = = 3.846 mA / V 0.026 ′ RE = 26 1 = 0.963 k Ω Then Ro 4 = 1000 ⎡1 + ( 3.846 )( 0.963) ⎤ = 4704 k Ω ⎣ ⎦ Ad = g m ( ro 2 Ro 4 ) = 3.846 (1000 4704 ) ⇒ Ad = 3172 11.67 (a) For Q2, Q4 Vx − Vπ 4 V (1) Ix = + g m 2Vπ 2 + g m 4Vπ 4 + x ro 2 ro 4 Vx − Vπ 4 V (2) g m 2Vπ 2 + = π4 ro 2 rπ 4 rπ 2 (3) Vπ 4 = −Vπ 2 Vx ⎡ 1 1 ⎤ From (2) = Vπ 4 ⎢ + + gm2 ⎥ ro 2 ⎢ ⎣ rπ 4 rπ 2 ro 2 ⎥ ⎦
  • 47. Now ⎛ β ⎞ ⎛ IQ ⎞ ⎛ 120 ⎞ IC 4 = ⎜ ⎟⎜ ⎟=⎜ ⎟ ( 0.5 ) = 0.496 mA ⎝ 1+ β ⎠⎝ 2 ⎠ ⎝ 121 ⎠ ⎛ IQ ⎞ ⎛ 1 ⎞ ⎛ β ⎞ ⎛ 120 ⎞ IC 2 = ⎜ ⎟⎜ ⎟⎜ ⎟ = ( 0.5 ) ⎜ ⎟ ⇒ I C 2 = 0.0041 mA ⎜ (121)2 ⎟ ⎝ 2 ⎠⎝ 1+ β ⎠⎝ 1+ β ⎠ ⎝ ⎠ So (120 )( 0.026 ) rπ 2 = = 761 k Ω 0.0041 0.0041 gm2 = = 0.158 mA/V 0.026 100 ro 2 = ⇒ 24.4 M Ω 0.0041 (120 ) ( 0.026 ) rπ 4 = = 6.29 k Ω 0.496 0.496 gm4 = = 19.08 mA / V 0.026 100 ro 4 = = 202 k Ω 0.496 Now Vx ⎡ 1 1 ⎤ Vx = Vπ 4 ⎢ + + 0.158⎥ ⇒ which yields Vπ 4 = ro 2 ⎢ 6.29 761 24400 ⎣ ⎥ ⎦ ( 0.318) ro 2 From (1), V V ⎛ 1 ⎞ I x = x + x + Vπ 4 ⎜ g m 4 − g m 2 − ⎟ ro 2 ro 4 ⎝ ro 2 ⎠ ⎡ ⎛ 1 ⎞⎤ Ix ⎢ 1 ⎜ 19.08 − 0.158 − ⎟ 1 24400 ⎠ ⎥ +⎝ V =⎢ + ⎥ which yields Ro 2 = x = 135 k Ω Vx ⎢ 24400 202 ( 0.318)( 24400 ) ⎥ Ix ⎢ ⎥ ⎣ ⎦ 80 Now ro 6 = = 160 k Ω 0.5 Then Ro = Ro 2 ro 6 = 135 160 ⇒ Ro = 73.2 k Ω (b) Δi Ad = g m Ro where g m = c c vd / 2
  • 48. vd Δi = g m1Vπ 1 + g m 3Vπ 3 and Vπ 1 + Vπ 3 = 2 ⎛V ⎞ Also ⎜ π 1 + g m1Vπ 1 ⎟ rπ 3 = Vπ 3 ⎝ rπ 1 ⎠ ⎛1+ β ⎞ So Vπ 1 ⎜ ⎟ rπ 3 = Vπ 3 ⎝ rπ 1 ⎠ ⎛ 121 ⎞ Or Vπ 1 ⎜ ⎟ ( 6.29 ) = Vπ 3 ≅ Vπ 1 ⎝ 761 ⎠ v v Then 2Vπ 1 = d ⇒ Vπ 1 = d 2 4 ⎛v ⎞ ⎛v ⎞ So Δi = ( g m1 + g m 3 ) Vπ 1 = ( 0.158 + 19.08 ) ⎜ d ⎟ = 9.62 ⎜ d ⎟ ⎝ 4⎠ ⎝ 2⎠ Δi So g m = c = 9.62 ⇒ Ad = ( 9.62 )( 73.2 ) ⇒ Ad = 704 vd / 2 Now Rid = 2 Ri where Ri = rπ 1 + (1 + β ) rπ 3 Ri = 761 + (121)( 6.29 ) = 1522 k Ω Then Rid = 3.044 M Ω 11.69 (a) Ad = 100 = g m ( ro 2 ro 4 ) Let I Q = 0.5 mA 1 1 ro 2 = = = 200 k Ω λn I D ( 0.02 )( 0.25 ) 1 1 ro 4 = = = 160 k Ω λP I D ( 0.025 )( 0.25 ) Then 100 = g m ( 200 160 ) ⇒ g m = 1.125 mA / V ⎛ K′ ⎞⎛W ⎞ gm = 2 ⎜ n ⎟ ⎜ ⎟ ID ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.080 ⎞ ⎛ W ⎞ ⎛W ⎞ 1.125 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.25 ) ⇒ ⎜ ⎟ = 31.6 ⎝ 2 ⎠⎝ L ⎠ ⎝ L ⎠n ⎛W ⎞ ⎛W ⎞ Now ⎜ ⎟ somewhat arbitrary. Let ⎜ ⎟ = 31.6 ⎝ L ⎠P ⎝ L ⎠P 11.70
  • 49. Ad = g m ( ro 2 ro 4 ) P = ( I Q + I REF ) (V + − V − ) Let I Q = I REF Then 0.5 = 2 I Q ( 3 − ( −3) ) ⇒ I Q = I REF = 0.0417 mA 1 1 ro 2 = = = 3205 k Ω λn I D ( 0.015 )( 0.0208 ) 1 1 ro 4 = = = 2404 k Ω λP I D ( 0.02 )( 0.0208 ) Then Ad = 80 = g m ( 3205 2404 ) ⇒ g m = 0.0582 mA/V ⎛ k ′ ⎞⎛ W ⎞ gm = 2 ⎜ n ⎟ ⎜ ⎟ I D ⎝ 2 ⎠ ⎝ L ⎠n ⎛ 0.080 ⎞⎛ W ⎞ ⎛W ⎞ 0.0582 = 2 ⎜ ⎟⎜ ⎟ ( 0.0208 ) ⇒ ⎜ ⎟ = 1.02 ⎝ 2 ⎠⎝ L ⎠ n ⎝ L ⎠n 11.71 Ad = g m ( ro 2 Ro ) ≈ g m ro 2 1 ro 2 = λn I D 1 = = 666.7 K ( 0.015)( 0.1) Ad = 400 = g m ( 666.7 ) g m = 0.60 mA/V ⎛ k′ ⎞⎛ W ⎞ = 2 ⎜ n ⎟⎜ ⎟ ID ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.08 ⎞ ⎛ W ⎞ 0.60 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) ⎝ 2 ⎠⎝ L ⎠ ⎛W ⎞ 0.090 = 0.004 ⎜ ⎟ ⎝L⎠ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 22.5 ⎝ L ⎠1 ⎝ L ⎠ 2 11.72
  • 50. Ad = g m ( Ro 4 Ro 6 ) where Ro 4 = ro 4 + ro 2 [1 + g m 4 ro 4 ] Ro 6 = ro 6 + ro8 [1 + g m 6 ro 6 ] We have 1 ro 2 = ro 4 = = 1667 k Ω ( 0.015 )( 0.040 ) 1 ro 6 = ro8 = = 1250 k Ω ( 0.02 )( 0.040 ) ⎛ 0.060 ⎞ gm4 = 2 ⎜ ⎟ (15 )( 0.040 ) = 0.268 mA/V ⎝ 2 ⎠ ⎛ 0.025 ⎞ gm6 = 2 ⎜ ⎟ (10 )( 0.040 ) = 0.141 mA/V ⎝ 2 ⎠ Then Ro 4 = 1667 + 1667 ⎡1 + ( 0.268 )(1667 ) ⎤ ⇒ 748 M Ω ⎣ ⎦ Ro 6 = 1250 + 1250 ⎡1 + ( 0.141)(1250 ) ⎤ ⇒ 222.8 M Ω ⎣ ⎦ (a) Ro = Ro 4 Ro 6 = 748 222.8 ⇒ Ro = 172 M Ω (b) Ad = g m 4 ( Ro 4 Ro 6 ) = ( 0.268 )(172000 ) ⇒ Ad = 46096 11.73 Ad = g m ( ro 2 ro 4 ) 1 ro 2 = ro 4 = λ ID 1 = = 500 K ( 0.02 )( 0.1) gm = 2 Kn I D = 2 ( 0.5)( 0.1) = 0.4472 mA/V Ad = ( 0.4472 ) ( 500 500 ) ⇒ Ad = 112 Ro = ro 2 ro 4 = 500 500 ⇒ Ro = 250 K 11.74 (a) I DP = K p (VSG + VTP ) 2 0.4 + 1 = VSG 3 = 1.894 V 0.5 I DN = K n (VGS − VTN ) 2 0.4 + 1 = VGS 1 = 1.894 V 0.5 VDS1 ( sat ) = VGS1 − VTN = 1.894 − 1 = 0.894 V V + = VSG 3 + VDS1 ( sat ) − VGS 1 + vCM V + = 1.894 + 0.894 − 1.894 + 4 ⇒ V + = 4.89 V = −V − (b)
  • 51. Ad = g m ( ro 2 ro 4 ) 1 1 ro 2 = ro 4 = = = 166.7 K λ ID ( 0.015 )( 0.4 ) gm = 2 Kn I D = 2 ( 0.5 )( 0.4 ) = 0.8944 mA/V Ad = ( 0.8944 ) (166.7 166.7 ) ⇒ Ad = 74.5 11.75 (a) For vcm = +2V ⇒ V + = 2.7 V If I Q is a 2-transistor current source, V − = vcm − 0.7 − 0.7 V − = −3.4 V ⇒ V + = −V − = 3.4 V (b) 100 Ad = g m ( ro 2 ro 4 ) ro 2 = = 1000 K 0.1 60 ro 4 = = 600 K 0.1 0.1 gm = = 3.846 mA/V 0.026 Ad = ( 3.846 ) (1000 600 ) ⇒ Ad = 1442 11.76 (a) V + = −V − = 3.4 V (b) 75 ro 2 = = 1250 K 0.06 40 ro 4 = = 666.7 K 0.06 0.06 gm = = 2.308 mA/V 0.026 Ad = ( 2.308 ) (1250 666.7 ) Ad = 1004 11.77 g m1 = 2 K n I Bias1 = 2 ( 0.2 )( 0.25 ) = 0.447 mA/V I CQ 0.75 gm2 = = = 28.85 mA/V VT 0.026 β VT (120 )( 0.026 ) rπ 2 = = = 4.16 kΩ I CQ 0.75
  • 52. i0 = g m1Vgs1 + g m 2Vπ 2 Vπ 2 = g m1Vgs1rπ 2 and vi = Vgs1 + Vπ 2 i0 = Vgs1 ( g m1 + g m 2 ⋅ g m1rπ 2 ) vi vi = Vgs1 + g m1Vgs1rπ 2 and Vgs1 = 1 + g m1rπ 2 g m1 (1 + β ) i0 = vi ⋅ 1 + g m1rπ 2 i0 g m1 (1 + β ) ( 0.447 )(121) gm = C = = vi 1 + g m1rπ 2 1 + ( 0.447 )( 4.16 ) ⇒ g m = 18.9 mA/V C 11.78 1 1 r0 ( M 2 ) = = = 500 kΩ λn I DQ ( 0.01)( 0.2 ) VA 80 r0 ( Q2 ) = = = 400 kΩ I CQ 0.2 g m ( M 2 ) = 2 K n I DQ = 2 ( 0.2 )( 0.2 ) = 0.4 mA/V Ad = g m ( M 2 ) ⎡ r0 ( M 2 ) r0 ( Q2 ) ⎤ ⎣ ⎦ = 0.4 ⎡500 400 ⎤ ⇒ Ad = 88.9 ⎣ ⎦ If the IQ current source is ideal, Acm = 0 and C M RRdB = ∞ 11.79 a. b. Assume RL is capacitively coupled. Then
  • 53. I CQ + I DQ = I Q VBE 0.7 I DQ = = = 0.0875 mA R1 8 I CQ = 0.9 − 0.0875 = 0.8125 mA g m1 = 2 K P I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V I CQ 0.8125 gm2 = = ⇒ g m 2 = 31.25 mA/V VT 0.026 β VT (100 )( 0.026 ) rπ 2 = = ⇒ rπ 2 = 3.2 kΩ I CQ 0.8125 c. V0 = ( − g m1Vsg − g m 2Vπ 2 ) RL Vi + Vsg = V0 ⇒ Vsg = V0 − Vi Vπ 2 = ( g m1Vsg ) ( R1 rπ 2 ) V0 = − ⎡ g m1Vsg + g m 2 g m1Vsg ( R1 rπ 2 ) ⎤ RL ⎣ ⎦ V0 = − (V0 − Vi ) ⎣ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL ⎡ ⎤ ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL ⎤ = ⎣ V0 Av = Vi 1 + ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤ RL ⎣ ⎦ We find g m1 + g m 2 g m1 ( R1 rπ 2 ) = 0.592 + ( 31.25 )( 0.592 ) ( 8 3.2 ) = 42.88 ( 42.88 )( RL ) Then Av = 1 + ( 42.88 )( RL ) 11.80 a. Assume RL is capacitively coupled. 0.7 I DQ = = 0.0875 mA 8 I CQ = 1.2 − 0.0875 = 1.11 mA g m1 = 2 K p I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V I CQ 1.11 gm2 = = ⇒ g m 2 = 42.7 mA/V VT 0.026 β VT (100 )( 0.026 ) rπ 2 = = ⇒ rπ 2 = 2.34 kΩ I CQ 1.11 b.
  • 54. Vsg = VX I X = g m 2Vπ 2 + g m1Vsg (g V m1 sg )(R1 rπ 2 ) = Vπ 2 I X = VX ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤ ⎣ ⎦ VX 1 R0 = = IX g m1 + g m 2 g m1 ( R1 rπ 2 ) 1 = ⇒ R0 = 21.6 Ω 0.592 + ( 0.592 )( 42.7 ) ( 8 2.34 ) 11.81 (a) Vo − ( −Vπ ) (1) g m 2Vπ + =0 ro 2 Vo − ( −Vπ ) −Vπ −Vπ ⎛ 1 1⎞ (2) g m 2Vπ + = g m1Vi + + or 0 = g m1Vi − Vπ ⎜ + ⎟ ro 2 ro1 rπ ⎝ ro1 rπ ⎠ g m1Vi Then Vπ = ⎛ 1 1⎞ ⎜ + ⎟ ⎝ ro1 rπ ⎠ From (1)
  • 55. 1 ⎞ Vo ⎜ g m 2 + ⎟ Vπ + =0 ⎝ ro 2 ⎠ ro 2 ⎛ 1 ⎞ ⎜ gm2 + ⎟ ⎛ 1 ⎞ Vo = −ro 2 ⎜ g m 2 + ⎟ Vπ = −ro 2 g m1Vi ⎝ ro 2 ⎠ ⎝ ro 2 ⎠ ⎛ 1 1⎞ ⎜ + ⎟ ⎝ ro1 rπ ⎠ ⎛ 1 ⎞ − g m1ro 2 ⎜ g m 2 + ⎟ V Av = o = ⎝ ro 2 ⎠ Vi ⎛ 1 1⎞ ⎜ + ⎟ ⎝ ro1 rπ ⎠ Now g m1 = 2 K n I Q = 2 ( 0.25)( 0.025 ) = 0.158 mA / V IQ 0.025 gm2 = = = 0.9615 mA / V VT 0.026 1 1 ro1 = = = 2000 k Ω λ IQ ( 0.02 )( 0.025) VA 50 ro 2 = = = 2000 k Ω I Q 0.025 β VT (100 )( 0.026 ) rπ = = = 104 k Ω IQ 0.025 Then ⎛ 1 ⎞ − ( 0.158 )( 2000 ) ⎜ 0.9615 + ⎟ Av = ⎝ 2000 ⎠ ⇒ Av = −30039 ⎛ 1 1 ⎞ ⎜ + ⎟ ⎝ 2000 104 ⎠ To find Ro; set Vi = 0 ⇒ g m1Vi = 0
  • 56. Vx − ( −Vπ ) I x = g m 2Vπ + ro 2 Vπ = − I x ( ro1 rπ ) Then ⎛ 1 ⎞ V I x = ⎜ g m 2 + ⎟ ( − I x ) ( ro1 rπ ) + x ⎝ ro 2 ⎠ ro 2 Combining terms, Vx ⎡ ⎛ 1 ⎞⎤ Ro = = ro 2 ⎢1 + ( ro1 rπ ) ⎜ g m 2 + ⎟ ⎥ Ix ⎣ ⎝ ro 2 ⎠ ⎦ ⎡ ⎛ 1 ⎞⎤ = 2000 ⎢1 + ( 2000 104 ) ⎜ 0.9615 + ⎟ ⇒ Ro = 192.2 M Ω ⎣ ⎝ 2000 ⎠ ⎥ ⎦ (b) Vo − ( −Vgs 3 ) (1) g m 3Vgs 3 + =0 ro3 Vo − ( −Vgs 3 ) −Vgs 3 − ( −Vπ 2 ) ⎛ 1 ⎞ Vgs 3 (2) g m 3Vgs 3 + = g m 2Vπ 2 + or 0 = Vπ 2 ⎜ g m 2 + ⎟ − ro3 ro 2 ⎝ ro 2 ⎠ ro 2 Vπ 2 −Vgs 3 − ( −Vπ 2 ) ( −Vπ 2 ) (3) + g m 2Vπ 2 + = g m1Vi + rπ 2 ro 2 ro1 Vgs 3 From (2), Vπ 2 = ⎛ 1 ⎞ ro 2 ⎜ g m 2 + ⎟ ⎝ ro 2 ⎠ Then ⎛ 1 1 1⎞ Vgs 3 (3) Vπ 2 ⎜ + gm2 + + ⎟ = g m1Vi + ⎝ rπ 2 ro 2 ro1 ⎠ ro 2 or
  • 57. Vgs 3 ⎡ 1 1 1⎤ Vgs 3 ⎢ + gm2 + + ⎥ = g m1Vi + ⎛ 1 ⎞ r ro 2 ⎜ g m 2 + ⎟ ⎣ π 2 ro 2 ro1 ⎦ ro 2 ⎝ ro 2 ⎠ Vgs 3 ⎡ 1 1 1 ⎤ Vgs 3 ⎛ 1 ⎞⎣ ⎢104 + 0.9615 + 2000 + 2000 ⎥ = 0.9615Vi + 2000 2000 ⎜ 0.9615 + ⎦ ⎟ ⎝ 2000 ⎠ Then Vgs 3 = 1.83 × 105 Vi ⎛ 1 ⎞ −V ⎛ 1 ⎞ ⎟ (1.83 ×10 ) Vi 5 From (1), ⎜ g m 3 + ⎟ Vgs 3 = o or Vo = −2000 ⎜ 0.158 + ⎝ ro 3 ⎠ ro3 ⎝ 2000 ⎠ V Av = o = −5.80 × 107 Vi To find Ro Vx − ( −Vgs 3 ) (1) I x = g m 3Vgs 3 + ro3 Vx − ( −Vgs 3 ) −Vgs 3 − ( −Vπ 2 ) (2) g m 3Vgs 3 + = g m 2Vπ 2 + ro 3 ro 2 (3) Vπ 2 = − I x ( ro1 rπ 2 ) ⎛ 1 ⎞ V From (1) I x = Vgs 3 ⎜ g m 3 + ⎟ + x ⎝ ro 3 ⎠ ro3 ⎛ 1 ⎞ Vx I x = Vgs 3 ⎜ 0.158 + ⎟+ ⎝ 2000 ⎠ 2000 V Ix − x So Vgs 3 = 2000 0.1585