SlideShare a Scribd company logo
Chapter 5
Exercise Problems

EX5.1
       α
β=
      1−α
                     0.980
For α = 0.980, β =           = 49
                   1 − 0.980
                     0.995
For α = 0.995, β =           = 199
                   1 − 0.995
So 49 ≤ β ≤ 199

EX5.2
            BVCBO         200
BVCEO =               =             or BVCEO = 40.5 V
             n   β        3
                              120

EX5.3
      V − VBE ( on ) 2 − 0.7
 I B = BB           =        ⇒ 6.5 μ A
          RB          200
 I C = β I = (120 )( 6.5 μ A ) ⇒ I C = 0.78 mA
VCE = VCC − I C RC = 5 − ( 0.78 )( 4 ) or VCE = 1.88 V
  P = I BVBE ( on ) + I CVCE = ( 0.0065 )( 0.7 ) + ( 0.78 )(1.88 ) ≅ 1.47 mW

EX5.4
      V + − VEB ( on ) − VBB 5 − 0.7 − 2.8
 IB =                       =              or I B = 4.62 μ A
               RB                 325
 I C = β I B = ( 80 )( 4.615 ) ⇒ I C = 0.369 mA
VEC = 2 = 5 − ( 0.369 ) RC which yields RC = 8.13 k Ω

EX5.5
                     VBB − VBE ( on )        2 − 0.7
(a)          IB =                        =           ⇒ 5.91 μ A
                              RB              220
            I C = β I B = (100 )( 5.91 μ A ) ⇒ 0.591 mA
            I E = (1 + β ) I B = 0.597 mA
           VCE = VCC − I C RC = 10 − ( 0.591)( 4 ) or VCE = 7.64 V
               6.5 − 0.7
(b)         IB =         ⇒ 26.4 μ A
                 220
Transistor is biased in saturation mode, so
 VCE = VCE ( sat ) = 0.2 V
         VCC − VCE ( sat )          10 − 0.2
  IC =                          =            or I C = 2.45 mA
                 RC                    4
  I E = I C + I B = 2.45 + 0.0264 ≅ 2.48 mA

EX5.6
For 0 ≤ VI < 0.7 V , Qn is cutoff, VO = 9 V
                                                                  (100 )(VI − 0.7 )( 4 )
When Qn is biased in saturation, we have 0.2 = 9 −                                         ⇒ VI = 5.1 V
                                                                          200
So, for VI ≥ 5.1 V , VO = 0.2 V

EX5.7
VBB − VBE ( on )           8 − 0.7
IB =                      =
       RB + (1 + β ) RE       30 + ( 76 )(1.2 )
or I B = 60.2 μ A
 I C = β I B = ( 75 )( 60.23 μ A ) ⇒ 4.52 mA
 I E = (1 + β ) I B = 4.58 mA
VCE = VCC − I C RC − I E RE
      = 12 − ( 4.517 )( 0.4 ) − ( 4.577 )(1.2 )
or VCE = 4.70 V

EX5.8
For VC = 4 V and ICQ = 1.5 mA,
     V + − VC 10 − 4
RC =          =        ⇒ RC = 4 k Ω
        I CQ     1.5
      ⎛ 1+ β ⎞      ⎛ 101 ⎞
 IE = ⎜      ⎟ IC = ⎜     ⎟ (1.5 ) = 1.515 mA
      ⎝   β ⎠       ⎝ 100 ⎠
           −V ( on ) − V −
also I E = BE
                 RE
              −0.7 − ( −10 )
Then RE =                      ⇒ RE = 6.14 k Ω
                  1.515

EX5.9
       3 − 0.7
I EQ =         = 0.25
         RE
RE = 9.2 kΩ
       ⎛ 75 ⎞
I CQ = ⎜ ⎟ ( 0.25 ) = 0.2467 mA
       ⎝ 76 ⎠
−0.7 + VCEQ + I CQ RC − 3 = 0
       3 + 0.7 − 2
RC =               ⇒ RC = 6.89 kΩ
         0.2467

EX5.10
5 = I E RE + VEB ( on ) + I B RB − 2
                             ⎛     180 ⎞
(a)        5 + 2 − 0.7 = I E ⎜ 2 +     ⎟ I E = 0.9859 mA
                             ⎝      41 ⎠
                                         I C = 0.962 mA
                     ⎛     180 ⎞
(b)        6.3 = I E ⎜ 2 +     ⎟ I E = 1.2725 mA
                     ⎝      61 ⎠
                                 I C = 1.25 mA
                     ⎛     180 ⎞
(c)        6.3 = I E ⎜ 2 +     ⎟ I E = 1.6657 mA
                     ⎝     101 ⎠
                                 I C = 1.64 mA
                     ⎛     180 ⎞
(d)        6.3 = I E ⎜ 2 +     ⎟ I E = 1.97365 mA
                     ⎝     151 ⎠
                                 I C = 1.94 mA

EX5.11
VBB − VEB ( on )            4 − 0.7
IE =                       ⇒ RE =
               RE                     1.0
or RE = 3.3 k Ω
 I C = α I E = ( 0.992 )(1) = 0.992 mA
 I B = I E − I C = 1.0 − 0.992 or I B = 8 μ A
VCB = I C RC − VCC = ( 0.992 )(1) − 5
or VCB = −4.01 V

EX5.12
     V + − (Vγ + VCE ( sat ) ) 5 − (1.5 + 0.2 )
R=                            =
               IC                    15
or R = 220 Ω
      15
 IB =     = 1 mA
      15
      v − VBE ( on ) 5 − 0.7
RB = I               =          = 4.3 k Ω
            IB              1
P = I BVBE (on) + I CVCE
     = (1)( 0.7 ) + (15 )( 0.2 ) = 3.7 mW

EX5.13
(a)        For V1 = V2 = 0, All currents are zero and VO = 5 V.
(b)        For V1 = 5 V, V2 = 0; IB2 = IC2 = 0,
        5 − 0.7
 I B1 =         = 4.53 mA
         0.95
        5 − 0.2
 I C1 =         ⇒ I C1 = I R = 8 mA
          0.6
 VO = 0.2 V
(c)        For V1 = V2 = 5 V, IB1 = IB2 = 4.53 mA; IR = 8 mA, IC1 = IC2 = IR/2 = 4 mA, VO = 0.2 V

EX5.14
 vO = 5 − iC RC = 5 − β iB RC
ΔvO = − βΔiB RC
         VBB + ΔvI − VBE ( on )
  iB =
                    RB
         ΔvI
ΔiB =
         RB
         ΔvO − β RC
Then         =
         ΔvI   RB
Let β = 100, RC = 5 k Ω, RB = 100 k Ω
      Δvo − (100 )( 5 )
So        =             = −5
      ΔvI     100
Want Q-point to be vo ( Q − pt ) = 2.5 = 5 − (100 ) I BQ ( 5 )
                                              VBB − 0.7
Then I BQ = 0.005 mA, I BQ = 0.005 =
                                                100
so VBB = 1.2 V
Also, I CQ = β I BQ = (100 )( 0.005 ) = 0.5 mA

EX5.15
VCEQ = 2.5 = 5 − I CQ RC
            5 − 2.5
or RC =             = 10 k Ω
             0.25
         I CQ 0.25
I BQ   =      =       = 0.002083 mA
          β      120
                 5 − 0.7
Then RB =                ⇒ RB = 2.06 M Ω
                0.002083

EX5.16
(a)    RTH = R1 R2 = 9 2.25 = 1.8 k Ω
                   ⎛ R2 ⎞              ⎛ 2.25 ⎞
             VTH = ⎜         ⎟ ⋅ VCC = ⎜          ⎟ ( 5)
                   ⎝ R1 + R2 ⎠         ⎝ 9 + 2.25 ⎠
or VTH     = 1.0 V
                      VTH − VBE ( on )             1 − 0.7
(b)          I BQ =                       =
                      RTH + (1 + β ) RE       1.8 + (151)( 0.2 )
or I BQ = 9.375 μ A
   I CQ = β I BQ = (150 )( 9.375 μ A )
 or I CQ = 1.41 mA
       I EQ = (1 + β ) I BQ ⇒ I EQ = 1.42 mA
      VCEQ = 5 − I CQ RC − I EQ RE
            = 5 − (1.41)(1) − (1.42 )( 0.2 )
or VCEQ = 3.31 V
(c)         For β = 75
              1 − 0.7
I BQ =                       = 17.6 μ A
         1.8 + ( 76 )( 0.2 )
I CQ = β I BQ = ( 75 )(17.6 μ A )
or I CQ = 1.32 mA
      I EQ = (1 + β ) I BQ = ( 76 )(17.6 μ A )
 or I EQ = 1.34 mA
  VCEQ = 5 − (1.32 )(1) − (1.34 )( 0.2 )
or VCEQ = 3.41 V

EX5.17
VCEQ ≅ VCC − I CQ ( RC + RE )
or 2.5 ≅ 5 − I CQ (1 + 0.2 )
which yields
I CQ = 2.08 mA,
       I CQ 2.08
I BQ =     =        = 0.0139 mA
        β     150
RTH = ( 0.1)(1 + β ) RE = ( 0.1)(151)( 0.2 )
or RTH = 3.02 k Ω
           ⎛ R2 ⎞             1
Now VTH = ⎜          ⎟ ⋅ VCC = ⋅ RTH ⋅ VCC
           ⎝ R1 + R2 ⎠        R1
        1
so VTH = ( 3.02 )( 5 )
        R1
We can write VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
1
or      ( 3.02 )( 5 ) = ( 0.0139 )( 3.02 ) + 0.7 + (151)( 0.0139 )( 0.2 )
     R1
We obtain R1 = 13 k Ω and then R2 = 3.93 k Ω

EX5.18
   β = 150, RTH = R1 || R2
       5−0
I CQ =       = 5 mA
          1
       I CQ    5
I BQ =      =     = 0.0333 mA
        β 150
         VTH − VBE ( on ) − ( −5 )
I BQ =
              RTH + (1 + β ) RE
Set RTH = ( 0.1)(1 + β ) RE
              ⎛ R2 ⎞
We have VTH = ⎜         ⎟ (10 ) − 5
              ⎝ R1 + R2 ⎠
                           ⎛ R2 ⎞
                           ⎜        ⎟ (10 ) − 0.7
                             R + R2 ⎠
Then I BQ       = 0.0333 = ⎝ 1
                             (1.1)(151)( 0.2 )
             ⎛ R2 ⎞
which yields ⎜         ⎟ = 0.1806
             ⎝ R1 + R2 ⎠
           ⎛ RR ⎞
Now RTH = ⎜ 1 2 ⎟ = ( 0.1)(151)( 0.2 ) = 3.02 k Ω
           ⎝ R1 + R2 ⎠
 so R1 ( 0.1806 ) = 3.02 k Ω
We obtain R1 = 16.7 k Ω and R2 = 3.69 k Ω

EX5.19
       V + − V − − VECQ 5 − ( −5 ) − 5
I CQ ≅                 =
           RC + RE        4.5 + 0.5
so I CQ = 1 mA, and
         I CQ        1
I BQ =          =       = 0.00833 mA
          β         120
RTH = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 0.5 )
or RTH = 6.05 k Ω
We can write V + = I EQ RE + VEB ( on ) + I BQ RTH + VTH
                       1
We have VTH =             ⋅ RTH (10 ) − 5 and if we let I EQ ≅ I CQ = 1 mA,
                       R1
                                                               1
then we have 5 = (1)( 0.5 ) + 0.7 + ( 0.00833)( 6.05 ) +          ( 6.05 )(10 ) − 5
                                                               R1
which yields R1 = 6.91 k Ω and R2 = 48.6 k Ω

EX5.20
         ⎛    2⎞            ⎛     2 ⎞
I1 = I Q ⎜ 1 + ⎟ = ( 0.25 ) ⎜1 + ⎟ = 0.2625 mA
         ⎝ β⎠               ⎝ 40 ⎠
     0 − VBE ( on ) − V −
                            0 − 0.7 − ( −5 )
R1 =                      =
              I1                0.2625
or R1 = 16.38 k Ω
For VCEO = 3 V , then VCO = 2.3 V
       ⎛ β ⎞              ⎛ 40 ⎞
I CO = ⎜        ⎟ ⋅ I Q = ⎜ ⎟ ( 0.25 ) = 0.2439 mA
       ⎝ 1+ β ⎠           ⎝ 41 ⎠
         +
      V − VCO 5 − 2.3
RC =                =           = 11.07 k Ω
           I CO        0.2439

EX5.21
RTH 50 ||100 = 33.3 k Ω
              ⎛ 50 ⎞
VTH = VTH = ⎜            ⎟ (10 ) − 5 = −1.67 V
              ⎝ 50 + 100 ⎠
        −1.67 − 0.7 − ( −5 )
 I B1 =                      ⇒ 11.2 μ A
         33.3 + (101)( 2 )
 I C1 = 1.12 mA, I E1 = 1.13 mA
 VE1 = I E1 RE1 − 5 = (1.13)( 2 ) − 5 = −2.74 V
VCE1 = 3.25 V ⇒ VC1 = 0.51 V
Now VE 2 = 0.51 + 0.7 = 1.21 V
         5 − 1.21
IE2 =             = 1.90 mA ⇒ I B 2 = 18.8 μ A
             2
IC 2   = 1.88 mA
I R1 = I C1 − I B 2 = 1.12 − 0.0188 = 1.10 mA
         5 − 0.51
RC1 =             = 4.08 k Ω
           1.10
VEC 2   = 2.5 ⇒ VC 2 = VE 2 − VEC 2
                           = 1.21 − 2.5 = −1.29 V
          −1.29 − ( −5 )
RC 2 =                     = 1.97 k Ω
                1.88

EX5.22
          12
We find        = 240 k Ω = R1 + R2 + R3
         0.05
Then VB1 = ( 0.5)( 2 ) + 0.7 = 1.7 V
                  1.7
          R3 =          = 34 k Ω
                  0.05
Also VB 2      = ( 0.5 )( 2 ) + 4 + 0.7 = 5.7 V
ΔVR 2 = 5.7 − 1.7 = 4 V
          4
so R2 =      = 80 k Ω
        0.05
and R1 = 240 − 80 − 34 = 126 k Ω
   VC 2 = 1 + 4 + 4 = 9 V
                 V + − VC 2 12 − 9
Then RC =                  =       = 6 kΩ
                    I CQ     0.5

Test Your Understanding Exercises
TYU5.1
         β
α=
        1+ β
                       75
For β = 75, α =           = 0.9868
                       76
125
For β = 125, α =             = 0.9921
                         126

TYU5.2
I E = (1 + β ) I B
              IE   0.780
so 1 + β =       =        = 81.25 then β = 80.3
              I B 0.00960
Now
        β        80.25
α=           =         = 0.9877
      1+ β       81.25
I C = α I E = ( 0.9877 )( 0.78 ) = 0.770 mA

TYU5.3
        α     0.990
β=         =          = 99
      1 − α 1 − 0.990
                IE   2.15
Now I B =          =      ⇒ 21.5 μ A and I C = α I E = ( 0.990 )( 2.15 ) = 2.13 mA
              1 + β 100

TYU5.4
    V    150
ro = A =
    IC    IC
For I C = 0.1 mA ⇒ ro = 1.5 M Ω
For I C = 1.0 mA ⇒ ro = 150 k Ω
For I C = 10 mA ⇒ ro = 15 k Ω

TYU5.5
          ⎛ V ⎞
I C = I O ⎜1 + CE ⎟
          ⎝   VA ⎠
At VCE = 1 V , I C = 1 mA
                                       ⎛   1 ⎞
(a)      For VA = 75 V , I C = 1 = I O ⎜1 + ⎟ ⇒ I O = 0.9868 mA
                                       ⎝   75 ⎠
Then, at VCE = 10 V
                 ⎛ 10 ⎞
I C = ( 0.9868 ) ⎜ 1 + ⎟ = 1.12 mA
                 ⎝ 75 ⎠
                                           ⎛      1 ⎞
(b)       For VA = 150 V , I C = 1 = I O ⎜ 1 +       ⎟ ⇒ I O = 0.9934 mA
                                           ⎝ 150 ⎠
                                   ⎛     10 ⎞
At VCE   = 10 V , I C = ( 0.9934 ) ⎜ 1 +     ⎟ = 1.06 mA
                                   ⎝ 150 ⎠

TYU5.6
             BVCBO
BVCEO =              so BVCBO = 3 100 ( 30 ) = 139 V
             n β

TYU5.7
(a)    For VI = 0.2 V < VBE ( on ) ⇒ I B = I C = 0, VO = 5 V and P = 0
(b)         For VI = 3.6 V , transistor is driven into saturation, so
       VI − VBE ( on )       3.6 − 0.7                     V + − VCE ( sat ) 5 − 0.2
IB =                     =             = 4.53 mA and I C =                  =        = 10.9 mA
             RB                0.64                              RC           0.440
I C 10.9
Note that       =     = 2.41 < β which shows that the transistor is indeed driven into saturation. Now,
             I B 4.53
P = I BVBE ( on ) + I CVCE ( sat )
   = ( 4.53)( 0.7 ) + (10.9 )( 0.2 ) = 5.35 mW

TYU5.8
For VBC = 0 ⇒ VO = 0.7 V
             5 − 0.7                    I    9.77
Then I C =           = 9.77 mA and I B = C =      = 0.195 mA
              0.44                       β    50
Now VI = I B RB + VBE ( on ) = ( 0.195 )( 0.64 ) + 0.7 or VI = 0.825 V
Also P = I BVBE ( on ) + I CVCE
         = ( 0.195 )( 0.7 ) + ( 9.77 )( 0.7 ) = 6.98 mW

TYU5.9
     V + − VC 10 − 6.34
IC =         =          = 0.915 mA
        RC        4
             −VBE ( on ) − V −       −0.7 − ( −10 )
And I E =                        =                    or IE = 0.930
                    RE                    10
            I C 0.915                    α     0.9839
Now α =        =      = 0.9839 and β =      =           = 61
            I E 0.930                  1 − α 1 − 0.9839
Also I B = I E − I C = 0.930 − 0.915 ⇒ 15 μ A and VCE = VC − VE = 6.34 − ( −0.7 ) = 7.04 V

TYU5.10
       10 − 0.7
 IE =             = 1.16 mA
           8
       1.1625
 IB =            = 22.8 μ A
          51
 I C = ( 50 )( 22.8 μ A ) = 1.14 mA
 VE = V + − I E RE = 10 − (1.1625 )( 8 ) = 0.7 V
 VC = I C RC − 10 = (1.1397 )( 4 ) − 10 = −5.44
VEC = 0.7 − ( −5.44 )
VEC = 6.14 V

TYU5.11
VBB = I B RB + VBE ( on ) + I E RE
or VBB = I B RB + VBE ( on ) + (1 + β ) I B RE
              VBB − VBE ( on )          2 − 0.7
Then I B =                       =
              RB + (1 + β ) RE       10 + ( 76 )(1)
or I B = 15.1 μ A
Also I C = ( 75 )(15.1 μ A ) = 1.13 mA and I E = ( 76 )(15.1 μ A ) = 1.15 mA
Now VCE = VCC + VBB − I C RC − I E RE
            = 8 + 2 − (1.13)( 2.5 ) − (1.15 )(1) = 6.03 V

TYU5.12
VCE = 2.5 V ⇒ VE = 2.5 V = I E RE
We have VBB = I B RB + VBE ( on ) + VE
VBB − VBE ( on ) − VE         5 − 0.7 − 2.5
so I B =                             =
                       RB                     10
or I B = 0.18 mA
Then I E = (101)( 0.18 ) = 18.2 mA
                 2.5
And RE =              = 0.138 k Ω ⇒ 138 Ω
                18.18

TYU5.13
VBB = I E RE + VEB ( on ) + I B RB
                         2.2
I E = 2.2 mA ⇒ I B =         = 0.0431 mA
                         51
          ⎛ β ⎞            ⎛ 50 ⎞
and I C = ⎜      ⎟ ⋅ I E = ⎜ ⎟ ( 2.2 ) = 2.16 mA
          ⎝ 1+ β ⎠         ⎝ 51 ⎠
Then VBB = ( 2.2 )(1) + 0.7 + ( 0.0431)( 50 )
or VBB = 5.06 V
Now VEC = 5 − I E RE = 5 − ( 2.2 )(1) = 2.8 V

TYU5.14
(a)   For vI = 0, iB = iC = 0, vO = 12 V , P = 0
                                         vI − VBE ( on )       12 − 0.7
(b)           For vI = 12 V , iB =                         =            = 47.1 mA
                                              RB                0.24
       VCC − VCE ( sat )        12 − 0.1
iC =                        =            = 2.38 A
                RC                 5
vO = 0.1 V
and
P = iBVBE ( on ) + iCVCE ( sat )
  = ( 0.0471)( 0.7 ) + ( 2.38 )( 0.1) = 0.271 W

TYU5.15
                                              5 − 2.5
(a)           For VCEQ = 2.5 V , I CQ =               = 1.25 mA
                                                 2
         I CQ       1.25
I BQ =          =        ⇒ I BQ = 12.5 μ A
          β         100
                 5 − 0.7
Then RB =                = 344 k Ω
                 0.0125
(b)           IBQ is independent of β .
                            5 −1
For VCEQ = 1 V , I C =           = 2 mA
                              2
       IC     2
β=        =       ⇒ β = 160
       I B 0.0125
                                5−4
For VCEQ = 4 V , I C =              = 0.5 mA
                                 2
    IC     0.5
β=     =        ⇒ β = 40
    I B 0.0125
So 40 ≤ β ≤ 160

TYU5.16
       5 − 0.7
I BQ =         = 0.005375 mA
        800
For β = 75, I CQ = β I BQ = ( 75 )( 0.005375 )
Or I CQ = 0.403 mA
For β = 150, I CQ = (150 )( 0.005375 )
Or I CQ = 0.806 mA
Largest I CQ ⇒ Smallest VCEQ
                   5 −1
For β = 150, RC =        = 4.96 k Ω
                  0.806
                 5−4
For β = 75, RC =        = 2.48 k Ω
                 0.403
                                                                 5 − 2.5
For a nominal I CQ = 0.604 mA and VCEQ = 2.5 V , RC =                    = 4.14 k Ω
                                                                  0.604
Now for I CQ = 0.403 mA, VCEQ         = 5 − ( 0.403)( 4.14 ) = 3.33 V
For I CQ = 0.806 mA, VCEQ = 5 − ( 0.806 )( 4.14 ) = 1.66 V
So, for RC = 4.14 k Ω, 1.66 ≤ VCEQ ≤ 3.33 V

TYU5.17
(a)
        ⎛ β ⎞              ⎛ 100 ⎞
 I CQ = ⎜       ⎟ ⋅ I EQ = ⎜     ⎟ (1) = 0.99 mA
        ⎝1+ β ⎠            ⎝ 101 ⎠
          I EQ      1
 I BQ =        =        ⇒ 9.90 μ A
        1 + β 101
VB = − I BQ RB = − ( 0.0099 )( 50 )
or VB = −0.495 V
            ⎛ I CQ ⎞                ⎛ 0.99 × 10−3 ⎞
VBE = VT ln ⎜      ⎟ = ( 0.026 ) ln ⎜        −14 ⎟
            ⎝ IS ⎠                  ⎝ 3 × 10      ⎠
or VBE = 0.630 V
Then VE = VB − VBE = −0.495 − 0.630 = −1.13 V
       VC = 10 − ( 0.99 )( 5 ) = 5.05 V
Then VCEQ = VC − VE = 5.05 − ( −1.13) = 6.18 V
(b)
                       I EQ    1
 I EQ = 1 mA, I BQ =          =  = 0.0196 mA
                     1 + β 51
  VB = − ( 0.0196 )( 50 ) = −0.98 V
        ⎛ β     ⎞          ⎛ 50 ⎞
 I CQ = ⎜       ⎟ ⋅ I EQ = ⎜ ⎟ (1) = 0.98 mA
        ⎝1+ β   ⎠          ⎝ 51 ⎠
                    ⎛ 0.98 × 10−3 ⎞
 VBE = ( 0.026 ) ln ⎜        −14 ⎟
                                    = 0.629 V
                    ⎝ 3 × 10      ⎠
  VE = −0.98 − 0.629 = −1.61 V
  VC = 10 − ( 0.98 )( 5 ) = 5.1 V
VCEQ = VC − VE = 5.1 − ( −1.61) = 6.71 V

TYU5.18
       IQ   IQ
IB =      =
     1 + β 121
and
⎛ IQ ⎞
  VB = ⎜      ⎟ ( 20 ) = I Q ( 0.165 )
       ⎝ 121 ⎠
  VE = I Q ( 0.165 ) + 0.7
        ⎛ β ⎞             ⎛ 120 ⎞
 I CQ = ⎜      ⎟ ⋅ I EQ = ⎜     ⎟ ⋅ I Q = ( 0.992 ) I Q
        ⎝ 1+ β ⎠          ⎝ 121 ⎠
  VC = I CQ RC − 5 = ( 0.992 ) I Q ( 4 ) − 5
      = 3.97 I Q − 5
VECQ = VE − VC
      = ⎡ I Q ( 0.165 ) + 0.7 ⎤ − ⎡ I Q ( 3.97 ) − 5⎤
        ⎣                     ⎦ ⎣                   ⎦
      = −3.805 I Q + 5.7
Then 3 = 5.7 − 3.805I Q
which yields I Q = 0.710 mA

More Related Content

Viewers also liked

Ch02s
Ch02sCh02s
Ch14p
Ch14pCh14p
Ch10p
Ch10pCh10p
Ch16s
Ch16sCh16s
Ch08p
Ch08pCh08p
Ch12p
Ch12pCh12p
Ch09s
Ch09sCh09s
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
Bilal Sarwar
 
Ch08s
Ch08sCh08s
Ch10s
Ch10sCh10s
Ch04p
Ch04pCh04p
Ch15p
Ch15pCh15p
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Ontico
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Ontico
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Ontico
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ontico
 

Viewers also liked (16)

Ch02s
Ch02sCh02s
Ch02s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch08s
Ch08sCh08s
Ch08s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch15p
Ch15pCh15p
Ch15p
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
 

Similar to Ch05p

Ch05s
Ch05sCh05s
Ch13s
Ch13sCh13s
Ch02p
Ch02pCh02p
Ch16p
Ch16pCh16p
Ch13p
Ch13pCh13p
multivibrator
 multivibrator multivibrator
multivibrator
Mohammad Rashtian
 
10. Penguat Common Colector
10. Penguat Common Colector10. Penguat Common Colector
10. Penguat Common Colector
baehaqi alanawa
 
Ch09p
Ch09pCh09p
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
명중 김
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
명중 김
 
Electronics 1
Electronics 1Electronics 1
Electronics 1
AjEcuacion
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
brandwin marcelo lavado
 
2 n918
2 n9182 n918
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
Edhole.com
 
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdfLivro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
TomCosta18
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
Salman Salman
 
Bjt region of operation |Dept of ECE |ANITS
Bjt region of operation |Dept of ECE |ANITSBjt region of operation |Dept of ECE |ANITS
Bjt region of operation |Dept of ECE |ANITS
ANILPRASAD58
 
Capítulo 07 falha por fadiga resultante de carregamento variável
Capítulo 07   falha por fadiga resultante de carregamento variávelCapítulo 07   falha por fadiga resultante de carregamento variável
Capítulo 07 falha por fadiga resultante de carregamento variável
Jhayson Carvalho
 
Original PNP Transistor BC557C C557C 557 TO-92 New
Original PNP Transistor BC557C C557C 557 TO-92 NewOriginal PNP Transistor BC557C C557C 557 TO-92 New
Original PNP Transistor BC557C C557C 557 TO-92 New
AUTHELECTRONIC
 
Original PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 New
Original PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 NewOriginal PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 New
Original PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 New
AUTHELECTRONIC
 

Similar to Ch05p (20)

Ch05s
Ch05sCh05s
Ch05s
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch13p
Ch13pCh13p
Ch13p
 
multivibrator
 multivibrator multivibrator
multivibrator
 
10. Penguat Common Colector
10. Penguat Common Colector10. Penguat Common Colector
10. Penguat Common Colector
 
Ch09p
Ch09pCh09p
Ch09p
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Electronics 1
Electronics 1Electronics 1
Electronics 1
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
2 n918
2 n9182 n918
2 n918
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
 
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdfLivro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Bjt region of operation |Dept of ECE |ANITS
Bjt region of operation |Dept of ECE |ANITSBjt region of operation |Dept of ECE |ANITS
Bjt region of operation |Dept of ECE |ANITS
 
Capítulo 07 falha por fadiga resultante de carregamento variável
Capítulo 07   falha por fadiga resultante de carregamento variávelCapítulo 07   falha por fadiga resultante de carregamento variável
Capítulo 07 falha por fadiga resultante de carregamento variável
 
Original PNP Transistor BC557C C557C 557 TO-92 New
Original PNP Transistor BC557C C557C 557 TO-92 NewOriginal PNP Transistor BC557C C557C 557 TO-92 New
Original PNP Transistor BC557C C557C 557 TO-92 New
 
Original PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 New
Original PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 NewOriginal PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 New
Original PNP Transistor BC556BG 556B BC556B BC556 556 TO-92 New
 

More from Bilal Sarwar

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
Bilal Sarwar
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
Bilal Sarwar
 
Ramey soft
Ramey softRamey soft
Ramey soft
Bilal Sarwar
 
Ch15s
Ch15sCh15s
Ch14s
Ch14sCh14s
Ch12s
Ch12sCh12s
Ch07s
Ch07sCh07s
Ch07p
Ch07pCh07p
Ch04s
Ch04sCh04s
Ch03s
Ch03sCh03s

More from Bilal Sarwar (10)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch03s
Ch03sCh03s
Ch03s
 

Recently uploaded

定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样
定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样
定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样
x0l4b5ho
 
HD Video Player All Format - 4k & live stream
HD Video Player All Format - 4k & live streamHD Video Player All Format - 4k & live stream
HD Video Player All Format - 4k & live stream
HD Video Player
 
Clyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak SerinClyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak Serin
Basak24
 
Sara Saffari: Turning Underweight into Fitness Success at 23
Sara Saffari: Turning Underweight into Fitness Success at 23Sara Saffari: Turning Underweight into Fitness Success at 23
Sara Saffari: Turning Underweight into Fitness Success at 23
get joys
 
Leonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite Game
Leonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite GameLeonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite Game
Leonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite Game
greendigital
 
一比一原版(UCSF毕业证)旧金山分校毕业证如何办理
一比一原版(UCSF毕业证)旧金山分校毕业证如何办理一比一原版(UCSF毕业证)旧金山分校毕业证如何办理
一比一原版(UCSF毕业证)旧金山分校毕业证如何办理
ytunuq
 
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri CruiseTom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
greendigital
 
The Gallery of Shadows, In the heart of a bustling city
The Gallery of Shadows, In the heart of a bustling cityThe Gallery of Shadows, In the heart of a bustling city
The Gallery of Shadows, In the heart of a bustling city
John Emmett
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
etycev
 
欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】
欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】
欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】
juliancopeman444
 
原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样
原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样
原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样
sh8tjqt6
 
Anasuya Sengupta Cannes 2024 Award Winner
Anasuya Sengupta Cannes 2024 Award WinnerAnasuya Sengupta Cannes 2024 Award Winner
Anasuya Sengupta Cannes 2024 Award Winner
Diwitya Bajwa
 
Leonardo DiCaprio House: A Journey Through His Extravagant Real Estate Portfolio
Leonardo DiCaprio House: A Journey Through His Extravagant Real Estate PortfolioLeonardo DiCaprio House: A Journey Through His Extravagant Real Estate Portfolio
Leonardo DiCaprio House: A Journey Through His Extravagant Real Estate Portfolio
greendigital
 
From Teacher to OnlyFans: Brianna Coppage's Story at 28
From Teacher to OnlyFans: Brianna Coppage's Story at 28From Teacher to OnlyFans: Brianna Coppage's Story at 28
From Teacher to OnlyFans: Brianna Coppage's Story at 28
get joys
 
Abraham Laboriel Records ‘The Bass Walk’ at Evergreen Stage
Abraham Laboriel Records ‘The Bass Walk’ at Evergreen StageAbraham Laboriel Records ‘The Bass Walk’ at Evergreen Stage
Abraham Laboriel Records ‘The Bass Walk’ at Evergreen Stage
DiaDan Holdings Ltd
 
University of Western Sydney degree offer diploma Transcript
University of Western Sydney degree offer diploma TranscriptUniversity of Western Sydney degree offer diploma Transcript
University of Western Sydney degree offer diploma Transcript
soxrziqu
 
Taylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women Magazine
Taylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women MagazineTaylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women Magazine
Taylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women Magazine
CIOWomenMagazine
 
Brian Peck Leonardo DiCaprio: A Unique Intersection of Lives and Legacies
Brian Peck Leonardo DiCaprio: A Unique Intersection of Lives and LegaciesBrian Peck Leonardo DiCaprio: A Unique Intersection of Lives and Legacies
Brian Peck Leonardo DiCaprio: A Unique Intersection of Lives and Legacies
greendigital
 
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing HypothesisMorgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
greendigital
 
The Enigma of the Midnight Canvas, In the heart of Paris
The Enigma of the Midnight Canvas, In the heart of ParisThe Enigma of the Midnight Canvas, In the heart of Paris
The Enigma of the Midnight Canvas, In the heart of Paris
John Emmett
 

Recently uploaded (20)

定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样
定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样
定制(mu毕业证书)美国迈阿密大学牛津分校毕业证学历证书原版一模一样
 
HD Video Player All Format - 4k & live stream
HD Video Player All Format - 4k & live streamHD Video Player All Format - 4k & live stream
HD Video Player All Format - 4k & live stream
 
Clyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak SerinClyde the cat and Space Poems by Basak Serin
Clyde the cat and Space Poems by Basak Serin
 
Sara Saffari: Turning Underweight into Fitness Success at 23
Sara Saffari: Turning Underweight into Fitness Success at 23Sara Saffari: Turning Underweight into Fitness Success at 23
Sara Saffari: Turning Underweight into Fitness Success at 23
 
Leonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite Game
Leonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite GameLeonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite Game
Leonardo DiCaprio Super Bowl: Hollywood Meets America’s Favorite Game
 
一比一原版(UCSF毕业证)旧金山分校毕业证如何办理
一比一原版(UCSF毕业证)旧金山分校毕业证如何办理一比一原版(UCSF毕业证)旧金山分校毕业证如何办理
一比一原版(UCSF毕业证)旧金山分校毕业证如何办理
 
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri CruiseTom Cruise Daughter: An Insight into the Life of Suri Cruise
Tom Cruise Daughter: An Insight into the Life of Suri Cruise
 
The Gallery of Shadows, In the heart of a bustling city
The Gallery of Shadows, In the heart of a bustling cityThe Gallery of Shadows, In the heart of a bustling city
The Gallery of Shadows, In the heart of a bustling city
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证如何办理
 
欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】
欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】
欧洲杯赌球-欧洲杯赌球竞猜官网-欧洲杯赌球竞猜网站|【​网址​🎉ac10.net🎉​】
 
原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样
原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样
原版制作(MUN毕业证书)纽芬兰纪念大学毕业证PDF成绩单一模一样
 
Anasuya Sengupta Cannes 2024 Award Winner
Anasuya Sengupta Cannes 2024 Award WinnerAnasuya Sengupta Cannes 2024 Award Winner
Anasuya Sengupta Cannes 2024 Award Winner
 
Leonardo DiCaprio House: A Journey Through His Extravagant Real Estate Portfolio
Leonardo DiCaprio House: A Journey Through His Extravagant Real Estate PortfolioLeonardo DiCaprio House: A Journey Through His Extravagant Real Estate Portfolio
Leonardo DiCaprio House: A Journey Through His Extravagant Real Estate Portfolio
 
From Teacher to OnlyFans: Brianna Coppage's Story at 28
From Teacher to OnlyFans: Brianna Coppage's Story at 28From Teacher to OnlyFans: Brianna Coppage's Story at 28
From Teacher to OnlyFans: Brianna Coppage's Story at 28
 
Abraham Laboriel Records ‘The Bass Walk’ at Evergreen Stage
Abraham Laboriel Records ‘The Bass Walk’ at Evergreen StageAbraham Laboriel Records ‘The Bass Walk’ at Evergreen Stage
Abraham Laboriel Records ‘The Bass Walk’ at Evergreen Stage
 
University of Western Sydney degree offer diploma Transcript
University of Western Sydney degree offer diploma TranscriptUniversity of Western Sydney degree offer diploma Transcript
University of Western Sydney degree offer diploma Transcript
 
Taylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women Magazine
Taylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women MagazineTaylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women Magazine
Taylor Swift: Conquering Fame, Feuds, and Unmatched Success | CIO Women Magazine
 
Brian Peck Leonardo DiCaprio: A Unique Intersection of Lives and Legacies
Brian Peck Leonardo DiCaprio: A Unique Intersection of Lives and LegaciesBrian Peck Leonardo DiCaprio: A Unique Intersection of Lives and Legacies
Brian Peck Leonardo DiCaprio: A Unique Intersection of Lives and Legacies
 
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing HypothesisMorgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
Morgan Freeman is Jimi Hendrix: Unveiling the Intriguing Hypothesis
 
The Enigma of the Midnight Canvas, In the heart of Paris
The Enigma of the Midnight Canvas, In the heart of ParisThe Enigma of the Midnight Canvas, In the heart of Paris
The Enigma of the Midnight Canvas, In the heart of Paris
 

Ch05p

  • 1. Chapter 5 Exercise Problems EX5.1 α β= 1−α 0.980 For α = 0.980, β = = 49 1 − 0.980 0.995 For α = 0.995, β = = 199 1 − 0.995 So 49 ≤ β ≤ 199 EX5.2 BVCBO 200 BVCEO = = or BVCEO = 40.5 V n β 3 120 EX5.3 V − VBE ( on ) 2 − 0.7 I B = BB = ⇒ 6.5 μ A RB 200 I C = β I = (120 )( 6.5 μ A ) ⇒ I C = 0.78 mA VCE = VCC − I C RC = 5 − ( 0.78 )( 4 ) or VCE = 1.88 V P = I BVBE ( on ) + I CVCE = ( 0.0065 )( 0.7 ) + ( 0.78 )(1.88 ) ≅ 1.47 mW EX5.4 V + − VEB ( on ) − VBB 5 − 0.7 − 2.8 IB = = or I B = 4.62 μ A RB 325 I C = β I B = ( 80 )( 4.615 ) ⇒ I C = 0.369 mA VEC = 2 = 5 − ( 0.369 ) RC which yields RC = 8.13 k Ω EX5.5 VBB − VBE ( on ) 2 − 0.7 (a) IB = = ⇒ 5.91 μ A RB 220 I C = β I B = (100 )( 5.91 μ A ) ⇒ 0.591 mA I E = (1 + β ) I B = 0.597 mA VCE = VCC − I C RC = 10 − ( 0.591)( 4 ) or VCE = 7.64 V 6.5 − 0.7 (b) IB = ⇒ 26.4 μ A 220 Transistor is biased in saturation mode, so VCE = VCE ( sat ) = 0.2 V VCC − VCE ( sat ) 10 − 0.2 IC = = or I C = 2.45 mA RC 4 I E = I C + I B = 2.45 + 0.0264 ≅ 2.48 mA EX5.6 For 0 ≤ VI < 0.7 V , Qn is cutoff, VO = 9 V (100 )(VI − 0.7 )( 4 ) When Qn is biased in saturation, we have 0.2 = 9 − ⇒ VI = 5.1 V 200 So, for VI ≥ 5.1 V , VO = 0.2 V EX5.7
  • 2. VBB − VBE ( on ) 8 − 0.7 IB = = RB + (1 + β ) RE 30 + ( 76 )(1.2 ) or I B = 60.2 μ A I C = β I B = ( 75 )( 60.23 μ A ) ⇒ 4.52 mA I E = (1 + β ) I B = 4.58 mA VCE = VCC − I C RC − I E RE = 12 − ( 4.517 )( 0.4 ) − ( 4.577 )(1.2 ) or VCE = 4.70 V EX5.8 For VC = 4 V and ICQ = 1.5 mA, V + − VC 10 − 4 RC = = ⇒ RC = 4 k Ω I CQ 1.5 ⎛ 1+ β ⎞ ⎛ 101 ⎞ IE = ⎜ ⎟ IC = ⎜ ⎟ (1.5 ) = 1.515 mA ⎝ β ⎠ ⎝ 100 ⎠ −V ( on ) − V − also I E = BE RE −0.7 − ( −10 ) Then RE = ⇒ RE = 6.14 k Ω 1.515 EX5.9 3 − 0.7 I EQ = = 0.25 RE RE = 9.2 kΩ ⎛ 75 ⎞ I CQ = ⎜ ⎟ ( 0.25 ) = 0.2467 mA ⎝ 76 ⎠ −0.7 + VCEQ + I CQ RC − 3 = 0 3 + 0.7 − 2 RC = ⇒ RC = 6.89 kΩ 0.2467 EX5.10 5 = I E RE + VEB ( on ) + I B RB − 2 ⎛ 180 ⎞ (a) 5 + 2 − 0.7 = I E ⎜ 2 + ⎟ I E = 0.9859 mA ⎝ 41 ⎠ I C = 0.962 mA ⎛ 180 ⎞ (b) 6.3 = I E ⎜ 2 + ⎟ I E = 1.2725 mA ⎝ 61 ⎠ I C = 1.25 mA ⎛ 180 ⎞ (c) 6.3 = I E ⎜ 2 + ⎟ I E = 1.6657 mA ⎝ 101 ⎠ I C = 1.64 mA ⎛ 180 ⎞ (d) 6.3 = I E ⎜ 2 + ⎟ I E = 1.97365 mA ⎝ 151 ⎠ I C = 1.94 mA EX5.11
  • 3. VBB − VEB ( on ) 4 − 0.7 IE = ⇒ RE = RE 1.0 or RE = 3.3 k Ω I C = α I E = ( 0.992 )(1) = 0.992 mA I B = I E − I C = 1.0 − 0.992 or I B = 8 μ A VCB = I C RC − VCC = ( 0.992 )(1) − 5 or VCB = −4.01 V EX5.12 V + − (Vγ + VCE ( sat ) ) 5 − (1.5 + 0.2 ) R= = IC 15 or R = 220 Ω 15 IB = = 1 mA 15 v − VBE ( on ) 5 − 0.7 RB = I = = 4.3 k Ω IB 1 P = I BVBE (on) + I CVCE = (1)( 0.7 ) + (15 )( 0.2 ) = 3.7 mW EX5.13 (a) For V1 = V2 = 0, All currents are zero and VO = 5 V. (b) For V1 = 5 V, V2 = 0; IB2 = IC2 = 0, 5 − 0.7 I B1 = = 4.53 mA 0.95 5 − 0.2 I C1 = ⇒ I C1 = I R = 8 mA 0.6 VO = 0.2 V (c) For V1 = V2 = 5 V, IB1 = IB2 = 4.53 mA; IR = 8 mA, IC1 = IC2 = IR/2 = 4 mA, VO = 0.2 V EX5.14 vO = 5 − iC RC = 5 − β iB RC ΔvO = − βΔiB RC VBB + ΔvI − VBE ( on ) iB = RB ΔvI ΔiB = RB ΔvO − β RC Then = ΔvI RB Let β = 100, RC = 5 k Ω, RB = 100 k Ω Δvo − (100 )( 5 ) So = = −5 ΔvI 100 Want Q-point to be vo ( Q − pt ) = 2.5 = 5 − (100 ) I BQ ( 5 ) VBB − 0.7 Then I BQ = 0.005 mA, I BQ = 0.005 = 100 so VBB = 1.2 V Also, I CQ = β I BQ = (100 )( 0.005 ) = 0.5 mA EX5.15
  • 4. VCEQ = 2.5 = 5 − I CQ RC 5 − 2.5 or RC = = 10 k Ω 0.25 I CQ 0.25 I BQ = = = 0.002083 mA β 120 5 − 0.7 Then RB = ⇒ RB = 2.06 M Ω 0.002083 EX5.16 (a) RTH = R1 R2 = 9 2.25 = 1.8 k Ω ⎛ R2 ⎞ ⎛ 2.25 ⎞ VTH = ⎜ ⎟ ⋅ VCC = ⎜ ⎟ ( 5) ⎝ R1 + R2 ⎠ ⎝ 9 + 2.25 ⎠ or VTH = 1.0 V VTH − VBE ( on ) 1 − 0.7 (b) I BQ = = RTH + (1 + β ) RE 1.8 + (151)( 0.2 ) or I BQ = 9.375 μ A I CQ = β I BQ = (150 )( 9.375 μ A ) or I CQ = 1.41 mA I EQ = (1 + β ) I BQ ⇒ I EQ = 1.42 mA VCEQ = 5 − I CQ RC − I EQ RE = 5 − (1.41)(1) − (1.42 )( 0.2 ) or VCEQ = 3.31 V (c) For β = 75 1 − 0.7 I BQ = = 17.6 μ A 1.8 + ( 76 )( 0.2 ) I CQ = β I BQ = ( 75 )(17.6 μ A ) or I CQ = 1.32 mA I EQ = (1 + β ) I BQ = ( 76 )(17.6 μ A ) or I EQ = 1.34 mA VCEQ = 5 − (1.32 )(1) − (1.34 )( 0.2 ) or VCEQ = 3.41 V EX5.17 VCEQ ≅ VCC − I CQ ( RC + RE ) or 2.5 ≅ 5 − I CQ (1 + 0.2 ) which yields I CQ = 2.08 mA, I CQ 2.08 I BQ = = = 0.0139 mA β 150 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(151)( 0.2 ) or RTH = 3.02 k Ω ⎛ R2 ⎞ 1 Now VTH = ⎜ ⎟ ⋅ VCC = ⋅ RTH ⋅ VCC ⎝ R1 + R2 ⎠ R1 1 so VTH = ( 3.02 )( 5 ) R1 We can write VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
  • 5. 1 or ( 3.02 )( 5 ) = ( 0.0139 )( 3.02 ) + 0.7 + (151)( 0.0139 )( 0.2 ) R1 We obtain R1 = 13 k Ω and then R2 = 3.93 k Ω EX5.18 β = 150, RTH = R1 || R2 5−0 I CQ = = 5 mA 1 I CQ 5 I BQ = = = 0.0333 mA β 150 VTH − VBE ( on ) − ( −5 ) I BQ = RTH + (1 + β ) RE Set RTH = ( 0.1)(1 + β ) RE ⎛ R2 ⎞ We have VTH = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎛ R2 ⎞ ⎜ ⎟ (10 ) − 0.7 R + R2 ⎠ Then I BQ = 0.0333 = ⎝ 1 (1.1)(151)( 0.2 ) ⎛ R2 ⎞ which yields ⎜ ⎟ = 0.1806 ⎝ R1 + R2 ⎠ ⎛ RR ⎞ Now RTH = ⎜ 1 2 ⎟ = ( 0.1)(151)( 0.2 ) = 3.02 k Ω ⎝ R1 + R2 ⎠ so R1 ( 0.1806 ) = 3.02 k Ω We obtain R1 = 16.7 k Ω and R2 = 3.69 k Ω EX5.19 V + − V − − VECQ 5 − ( −5 ) − 5 I CQ ≅ = RC + RE 4.5 + 0.5 so I CQ = 1 mA, and I CQ 1 I BQ = = = 0.00833 mA β 120 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 0.5 ) or RTH = 6.05 k Ω We can write V + = I EQ RE + VEB ( on ) + I BQ RTH + VTH 1 We have VTH = ⋅ RTH (10 ) − 5 and if we let I EQ ≅ I CQ = 1 mA, R1 1 then we have 5 = (1)( 0.5 ) + 0.7 + ( 0.00833)( 6.05 ) + ( 6.05 )(10 ) − 5 R1 which yields R1 = 6.91 k Ω and R2 = 48.6 k Ω EX5.20 ⎛ 2⎞ ⎛ 2 ⎞ I1 = I Q ⎜ 1 + ⎟ = ( 0.25 ) ⎜1 + ⎟ = 0.2625 mA ⎝ β⎠ ⎝ 40 ⎠ 0 − VBE ( on ) − V − 0 − 0.7 − ( −5 ) R1 = = I1 0.2625 or R1 = 16.38 k Ω
  • 6. For VCEO = 3 V , then VCO = 2.3 V ⎛ β ⎞ ⎛ 40 ⎞ I CO = ⎜ ⎟ ⋅ I Q = ⎜ ⎟ ( 0.25 ) = 0.2439 mA ⎝ 1+ β ⎠ ⎝ 41 ⎠ + V − VCO 5 − 2.3 RC = = = 11.07 k Ω I CO 0.2439 EX5.21 RTH 50 ||100 = 33.3 k Ω ⎛ 50 ⎞ VTH = VTH = ⎜ ⎟ (10 ) − 5 = −1.67 V ⎝ 50 + 100 ⎠ −1.67 − 0.7 − ( −5 ) I B1 = ⇒ 11.2 μ A 33.3 + (101)( 2 ) I C1 = 1.12 mA, I E1 = 1.13 mA VE1 = I E1 RE1 − 5 = (1.13)( 2 ) − 5 = −2.74 V VCE1 = 3.25 V ⇒ VC1 = 0.51 V Now VE 2 = 0.51 + 0.7 = 1.21 V 5 − 1.21 IE2 = = 1.90 mA ⇒ I B 2 = 18.8 μ A 2 IC 2 = 1.88 mA I R1 = I C1 − I B 2 = 1.12 − 0.0188 = 1.10 mA 5 − 0.51 RC1 = = 4.08 k Ω 1.10 VEC 2 = 2.5 ⇒ VC 2 = VE 2 − VEC 2 = 1.21 − 2.5 = −1.29 V −1.29 − ( −5 ) RC 2 = = 1.97 k Ω 1.88 EX5.22 12 We find = 240 k Ω = R1 + R2 + R3 0.05 Then VB1 = ( 0.5)( 2 ) + 0.7 = 1.7 V 1.7 R3 = = 34 k Ω 0.05 Also VB 2 = ( 0.5 )( 2 ) + 4 + 0.7 = 5.7 V ΔVR 2 = 5.7 − 1.7 = 4 V 4 so R2 = = 80 k Ω 0.05 and R1 = 240 − 80 − 34 = 126 k Ω VC 2 = 1 + 4 + 4 = 9 V V + − VC 2 12 − 9 Then RC = = = 6 kΩ I CQ 0.5 Test Your Understanding Exercises TYU5.1 β α= 1+ β 75 For β = 75, α = = 0.9868 76
  • 7. 125 For β = 125, α = = 0.9921 126 TYU5.2 I E = (1 + β ) I B IE 0.780 so 1 + β = = = 81.25 then β = 80.3 I B 0.00960 Now β 80.25 α= = = 0.9877 1+ β 81.25 I C = α I E = ( 0.9877 )( 0.78 ) = 0.770 mA TYU5.3 α 0.990 β= = = 99 1 − α 1 − 0.990 IE 2.15 Now I B = = ⇒ 21.5 μ A and I C = α I E = ( 0.990 )( 2.15 ) = 2.13 mA 1 + β 100 TYU5.4 V 150 ro = A = IC IC For I C = 0.1 mA ⇒ ro = 1.5 M Ω For I C = 1.0 mA ⇒ ro = 150 k Ω For I C = 10 mA ⇒ ro = 15 k Ω TYU5.5 ⎛ V ⎞ I C = I O ⎜1 + CE ⎟ ⎝ VA ⎠ At VCE = 1 V , I C = 1 mA ⎛ 1 ⎞ (a) For VA = 75 V , I C = 1 = I O ⎜1 + ⎟ ⇒ I O = 0.9868 mA ⎝ 75 ⎠ Then, at VCE = 10 V ⎛ 10 ⎞ I C = ( 0.9868 ) ⎜ 1 + ⎟ = 1.12 mA ⎝ 75 ⎠ ⎛ 1 ⎞ (b) For VA = 150 V , I C = 1 = I O ⎜ 1 + ⎟ ⇒ I O = 0.9934 mA ⎝ 150 ⎠ ⎛ 10 ⎞ At VCE = 10 V , I C = ( 0.9934 ) ⎜ 1 + ⎟ = 1.06 mA ⎝ 150 ⎠ TYU5.6 BVCBO BVCEO = so BVCBO = 3 100 ( 30 ) = 139 V n β TYU5.7 (a) For VI = 0.2 V < VBE ( on ) ⇒ I B = I C = 0, VO = 5 V and P = 0 (b) For VI = 3.6 V , transistor is driven into saturation, so VI − VBE ( on ) 3.6 − 0.7 V + − VCE ( sat ) 5 − 0.2 IB = = = 4.53 mA and I C = = = 10.9 mA RB 0.64 RC 0.440
  • 8. I C 10.9 Note that = = 2.41 < β which shows that the transistor is indeed driven into saturation. Now, I B 4.53 P = I BVBE ( on ) + I CVCE ( sat ) = ( 4.53)( 0.7 ) + (10.9 )( 0.2 ) = 5.35 mW TYU5.8 For VBC = 0 ⇒ VO = 0.7 V 5 − 0.7 I 9.77 Then I C = = 9.77 mA and I B = C = = 0.195 mA 0.44 β 50 Now VI = I B RB + VBE ( on ) = ( 0.195 )( 0.64 ) + 0.7 or VI = 0.825 V Also P = I BVBE ( on ) + I CVCE = ( 0.195 )( 0.7 ) + ( 9.77 )( 0.7 ) = 6.98 mW TYU5.9 V + − VC 10 − 6.34 IC = = = 0.915 mA RC 4 −VBE ( on ) − V − −0.7 − ( −10 ) And I E = = or IE = 0.930 RE 10 I C 0.915 α 0.9839 Now α = = = 0.9839 and β = = = 61 I E 0.930 1 − α 1 − 0.9839 Also I B = I E − I C = 0.930 − 0.915 ⇒ 15 μ A and VCE = VC − VE = 6.34 − ( −0.7 ) = 7.04 V TYU5.10 10 − 0.7 IE = = 1.16 mA 8 1.1625 IB = = 22.8 μ A 51 I C = ( 50 )( 22.8 μ A ) = 1.14 mA VE = V + − I E RE = 10 − (1.1625 )( 8 ) = 0.7 V VC = I C RC − 10 = (1.1397 )( 4 ) − 10 = −5.44 VEC = 0.7 − ( −5.44 ) VEC = 6.14 V TYU5.11 VBB = I B RB + VBE ( on ) + I E RE or VBB = I B RB + VBE ( on ) + (1 + β ) I B RE VBB − VBE ( on ) 2 − 0.7 Then I B = = RB + (1 + β ) RE 10 + ( 76 )(1) or I B = 15.1 μ A Also I C = ( 75 )(15.1 μ A ) = 1.13 mA and I E = ( 76 )(15.1 μ A ) = 1.15 mA Now VCE = VCC + VBB − I C RC − I E RE = 8 + 2 − (1.13)( 2.5 ) − (1.15 )(1) = 6.03 V TYU5.12 VCE = 2.5 V ⇒ VE = 2.5 V = I E RE We have VBB = I B RB + VBE ( on ) + VE
  • 9. VBB − VBE ( on ) − VE 5 − 0.7 − 2.5 so I B = = RB 10 or I B = 0.18 mA Then I E = (101)( 0.18 ) = 18.2 mA 2.5 And RE = = 0.138 k Ω ⇒ 138 Ω 18.18 TYU5.13 VBB = I E RE + VEB ( on ) + I B RB 2.2 I E = 2.2 mA ⇒ I B = = 0.0431 mA 51 ⎛ β ⎞ ⎛ 50 ⎞ and I C = ⎜ ⎟ ⋅ I E = ⎜ ⎟ ( 2.2 ) = 2.16 mA ⎝ 1+ β ⎠ ⎝ 51 ⎠ Then VBB = ( 2.2 )(1) + 0.7 + ( 0.0431)( 50 ) or VBB = 5.06 V Now VEC = 5 − I E RE = 5 − ( 2.2 )(1) = 2.8 V TYU5.14 (a) For vI = 0, iB = iC = 0, vO = 12 V , P = 0 vI − VBE ( on ) 12 − 0.7 (b) For vI = 12 V , iB = = = 47.1 mA RB 0.24 VCC − VCE ( sat ) 12 − 0.1 iC = = = 2.38 A RC 5 vO = 0.1 V and P = iBVBE ( on ) + iCVCE ( sat ) = ( 0.0471)( 0.7 ) + ( 2.38 )( 0.1) = 0.271 W TYU5.15 5 − 2.5 (a) For VCEQ = 2.5 V , I CQ = = 1.25 mA 2 I CQ 1.25 I BQ = = ⇒ I BQ = 12.5 μ A β 100 5 − 0.7 Then RB = = 344 k Ω 0.0125 (b) IBQ is independent of β . 5 −1 For VCEQ = 1 V , I C = = 2 mA 2 IC 2 β= = ⇒ β = 160 I B 0.0125 5−4 For VCEQ = 4 V , I C = = 0.5 mA 2 IC 0.5 β= = ⇒ β = 40 I B 0.0125 So 40 ≤ β ≤ 160 TYU5.16 5 − 0.7 I BQ = = 0.005375 mA 800
  • 10. For β = 75, I CQ = β I BQ = ( 75 )( 0.005375 ) Or I CQ = 0.403 mA For β = 150, I CQ = (150 )( 0.005375 ) Or I CQ = 0.806 mA Largest I CQ ⇒ Smallest VCEQ 5 −1 For β = 150, RC = = 4.96 k Ω 0.806 5−4 For β = 75, RC = = 2.48 k Ω 0.403 5 − 2.5 For a nominal I CQ = 0.604 mA and VCEQ = 2.5 V , RC = = 4.14 k Ω 0.604 Now for I CQ = 0.403 mA, VCEQ = 5 − ( 0.403)( 4.14 ) = 3.33 V For I CQ = 0.806 mA, VCEQ = 5 − ( 0.806 )( 4.14 ) = 1.66 V So, for RC = 4.14 k Ω, 1.66 ≤ VCEQ ≤ 3.33 V TYU5.17 (a) ⎛ β ⎞ ⎛ 100 ⎞ I CQ = ⎜ ⎟ ⋅ I EQ = ⎜ ⎟ (1) = 0.99 mA ⎝1+ β ⎠ ⎝ 101 ⎠ I EQ 1 I BQ = = ⇒ 9.90 μ A 1 + β 101 VB = − I BQ RB = − ( 0.0099 )( 50 ) or VB = −0.495 V ⎛ I CQ ⎞ ⎛ 0.99 × 10−3 ⎞ VBE = VT ln ⎜ ⎟ = ( 0.026 ) ln ⎜ −14 ⎟ ⎝ IS ⎠ ⎝ 3 × 10 ⎠ or VBE = 0.630 V Then VE = VB − VBE = −0.495 − 0.630 = −1.13 V VC = 10 − ( 0.99 )( 5 ) = 5.05 V Then VCEQ = VC − VE = 5.05 − ( −1.13) = 6.18 V (b) I EQ 1 I EQ = 1 mA, I BQ = = = 0.0196 mA 1 + β 51 VB = − ( 0.0196 )( 50 ) = −0.98 V ⎛ β ⎞ ⎛ 50 ⎞ I CQ = ⎜ ⎟ ⋅ I EQ = ⎜ ⎟ (1) = 0.98 mA ⎝1+ β ⎠ ⎝ 51 ⎠ ⎛ 0.98 × 10−3 ⎞ VBE = ( 0.026 ) ln ⎜ −14 ⎟ = 0.629 V ⎝ 3 × 10 ⎠ VE = −0.98 − 0.629 = −1.61 V VC = 10 − ( 0.98 )( 5 ) = 5.1 V VCEQ = VC − VE = 5.1 − ( −1.61) = 6.71 V TYU5.18 IQ IQ IB = = 1 + β 121 and
  • 11. ⎛ IQ ⎞ VB = ⎜ ⎟ ( 20 ) = I Q ( 0.165 ) ⎝ 121 ⎠ VE = I Q ( 0.165 ) + 0.7 ⎛ β ⎞ ⎛ 120 ⎞ I CQ = ⎜ ⎟ ⋅ I EQ = ⎜ ⎟ ⋅ I Q = ( 0.992 ) I Q ⎝ 1+ β ⎠ ⎝ 121 ⎠ VC = I CQ RC − 5 = ( 0.992 ) I Q ( 4 ) − 5 = 3.97 I Q − 5 VECQ = VE − VC = ⎡ I Q ( 0.165 ) + 0.7 ⎤ − ⎡ I Q ( 3.97 ) − 5⎤ ⎣ ⎦ ⎣ ⎦ = −3.805 I Q + 5.7 Then 3 = 5.7 − 3.805I Q which yields I Q = 0.710 mA