SlideShare a Scribd company logo
1 of 9
Download to read offline
Chapter 9
Exercise Solutions

EX9.1
                R2
Av = −15 = −
                R1
R1 = Ri = 20 K ⇒ R2 = 15 R1 = 15 ( 20 ) = 300 K

EX9.2
                         R2 ⎛ R3 ⎞ R3
We can write ACL = −        ⎜1 + ⎟ −
                         R1 ⎝ R4 ⎠ R1
R1 = R1 = 10 kΩ
Want ACL = −50 Set R2 = R3 = 50 kΩ
               ⎛ R ⎞
ACL = −50 = −5 ⎜ 1 + 3 ⎟ − 5
               ⎝ R4 ⎠
   R         R         50
1+ 3 = 9 ⇒ 3 = 8 =
   R4        R4        R4
R4 = 6.25 kΩ

EX9.3
                R2           1
We have ACL = −    ⋅
                R1 ⎡      1  ⎛ R2 ⎞ ⎤
                     ⎢1 +    ⎜1 + ⎟ ⎥
                     ⎣    Ad ⎝   R1 ⎠ ⎦
                      R
Ri = R1 = 25 kΩ Let 2 = x
                      R1
                   x
−12 = −
                1
          1+         (1 + x )
             5 × 103
               −x
      =
                     x
        1.0002 +
                  5 × 103
   ⎛              x ⎞
12 ⎜ 1.0002 +          ⎟=x
   ⎝          5 × 103 ⎠
12.0024 = x − ( 2.4 × 10 −3 ) x
   12.0024                R2
x=          = 12.0313 =
    0.9976              25 kΩ
R2 = 300.78 kΩ

EX9.4
       ⎛R        R        R        R       ⎞
v0 = − ⎜ F vI 1 + F vI 2 + F vI 3 + F VI 4 ⎟
       ⎝ R1      R2       R3       R4      ⎠
RF      R       R        R
We need       = 7, F = 14, F = 3.5, F = 10
           R1      R2      R3       R4
Set RF = 280 kΩ
            280
Then R1 =         = 40 kΩ
             7
            280
       R2 =       = 20 kΩ
            14
            280
       R3 =       = 80 kΩ
            3.5
            280
       R4 =       = 28 kΩ
            10

EX9.5
                      R3   3        R    20            R   R
We may note that         =   = 2 and F =    = 2 so that 3 = F
                      R2 1.5         R1 10             R2 R1
Then
       − vI   − ( −3)
iL =        =         ⇒ iL = 2 mA
       R2 1.5 kΩ
vL = iL Z L = ( 2 × 10−3 ) ( 200 ) = 0.4 V
       vL   0.4
i4 =      =      = 0.267 mA
       R2 1.5 kΩ
 i3 = i4 + iL = 0.267 + 2 = 2.267 mA
v0 = i3 R3 + vL = ( 2.267 × 10−3 )( 3 × 103 ) − 0.4 ⇒ v0 = 7.2 V

EX9.6
Refer to Fig. 9.24
R1 = 2 R1 = 5 kΩ
Let R1 = R3 = 2.5 kΩ
Set R2 = R4
                       v0 R2           R2
Differential Gain =      =   = 100 =        ⇒ R2 = R4 = 250 kΩ
                       v1 R1         2.5 kΩ

EX9.7
We have the general relation that
     ⎛ R ⎞ ⎛ [ R4 / R3 ] ⎞           R
v0 = ⎜ 1 + 2 ⎟ ⎜                 v − 2v
               ⎜ 1 + [ R / R ] ⎟ I 2 R I1
                               ⎟
     ⎝    R1 ⎠ ⎝        4   3 ⎠       1

R1 = R3 = 10 kΩ, R2 = 20 kΩ, R4 = 21 kΩ
     ⎛ 20 ⎞ ⎛ [ 21/10] ⎞               ⎛ 20 ⎞
v0 = ⎜ 1 + ⎟ ⎜                ⎟ vI 2 − ⎜ ⎟ vI 1
     ⎝    10 ⎠ ⎜ 1 + [ 21/10] ⎟
               ⎝              ⎠        ⎝ 10 ⎠
 v0 = 2.0323vI 2 − 2.0vI
a.        vI 1 = 1, vI 2 = −1
            v0 = −2.0323 − 2.0 ⇒ v0 = −4.032 V
b.         vI 1 = vI 2 = 1 V
           v0 = 2.0323 − 2.0 ⇒ v0 = 0.0323 V
c.         vcm = vI 1 = vI 2 so common-mode gain
         v0
Acm =        = 0.0323
         vcm
d.
                       ⎛ A ⎞
C M R RdB = 20 log10 ⎜ d ⎟
                       ⎝ Acm ⎠
     2.0323           ⎛ 1⎞
Ad =        − ( 2.0 ) ⎜ − ⎟ = 2.016
        2             ⎝ 2⎠
                     ⎛ 2.016 ⎞
C M R RdB = 20 log10 ⎜        ⎟ = 35.9 d B
                     ⎝ 0.0323 ⎠

EX9.8
         R4 ⎛ 2 R2 ⎞
v0 = −      ⎜1 +    ⎟ ( vI 1 − vI 2 )
         R3 ⎝    R1 ⎠
                                            R4 ⎛ 2 R2 ⎞
Differential gain (magnitude) =                ⎜1 +    ⎟
                                            R3 ⎝    R1 ⎠
Minimum Gain ⇒ Maximum R1 = 1 + 50 = 51 kΩ
           20 ⎛ 2 (100 ) ⎞
So Ad =       ⎜1 +       ⎟ ⇒ Ad = 4.92
           20 ⎝    51 ⎠
Maximum Gain ⇒ Minimum R1 = 1 kΩ
        20 ⎛ 2 (100 ) ⎞
Ad =       ⎜1 +       ⎟ ⇒ Ad = 201
        20 ⎝    1 ⎠
Range of Differential Gain = 4.92 − 201

EX9.9
Time constant = r = R1C2 = (104 )( 0.1×10−6 )
                                = 1 m sec
                  −1
0 ≤ t ≤ 1 ⇒ v0 =       ×t
                 R1 C2
At t = 1 m sec ⇒ v0 = −1 V
                             1
0 ≤ t ≤ 2 ⇒ v0 = −1 +            × ( t − 1)
                           R1 C2
                                   ( 2 − 1)
At t = 2 m sec ⇒ v0 = −1 +                    =0
                                        1
EX9.10
v0 = vI 1 + 10vI 2 − 25vI 3 − 80vI 4
From Figure 9.40, v13 input to R1, vI4 input to R2, vI1 input to RA, and vI2 input to RB.
From Equation (9.94)
 RF               R
    = 25 and F = 80
 R1               R2
Set RF = 500 kΩ, then R1 = 20 kΩ, and R2 = 6.25 kΩ.
     ⎛ R ⎞⎛ R ⎞            ⎛ R ⎞⎛ R ⎞
Also ⎜1 + F ⎟⎜ P ⎟ = 1 and ⎜1 + F ⎟ ⎜ P ⎟ = 10
     ⎝ RN ⎠ ⎝ RA ⎠         ⎝ RN ⎠ ⎝ RB ⎠
where RN = R1 R2 = 20 6.25 = 4.76 kΩ and RP = RA RB RC
                RA
We find that       = 10
                RB
Let RA = 200 kΩ, RB = 20 kΩ

     ⎛   500 ⎞ ⎛ RP ⎞              ⎛ RP ⎞
Now ⎜1 +      ⎟⎜    ⎟ = 1 = (106 ) ⎜     ⎟
     ⎝ 4.76 ⎠ ⎝ RA ⎠               ⎝ 200 ⎠
Then RP = 1.89 kΩ
RA RB = 200 20 = 18.2 kΩ
                    18.2 RC
So RP = 1.89 =               ⇒ RC = 2.11 kΩ
                   18.2 + RC

EX9.11 Computer Analysis

TYU9.1
          R2 −100 kΩ
ACL = −      =       ⇒ ACL = −10
          R1   10 kΩ
vI = 0.25 V ⇒ vo = −2.5 V
       vI   0.25
i1 =      =      = 0.025 mA ⇒ i1 = 25 μ A
       R1 10 kΩ
i2 = i1 = 25 μ A
Ri = R1 = 10 kΩ

TYU9.2
(a)
       − R2
 Av =
      R1 + RS
              −100
Av ( min ) =          = −4.926
             19 + 1.3
               −100
Av ( max ) =           = −5.076
             19 + 0.7
so 4.926 ≤ Av ≤ 5.076
(b)
0.1
i1 ( max ) =           = 5.076 μ A
             19 + 0.7
               0.1
i1 ( min ) =          = 4.926 μ A
             19 + 1.3
so 4.926 ≤ i1 ≤ 5.076 μ A
(c)          Maximum current specification is violated.

TYU9.3
v0 = Ad ( v2 − v1 )        Ad = 103




a.
v2 = 0, v0 = 5
         v        5
 v1 = − 0 = − 3 ⇒ v1 = −5 mV
         Ad      10
b.
    v1 = 5, v0 = −10
   v0
       = v2 − v1
   Ad
 −10
     = v2 − 5 ⇒ v2 = 4.99 V
 103
c.
v1 = 0.001, v2 = −0.001
v0 = 103 ( −0.001 − 0.001)
v0 = −2 V
d.
     v2 = 3, v0 = 3
     v0 = Ad ( v2 − v1 )
 v0
    = v2 − v1
 Ad
 3
    = 3 − v1 ⇒ v1 = 2.997 V
103

TYU9.4
       ⎛R        R         R      ⎞
v0 = − ⎜ 4 vI 1 + 4 vI 2 + 4 vI 3 ⎟
       ⎝ R1      R2        R3     ⎠
       ⎡⎛ 40 ⎞         ⎛ 40 ⎞       ⎛ 40 ⎞     ⎤
v0 = − ⎢⎜ ⎟ ( 250 ) + ⎜ ⎟ ( 200 ) + ⎜ ⎟ ( 75 ) ⎥
       ⎣⎝ 10 ⎠         ⎝ 20 ⎠       ⎝ 30 ⎠     ⎦
v0 = − [1000 + 400 + 100]
v0 = −1500 μ V = −1.5 mV

TYU9.5
vI 1 + vI 2 + vI 3 RF
vO =                   =   ( vI 1 + vI 2 + vI 3 )
             3           R
RF 1
   = ⇒ R1 = R2 = R3 ≡ R = 1 M Ω
 R 3
            1
Then RF = M Ω = 333 k Ω
            3

TYU9.6
     v ⎛ R ⎞                  R
Av = 0 = ⎜ 1 + 2 ⎟ = 5 so that 2 = 4
     vI ⎝      R1 ⎠            R1
For v0 = 10 V, vI = 2 V
            2
Then i1 =      = 50 μ A ⇒ R1 = 40 kΩ
            R1
                                         v0 − vI 10 − 2
Then R2 = 160 kΩ we find i2 =                   =       = 50 μ A
                                           R2     160

TYU9.7




v0 = Aod ( v2 − v1 ) = Aod ( vI − v1 )
 v0                              v
    − vI = −v1 or v1 = vI − 0
Aod                             Aod
       v1              v −v
i1 =      = i2 and i2 = 0 1
       R1                R2
        ⎛ 1 ⎞ v −v
Then v1 ⎜ ⎟ = 0 1
        ⎝ R1 ⎠  R2
   ⎛ 1  1 ⎞ v
v1 ⎜ + ⎟ = 0
   ⎝ R1 R2 ⎠ R2
   ⎛ R ⎞          ⎛ R ⎞⎛           v ⎞
v0 ⎜ 1 + 2 ⎟ v1 = ⎜ 1 + 2 ⎟ ⎜ vI − 0 ⎟
   ⎝    R1 ⎠      ⎝     R1 ⎠⎝      Aod ⎠
                    ⎛ R2 ⎞
                    ⎜1 + ⎟
So Av = =
         v0         ⎝     R1 ⎠
         vI          1 ⎛ R2 ⎞
               1+       ⎜1 + ⎟
                    Aod ⎝     R1 ⎠

TYU9.8
⎛ Rb          ⎞
For vI 2 = 0, v2 = ⎜             ⎟ vI 1 and
                   ⎝ Rb + Ra     ⎠
              ⎛ R ⎞ ⎛ Rb ⎞
v0 ( vI 1 ) = ⎜ 1 + 2 ⎟ ⎜         ⎟ vI 1
              ⎝     R1 ⎠⎝ Rb + Ra ⎠
              ⎛ 70 ⎞⎛ 50 ⎞
            = ⎜ 1 + ⎟⎜            ⎟ vI 1
              ⎝      5 ⎠⎝ 50 + 25 ⎠
            = 10vI 1
                   ⎛ Ra ⎞
For vI 1 = 0, v2 = ⎜         ⎟ vI 2
                   ⎝ Rb + Ra ⎠
              ⎛ R ⎞ ⎛ Ra ⎞
v0 ( vI 2 ) = ⎜ 1 + 2 ⎟ ⎜         ⎟ vI 2
              ⎝     R1 ⎠⎝ Rb + Ra ⎠
              ⎛ 70 ⎞⎛ 25 ⎞
            = ⎜ 1 + ⎟⎜           ⎟ vI 2
              ⎝     5 ⎠⎝ 25 + 50 ⎠
            = 5vI 2
Then
v0 = v0 ( vI 1 ) + v0 ( vI 2 )
v0 = 10vI 1 + 5vI 2

TYU9.9




RS      Ri so i1 = i2 = iS = 100 μ A
v0 = −iS RF
We want −10 = − (100 × 10−6 ) RF ⇒ RF = 100 kΩ

TYU9.10
We want iL = 1 mA when vI = −5 V
       −VI       −v   − ( −5 )
iL =       ⇒ R2 = I =          ⇒ R2 = 5 kΩ
        R2        i2   10−3
vL = iL Z L = (10−3 ) ( 500 ) ⇒ vL = 0.5 V
       vL   0.5
i4 =      =     ⇒ i4 = 0.1 mA
       R2 5 kΩ
 i3 = i4 + iL = 0.1 + 1 = 1.1 mA
If op-amp is biased at ±10 V, output must be limited to ≈ 8 V.
So v0 = i3 R3 + vL
     8 = (1.1× 10−3 ) R3 + 0.5 ⇒ R3 = 6.82 kΩ
Let R3 = 7.0 kΩ
R3 RF 7
Then we want           =  = = 1.4
                     R2 R1 5
Can choose R1 = 10 kΩ and RF = 14 kΩ

TYU9.11
a.
    v −v
i1 = I 1 I 2
        R1
                                                   R4
                 ′
v01 = vI 1 + i1 R2 , v02 = vI 2 − i1 R2 and v0 =      ( v02 − v01 )
                                                   R3
       R4
v0 =      [vI 2 − i1 R2 − vI 1 − i1 R2′ ]
       R3
       R4
v0 =      ⎡( vI 2 − vI 1 ) − i1 ( R2 + R2 ) ⎤
                                        ′ ⎦
       R3 ⎣
     R4 ⎡                   ⎛ vI 2 − vI 1 ⎞             ⎤
v0 =    ⎢ ( vI 2 − vI 1 ) − ⎜             ⎟ ( R2 + R2 ) ⎥
                                                    ′
     R3 ⎣                   ⎝ R1 ⎠                      ⎦
For common-mode input vI 2 = vI 1 ⇒ v0 = 0 ⇒ Common Gain = 0, C M R R = ∞
b.          Ad ( min ) ⇒ R2 min, R1 max
                          ′
              ⎛ 20 ⎞ ⎡ 100 + 95 ⎤
        Ad = ⎜ ⎟ ⎢1 +           ⎥ = 4.82
              ⎝ 20 ⎠ ⎣    51 ⎦
              ⎛ 20 ⎞ ⎡ 100 + 105 ⎤
 Ad ( max ) = ⎜ ⎟ ⎢1 +            ⎥ = 206
              ⎝ 20 ⎠ ⎣     1      ⎦
c.
               A
CM RR = d
              Acm
Acm = 0 ⇒ C M R R = ∞

TYU9.12
                            R4 ⎛ 2 R2 ⎞
Differential Gain =            ⎜1 +    ⎟
                            R3 ⎝    R1 ⎠
Let R3 = R4 so the difference amplifier gain is unity.
Minimum Gain ⇒ Maximum R1
   ⎛      2 R2 ⎞
So ⎜1 +
   ⎜ R ( max ) ⎟ = 2
                ⎟
   ⎝    1       ⎠
We want 2 R2 = R1 ( max )
Maximum Gain ⇒ Minimum R1
    ⎛      2 R2 ⎞
    ⎜ R ( min ) ⎟ = 1000 or 2 R2 = 999 R1 ( min )
So ⎜1 +         ⎟
    ⎝    1      ⎠
If R2 = 50 kΩ, let R1 ( min ) = 100 Ω fixed resistor and let R1 ( max ) = 100 kΩ + 100 Ω = 100.1
                                                                          pot

Then actual differential gain is in the range of 1.999 − 1001

TYU9.13
                       −1 10 μ sec −10 × 10−6
End of 1st pulse: v0 =    ×t 0       =
                       r                    r
                           − (10 ) (10 × 10−6 )
After 10 pulses: v0 = −5 =
                                     r
100 × 10−6
So r =            = 20 μ sec = r
           5
r = R1C2 = 20 μ sec = 20 × 10−6
For example, C2 = 0.01× 10−6 = 0.01 μ F ⇒ R1 = 2 kΩ

TYU9.14
      ⎡        R − ΔR                  R + ΔR           ⎤ +
v01 = ⎢                        −                        ⎥V
      ⎢ ( R − ΔR ) + ( R + ΔR ) ( R + ΔR ) + ( R − ΔR ) ⎥
      ⎣                                                 ⎦
     ⎡ R − ΔR R + ΔR ⎤ +
    =⎢        −          V
     ⎣ 2R         2R ⎥ ⎦
     ⎛ R − ΔR − R − ΔR ⎞ +
    =⎜                 ⎟V
     ⎝       2R        ⎠
        ⎛ ΔR ⎞ +
v01 = − ⎜    ⎟V
        ⎝ R ⎠
For V + = 3.5 V, ΔR = 50, R = 10 × 103
        ⎛ 50 ⎞
v01 = − ⎜ 4 ⎟ ( 3.5 ) = −1.75 × 10−2
        ⎝ 10 ⎠
                                          v0      5
Need an amplifier with a gain of Ad =        =            ⇒ Ad = −285.7
                                          vi −1.75 × 10−2
Use instrumentation amplifier, Fig. 9-25. Connect v01 to vI1 and ( −v01 ) to vI2.
      ⎛ R ⎞ ⎛ 2R ⎞
 Ad = ⎜ 4 ⎟ ⎜ 1 + 2 ⎟ = 285.7
      ⎝ R3 ⎠ ⎝   R1 ⎠
                                        R2
Let R4 = 150 kΩ, R3 = 10 kΩ Then           = 9.02
                                        R1
Let R2 = 100 kΩ, R1 = 11.1 kΩ

TYU9.15
      ⎡1       R         ⎤ +
v01 = ⎢ −                ⎥V
      ⎢ 2 R + R (1 + δ ) ⎥
      ⎣                  ⎦
     ⎡ R + R (1 + δ ) − 2 R ⎤ +
    =⎢                      ⎥V
     ⎢ 2 ( R + R (1 + δ ) ) ⎥
     ⎣                      ⎦
           Rδ
    =                ×V +
        2R ( 2 + δ )
      ⎛δ ⎞
v01 ≈ ⎜ ⎟ V +
      ⎝4⎠
V = 5 For δ = 0.01
  +


      ⎛ 0.01 ⎞
v01 = ⎜      ⎟ ( 5 ) = 0.0125
      ⎝ 4 ⎠
                       v      5
Need a gain Ad = 0 =             = 400
                      v01 0.0125
                                            ⎛ R ⎞ ⎛ 2R ⎞
Use an instrumentation amplifier Ad = 400 = ⎜ 4 ⎟ ⎜1 + 2 ⎟
                                            ⎝ R3 ⎠ ⎝  R1 ⎠
                                   R
Let R4 = 150 kΩ, R3 = 10 kΩ then 2 = 12.8
                                   R1
Let R2 = 150 kΩ, R1 = 11.7 kΩ

More Related Content

What's hot

Deflection 2
Deflection 2Deflection 2
Deflection 2anashalim
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)asghar123456
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutionskhemraj298
 
Operations Research Modeling Toolset
Operations Research Modeling ToolsetOperations Research Modeling Toolset
Operations Research Modeling ToolsetFellowBuddy.com
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutionskhemraj298
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutionskhemraj298
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12 jasson silva
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma ediciónSohar Carr
 
Engineering economy sample test #2 solution
Engineering economy sample test #2 solutionEngineering economy sample test #2 solution
Engineering economy sample test #2 solutionLe Nguyen Truong Giang
 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutionskhemraj298
 

What's hot (16)

Ch06p
Ch06pCh06p
Ch06p
 
6.4.1 Parallel Rc
6.4.1 Parallel Rc6.4.1 Parallel Rc
6.4.1 Parallel Rc
 
Ch08s
Ch08sCh08s
Ch08s
 
Deflection 2
Deflection 2Deflection 2
Deflection 2
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
 
Operations Research Modeling Toolset
Operations Research Modeling ToolsetOperations Research Modeling Toolset
Operations Research Modeling Toolset
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 
Gate ee 2009 with solutions
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
 
Gate ee 2007 with solutions
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
 
Engineering economy sample test #2 solution
Engineering economy sample test #2 solutionEngineering economy sample test #2 solution
Engineering economy sample test #2 solution
 
Gate ee 2003 with solutions
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutions
 

Viewers also liked

D ulrich wp_change_insights
D ulrich wp_change_insightsD ulrich wp_change_insights
D ulrich wp_change_insightsKC19LODO
 
Guía Infoempleo KSCHOOL de las nuevas profesiones
Guía Infoempleo KSCHOOL de las nuevas profesionesGuía Infoempleo KSCHOOL de las nuevas profesiones
Guía Infoempleo KSCHOOL de las nuevas profesionesCarlos Terrones Lizana
 
deep books catalogue 2015 - Philosophy
deep books catalogue 2015 - Philosophydeep books catalogue 2015 - Philosophy
deep books catalogue 2015 - Philosophydeepbooks
 
Jamba Juicethailand
Jamba JuicethailandJamba Juicethailand
Jamba Juicethailandgboonsong
 

Viewers also liked (6)

Memoria Asociación de Marketing Móvil 2010(lr)
Memoria Asociación de Marketing Móvil 2010(lr)Memoria Asociación de Marketing Móvil 2010(lr)
Memoria Asociación de Marketing Móvil 2010(lr)
 
D ulrich wp_change_insights
D ulrich wp_change_insightsD ulrich wp_change_insights
D ulrich wp_change_insights
 
Guía Infoempleo KSCHOOL de las nuevas profesiones
Guía Infoempleo KSCHOOL de las nuevas profesionesGuía Infoempleo KSCHOOL de las nuevas profesiones
Guía Infoempleo KSCHOOL de las nuevas profesiones
 
deep books catalogue 2015 - Philosophy
deep books catalogue 2015 - Philosophydeep books catalogue 2015 - Philosophy
deep books catalogue 2015 - Philosophy
 
Jamba Juicethailand
Jamba JuicethailandJamba Juicethailand
Jamba Juicethailand
 
Imc & promotion mix
Imc & promotion mixImc & promotion mix
Imc & promotion mix
 

Similar to Ch09p

Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensãoJhayson Carvalho
 
Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2nayakq
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSalehkhanovic
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 

Similar to Ch09p (20)

Ch12p
Ch12pCh12p
Ch12p
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch13p
Ch13pCh13p
Ch13p
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch08p
Ch08pCh08p
Ch08p
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
Ch02p
Ch02pCh02p
Ch02p
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch04s
Ch04sCh04s
Ch04s
 
Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2
 
Ch15s
Ch15sCh15s
Ch15s
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chin
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch16p
Ch16pCh16p
Ch16p
 
Cilindro
CilindroCilindro
Cilindro
 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 

More from Bilal Sarwar (10)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch05p
Ch05pCh05p
Ch05p
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch03s
Ch03sCh03s
Ch03s
 

Recently uploaded

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 

Recently uploaded (20)

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 

Ch09p

  • 1. Chapter 9 Exercise Solutions EX9.1 R2 Av = −15 = − R1 R1 = Ri = 20 K ⇒ R2 = 15 R1 = 15 ( 20 ) = 300 K EX9.2 R2 ⎛ R3 ⎞ R3 We can write ACL = − ⎜1 + ⎟ − R1 ⎝ R4 ⎠ R1 R1 = R1 = 10 kΩ Want ACL = −50 Set R2 = R3 = 50 kΩ ⎛ R ⎞ ACL = −50 = −5 ⎜ 1 + 3 ⎟ − 5 ⎝ R4 ⎠ R R 50 1+ 3 = 9 ⇒ 3 = 8 = R4 R4 R4 R4 = 6.25 kΩ EX9.3 R2 1 We have ACL = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Ad ⎝ R1 ⎠ ⎦ R Ri = R1 = 25 kΩ Let 2 = x R1 x −12 = − 1 1+ (1 + x ) 5 × 103 −x = x 1.0002 + 5 × 103 ⎛ x ⎞ 12 ⎜ 1.0002 + ⎟=x ⎝ 5 × 103 ⎠ 12.0024 = x − ( 2.4 × 10 −3 ) x 12.0024 R2 x= = 12.0313 = 0.9976 25 kΩ R2 = 300.78 kΩ EX9.4 ⎛R R R R ⎞ v0 = − ⎜ F vI 1 + F vI 2 + F vI 3 + F VI 4 ⎟ ⎝ R1 R2 R3 R4 ⎠
  • 2. RF R R R We need = 7, F = 14, F = 3.5, F = 10 R1 R2 R3 R4 Set RF = 280 kΩ 280 Then R1 = = 40 kΩ 7 280 R2 = = 20 kΩ 14 280 R3 = = 80 kΩ 3.5 280 R4 = = 28 kΩ 10 EX9.5 R3 3 R 20 R R We may note that = = 2 and F = = 2 so that 3 = F R2 1.5 R1 10 R2 R1 Then − vI − ( −3) iL = = ⇒ iL = 2 mA R2 1.5 kΩ vL = iL Z L = ( 2 × 10−3 ) ( 200 ) = 0.4 V vL 0.4 i4 = = = 0.267 mA R2 1.5 kΩ i3 = i4 + iL = 0.267 + 2 = 2.267 mA v0 = i3 R3 + vL = ( 2.267 × 10−3 )( 3 × 103 ) − 0.4 ⇒ v0 = 7.2 V EX9.6 Refer to Fig. 9.24 R1 = 2 R1 = 5 kΩ Let R1 = R3 = 2.5 kΩ Set R2 = R4 v0 R2 R2 Differential Gain = = = 100 = ⇒ R2 = R4 = 250 kΩ v1 R1 2.5 kΩ EX9.7
  • 3. We have the general relation that ⎛ R ⎞ ⎛ [ R4 / R3 ] ⎞ R v0 = ⎜ 1 + 2 ⎟ ⎜ v − 2v ⎜ 1 + [ R / R ] ⎟ I 2 R I1 ⎟ ⎝ R1 ⎠ ⎝ 4 3 ⎠ 1 R1 = R3 = 10 kΩ, R2 = 20 kΩ, R4 = 21 kΩ ⎛ 20 ⎞ ⎛ [ 21/10] ⎞ ⎛ 20 ⎞ v0 = ⎜ 1 + ⎟ ⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 10 ⎠ ⎜ 1 + [ 21/10] ⎟ ⎝ ⎠ ⎝ 10 ⎠ v0 = 2.0323vI 2 − 2.0vI a. vI 1 = 1, vI 2 = −1 v0 = −2.0323 − 2.0 ⇒ v0 = −4.032 V b. vI 1 = vI 2 = 1 V v0 = 2.0323 − 2.0 ⇒ v0 = 0.0323 V c. vcm = vI 1 = vI 2 so common-mode gain v0 Acm = = 0.0323 vcm d. ⎛ A ⎞ C M R RdB = 20 log10 ⎜ d ⎟ ⎝ Acm ⎠ 2.0323 ⎛ 1⎞ Ad = − ( 2.0 ) ⎜ − ⎟ = 2.016 2 ⎝ 2⎠ ⎛ 2.016 ⎞ C M R RdB = 20 log10 ⎜ ⎟ = 35.9 d B ⎝ 0.0323 ⎠ EX9.8 R4 ⎛ 2 R2 ⎞ v0 = − ⎜1 + ⎟ ( vI 1 − vI 2 ) R3 ⎝ R1 ⎠ R4 ⎛ 2 R2 ⎞ Differential gain (magnitude) = ⎜1 + ⎟ R3 ⎝ R1 ⎠ Minimum Gain ⇒ Maximum R1 = 1 + 50 = 51 kΩ 20 ⎛ 2 (100 ) ⎞ So Ad = ⎜1 + ⎟ ⇒ Ad = 4.92 20 ⎝ 51 ⎠ Maximum Gain ⇒ Minimum R1 = 1 kΩ 20 ⎛ 2 (100 ) ⎞ Ad = ⎜1 + ⎟ ⇒ Ad = 201 20 ⎝ 1 ⎠ Range of Differential Gain = 4.92 − 201 EX9.9 Time constant = r = R1C2 = (104 )( 0.1×10−6 ) = 1 m sec −1 0 ≤ t ≤ 1 ⇒ v0 = ×t R1 C2 At t = 1 m sec ⇒ v0 = −1 V 1 0 ≤ t ≤ 2 ⇒ v0 = −1 + × ( t − 1) R1 C2 ( 2 − 1) At t = 2 m sec ⇒ v0 = −1 + =0 1
  • 4. EX9.10 v0 = vI 1 + 10vI 2 − 25vI 3 − 80vI 4 From Figure 9.40, v13 input to R1, vI4 input to R2, vI1 input to RA, and vI2 input to RB. From Equation (9.94) RF R = 25 and F = 80 R1 R2 Set RF = 500 kΩ, then R1 = 20 kΩ, and R2 = 6.25 kΩ. ⎛ R ⎞⎛ R ⎞ ⎛ R ⎞⎛ R ⎞ Also ⎜1 + F ⎟⎜ P ⎟ = 1 and ⎜1 + F ⎟ ⎜ P ⎟ = 10 ⎝ RN ⎠ ⎝ RA ⎠ ⎝ RN ⎠ ⎝ RB ⎠ where RN = R1 R2 = 20 6.25 = 4.76 kΩ and RP = RA RB RC RA We find that = 10 RB Let RA = 200 kΩ, RB = 20 kΩ ⎛ 500 ⎞ ⎛ RP ⎞ ⎛ RP ⎞ Now ⎜1 + ⎟⎜ ⎟ = 1 = (106 ) ⎜ ⎟ ⎝ 4.76 ⎠ ⎝ RA ⎠ ⎝ 200 ⎠ Then RP = 1.89 kΩ RA RB = 200 20 = 18.2 kΩ 18.2 RC So RP = 1.89 = ⇒ RC = 2.11 kΩ 18.2 + RC EX9.11 Computer Analysis TYU9.1 R2 −100 kΩ ACL = − = ⇒ ACL = −10 R1 10 kΩ vI = 0.25 V ⇒ vo = −2.5 V vI 0.25 i1 = = = 0.025 mA ⇒ i1 = 25 μ A R1 10 kΩ i2 = i1 = 25 μ A Ri = R1 = 10 kΩ TYU9.2 (a) − R2 Av = R1 + RS −100 Av ( min ) = = −4.926 19 + 1.3 −100 Av ( max ) = = −5.076 19 + 0.7 so 4.926 ≤ Av ≤ 5.076 (b)
  • 5. 0.1 i1 ( max ) = = 5.076 μ A 19 + 0.7 0.1 i1 ( min ) = = 4.926 μ A 19 + 1.3 so 4.926 ≤ i1 ≤ 5.076 μ A (c) Maximum current specification is violated. TYU9.3 v0 = Ad ( v2 − v1 ) Ad = 103 a. v2 = 0, v0 = 5 v 5 v1 = − 0 = − 3 ⇒ v1 = −5 mV Ad 10 b. v1 = 5, v0 = −10 v0 = v2 − v1 Ad −10 = v2 − 5 ⇒ v2 = 4.99 V 103 c. v1 = 0.001, v2 = −0.001 v0 = 103 ( −0.001 − 0.001) v0 = −2 V d. v2 = 3, v0 = 3 v0 = Ad ( v2 − v1 ) v0 = v2 − v1 Ad 3 = 3 − v1 ⇒ v1 = 2.997 V 103 TYU9.4 ⎛R R R ⎞ v0 = − ⎜ 4 vI 1 + 4 vI 2 + 4 vI 3 ⎟ ⎝ R1 R2 R3 ⎠ ⎡⎛ 40 ⎞ ⎛ 40 ⎞ ⎛ 40 ⎞ ⎤ v0 = − ⎢⎜ ⎟ ( 250 ) + ⎜ ⎟ ( 200 ) + ⎜ ⎟ ( 75 ) ⎥ ⎣⎝ 10 ⎠ ⎝ 20 ⎠ ⎝ 30 ⎠ ⎦ v0 = − [1000 + 400 + 100] v0 = −1500 μ V = −1.5 mV TYU9.5
  • 6. vI 1 + vI 2 + vI 3 RF vO = = ( vI 1 + vI 2 + vI 3 ) 3 R RF 1 = ⇒ R1 = R2 = R3 ≡ R = 1 M Ω R 3 1 Then RF = M Ω = 333 k Ω 3 TYU9.6 v ⎛ R ⎞ R Av = 0 = ⎜ 1 + 2 ⎟ = 5 so that 2 = 4 vI ⎝ R1 ⎠ R1 For v0 = 10 V, vI = 2 V 2 Then i1 = = 50 μ A ⇒ R1 = 40 kΩ R1 v0 − vI 10 − 2 Then R2 = 160 kΩ we find i2 = = = 50 μ A R2 160 TYU9.7 v0 = Aod ( v2 − v1 ) = Aod ( vI − v1 ) v0 v − vI = −v1 or v1 = vI − 0 Aod Aod v1 v −v i1 = = i2 and i2 = 0 1 R1 R2 ⎛ 1 ⎞ v −v Then v1 ⎜ ⎟ = 0 1 ⎝ R1 ⎠ R2 ⎛ 1 1 ⎞ v v1 ⎜ + ⎟ = 0 ⎝ R1 R2 ⎠ R2 ⎛ R ⎞ ⎛ R ⎞⎛ v ⎞ v0 ⎜ 1 + 2 ⎟ v1 = ⎜ 1 + 2 ⎟ ⎜ vI − 0 ⎟ ⎝ R1 ⎠ ⎝ R1 ⎠⎝ Aod ⎠ ⎛ R2 ⎞ ⎜1 + ⎟ So Av = = v0 ⎝ R1 ⎠ vI 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ Aod ⎝ R1 ⎠ TYU9.8
  • 7. ⎛ Rb ⎞ For vI 2 = 0, v2 = ⎜ ⎟ vI 1 and ⎝ Rb + Ra ⎠ ⎛ R ⎞ ⎛ Rb ⎞ v0 ( vI 1 ) = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 1 ⎝ R1 ⎠⎝ Rb + Ra ⎠ ⎛ 70 ⎞⎛ 50 ⎞ = ⎜ 1 + ⎟⎜ ⎟ vI 1 ⎝ 5 ⎠⎝ 50 + 25 ⎠ = 10vI 1 ⎛ Ra ⎞ For vI 1 = 0, v2 = ⎜ ⎟ vI 2 ⎝ Rb + Ra ⎠ ⎛ R ⎞ ⎛ Ra ⎞ v0 ( vI 2 ) = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 ⎝ R1 ⎠⎝ Rb + Ra ⎠ ⎛ 70 ⎞⎛ 25 ⎞ = ⎜ 1 + ⎟⎜ ⎟ vI 2 ⎝ 5 ⎠⎝ 25 + 50 ⎠ = 5vI 2 Then v0 = v0 ( vI 1 ) + v0 ( vI 2 ) v0 = 10vI 1 + 5vI 2 TYU9.9 RS Ri so i1 = i2 = iS = 100 μ A v0 = −iS RF We want −10 = − (100 × 10−6 ) RF ⇒ RF = 100 kΩ TYU9.10 We want iL = 1 mA when vI = −5 V −VI −v − ( −5 ) iL = ⇒ R2 = I = ⇒ R2 = 5 kΩ R2 i2 10−3 vL = iL Z L = (10−3 ) ( 500 ) ⇒ vL = 0.5 V vL 0.5 i4 = = ⇒ i4 = 0.1 mA R2 5 kΩ i3 = i4 + iL = 0.1 + 1 = 1.1 mA If op-amp is biased at ±10 V, output must be limited to ≈ 8 V. So v0 = i3 R3 + vL 8 = (1.1× 10−3 ) R3 + 0.5 ⇒ R3 = 6.82 kΩ Let R3 = 7.0 kΩ
  • 8. R3 RF 7 Then we want = = = 1.4 R2 R1 5 Can choose R1 = 10 kΩ and RF = 14 kΩ TYU9.11 a. v −v i1 = I 1 I 2 R1 R4 ′ v01 = vI 1 + i1 R2 , v02 = vI 2 − i1 R2 and v0 = ( v02 − v01 ) R3 R4 v0 = [vI 2 − i1 R2 − vI 1 − i1 R2′ ] R3 R4 v0 = ⎡( vI 2 − vI 1 ) − i1 ( R2 + R2 ) ⎤ ′ ⎦ R3 ⎣ R4 ⎡ ⎛ vI 2 − vI 1 ⎞ ⎤ v0 = ⎢ ( vI 2 − vI 1 ) − ⎜ ⎟ ( R2 + R2 ) ⎥ ′ R3 ⎣ ⎝ R1 ⎠ ⎦ For common-mode input vI 2 = vI 1 ⇒ v0 = 0 ⇒ Common Gain = 0, C M R R = ∞ b. Ad ( min ) ⇒ R2 min, R1 max ′ ⎛ 20 ⎞ ⎡ 100 + 95 ⎤ Ad = ⎜ ⎟ ⎢1 + ⎥ = 4.82 ⎝ 20 ⎠ ⎣ 51 ⎦ ⎛ 20 ⎞ ⎡ 100 + 105 ⎤ Ad ( max ) = ⎜ ⎟ ⎢1 + ⎥ = 206 ⎝ 20 ⎠ ⎣ 1 ⎦ c. A CM RR = d Acm Acm = 0 ⇒ C M R R = ∞ TYU9.12 R4 ⎛ 2 R2 ⎞ Differential Gain = ⎜1 + ⎟ R3 ⎝ R1 ⎠ Let R3 = R4 so the difference amplifier gain is unity. Minimum Gain ⇒ Maximum R1 ⎛ 2 R2 ⎞ So ⎜1 + ⎜ R ( max ) ⎟ = 2 ⎟ ⎝ 1 ⎠ We want 2 R2 = R1 ( max ) Maximum Gain ⇒ Minimum R1 ⎛ 2 R2 ⎞ ⎜ R ( min ) ⎟ = 1000 or 2 R2 = 999 R1 ( min ) So ⎜1 + ⎟ ⎝ 1 ⎠ If R2 = 50 kΩ, let R1 ( min ) = 100 Ω fixed resistor and let R1 ( max ) = 100 kΩ + 100 Ω = 100.1 pot Then actual differential gain is in the range of 1.999 − 1001 TYU9.13 −1 10 μ sec −10 × 10−6 End of 1st pulse: v0 = ×t 0 = r r − (10 ) (10 × 10−6 ) After 10 pulses: v0 = −5 = r
  • 9. 100 × 10−6 So r = = 20 μ sec = r 5 r = R1C2 = 20 μ sec = 20 × 10−6 For example, C2 = 0.01× 10−6 = 0.01 μ F ⇒ R1 = 2 kΩ TYU9.14 ⎡ R − ΔR R + ΔR ⎤ + v01 = ⎢ − ⎥V ⎢ ( R − ΔR ) + ( R + ΔR ) ( R + ΔR ) + ( R − ΔR ) ⎥ ⎣ ⎦ ⎡ R − ΔR R + ΔR ⎤ + =⎢ − V ⎣ 2R 2R ⎥ ⎦ ⎛ R − ΔR − R − ΔR ⎞ + =⎜ ⎟V ⎝ 2R ⎠ ⎛ ΔR ⎞ + v01 = − ⎜ ⎟V ⎝ R ⎠ For V + = 3.5 V, ΔR = 50, R = 10 × 103 ⎛ 50 ⎞ v01 = − ⎜ 4 ⎟ ( 3.5 ) = −1.75 × 10−2 ⎝ 10 ⎠ v0 5 Need an amplifier with a gain of Ad = = ⇒ Ad = −285.7 vi −1.75 × 10−2 Use instrumentation amplifier, Fig. 9-25. Connect v01 to vI1 and ( −v01 ) to vI2. ⎛ R ⎞ ⎛ 2R ⎞ Ad = ⎜ 4 ⎟ ⎜ 1 + 2 ⎟ = 285.7 ⎝ R3 ⎠ ⎝ R1 ⎠ R2 Let R4 = 150 kΩ, R3 = 10 kΩ Then = 9.02 R1 Let R2 = 100 kΩ, R1 = 11.1 kΩ TYU9.15 ⎡1 R ⎤ + v01 = ⎢ − ⎥V ⎢ 2 R + R (1 + δ ) ⎥ ⎣ ⎦ ⎡ R + R (1 + δ ) − 2 R ⎤ + =⎢ ⎥V ⎢ 2 ( R + R (1 + δ ) ) ⎥ ⎣ ⎦ Rδ = ×V + 2R ( 2 + δ ) ⎛δ ⎞ v01 ≈ ⎜ ⎟ V + ⎝4⎠ V = 5 For δ = 0.01 + ⎛ 0.01 ⎞ v01 = ⎜ ⎟ ( 5 ) = 0.0125 ⎝ 4 ⎠ v 5 Need a gain Ad = 0 = = 400 v01 0.0125 ⎛ R ⎞ ⎛ 2R ⎞ Use an instrumentation amplifier Ad = 400 = ⎜ 4 ⎟ ⎜1 + 2 ⎟ ⎝ R3 ⎠ ⎝ R1 ⎠ R Let R4 = 150 kΩ, R3 = 10 kΩ then 2 = 12.8 R1 Let R2 = 150 kΩ, R1 = 11.7 kΩ