Chapter 9
Exercise Solutions

EX9.1
                R2
Av = −15 = −
                R1
R1 = Ri = 20 K ⇒ R2 = 15 R1 = 15 ( 20 ) = 300 K

EX9.2
                         R2 ⎛ R3 ⎞ R3
We can write ACL = −        ⎜1 + ⎟ −
                         R1 ⎝ R4 ⎠ R1
R1 = R1 = 10 kΩ
Want ACL = −50 Set R2 = R3 = 50 kΩ
               ⎛ R ⎞
ACL = −50 = −5 ⎜ 1 + 3 ⎟ − 5
               ⎝ R4 ⎠
   R         R         50
1+ 3 = 9 ⇒ 3 = 8 =
   R4        R4        R4
R4 = 6.25 kΩ

EX9.3
                R2           1
We have ACL = −    ⋅
                R1 ⎡      1  ⎛ R2 ⎞ ⎤
                     ⎢1 +    ⎜1 + ⎟ ⎥
                     ⎣    Ad ⎝   R1 ⎠ ⎦
                      R
Ri = R1 = 25 kΩ Let 2 = x
                      R1
                   x
−12 = −
                1
          1+         (1 + x )
             5 × 103
               −x
      =
                     x
        1.0002 +
                  5 × 103
   ⎛              x ⎞
12 ⎜ 1.0002 +          ⎟=x
   ⎝          5 × 103 ⎠
12.0024 = x − ( 2.4 × 10 −3 ) x
   12.0024                R2
x=          = 12.0313 =
    0.9976              25 kΩ
R2 = 300.78 kΩ

EX9.4
       ⎛R        R        R        R       ⎞
v0 = − ⎜ F vI 1 + F vI 2 + F vI 3 + F VI 4 ⎟
       ⎝ R1      R2       R3       R4      ⎠
RF      R       R        R
We need       = 7, F = 14, F = 3.5, F = 10
           R1      R2      R3       R4
Set RF = 280 kΩ
            280
Then R1 =         = 40 kΩ
             7
            280
       R2 =       = 20 kΩ
            14
            280
       R3 =       = 80 kΩ
            3.5
            280
       R4 =       = 28 kΩ
            10

EX9.5
                      R3   3        R    20            R   R
We may note that         =   = 2 and F =    = 2 so that 3 = F
                      R2 1.5         R1 10             R2 R1
Then
       − vI   − ( −3)
iL =        =         ⇒ iL = 2 mA
       R2 1.5 kΩ
vL = iL Z L = ( 2 × 10−3 ) ( 200 ) = 0.4 V
       vL   0.4
i4 =      =      = 0.267 mA
       R2 1.5 kΩ
 i3 = i4 + iL = 0.267 + 2 = 2.267 mA
v0 = i3 R3 + vL = ( 2.267 × 10−3 )( 3 × 103 ) − 0.4 ⇒ v0 = 7.2 V

EX9.6
Refer to Fig. 9.24
R1 = 2 R1 = 5 kΩ
Let R1 = R3 = 2.5 kΩ
Set R2 = R4
                       v0 R2           R2
Differential Gain =      =   = 100 =        ⇒ R2 = R4 = 250 kΩ
                       v1 R1         2.5 kΩ

EX9.7
We have the general relation that
     ⎛ R ⎞ ⎛ [ R4 / R3 ] ⎞           R
v0 = ⎜ 1 + 2 ⎟ ⎜                 v − 2v
               ⎜ 1 + [ R / R ] ⎟ I 2 R I1
                               ⎟
     ⎝    R1 ⎠ ⎝        4   3 ⎠       1

R1 = R3 = 10 kΩ, R2 = 20 kΩ, R4 = 21 kΩ
     ⎛ 20 ⎞ ⎛ [ 21/10] ⎞               ⎛ 20 ⎞
v0 = ⎜ 1 + ⎟ ⎜                ⎟ vI 2 − ⎜ ⎟ vI 1
     ⎝    10 ⎠ ⎜ 1 + [ 21/10] ⎟
               ⎝              ⎠        ⎝ 10 ⎠
 v0 = 2.0323vI 2 − 2.0vI
a.        vI 1 = 1, vI 2 = −1
            v0 = −2.0323 − 2.0 ⇒ v0 = −4.032 V
b.         vI 1 = vI 2 = 1 V
           v0 = 2.0323 − 2.0 ⇒ v0 = 0.0323 V
c.         vcm = vI 1 = vI 2 so common-mode gain
         v0
Acm =        = 0.0323
         vcm
d.
                       ⎛ A ⎞
C M R RdB = 20 log10 ⎜ d ⎟
                       ⎝ Acm ⎠
     2.0323           ⎛ 1⎞
Ad =        − ( 2.0 ) ⎜ − ⎟ = 2.016
        2             ⎝ 2⎠
                     ⎛ 2.016 ⎞
C M R RdB = 20 log10 ⎜        ⎟ = 35.9 d B
                     ⎝ 0.0323 ⎠

EX9.8
         R4 ⎛ 2 R2 ⎞
v0 = −      ⎜1 +    ⎟ ( vI 1 − vI 2 )
         R3 ⎝    R1 ⎠
                                            R4 ⎛ 2 R2 ⎞
Differential gain (magnitude) =                ⎜1 +    ⎟
                                            R3 ⎝    R1 ⎠
Minimum Gain ⇒ Maximum R1 = 1 + 50 = 51 kΩ
           20 ⎛ 2 (100 ) ⎞
So Ad =       ⎜1 +       ⎟ ⇒ Ad = 4.92
           20 ⎝    51 ⎠
Maximum Gain ⇒ Minimum R1 = 1 kΩ
        20 ⎛ 2 (100 ) ⎞
Ad =       ⎜1 +       ⎟ ⇒ Ad = 201
        20 ⎝    1 ⎠
Range of Differential Gain = 4.92 − 201

EX9.9
Time constant = r = R1C2 = (104 )( 0.1×10−6 )
                                = 1 m sec
                  −1
0 ≤ t ≤ 1 ⇒ v0 =       ×t
                 R1 C2
At t = 1 m sec ⇒ v0 = −1 V
                             1
0 ≤ t ≤ 2 ⇒ v0 = −1 +            × ( t − 1)
                           R1 C2
                                   ( 2 − 1)
At t = 2 m sec ⇒ v0 = −1 +                    =0
                                        1
EX9.10
v0 = vI 1 + 10vI 2 − 25vI 3 − 80vI 4
From Figure 9.40, v13 input to R1, vI4 input to R2, vI1 input to RA, and vI2 input to RB.
From Equation (9.94)
 RF               R
    = 25 and F = 80
 R1               R2
Set RF = 500 kΩ, then R1 = 20 kΩ, and R2 = 6.25 kΩ.
     ⎛ R ⎞⎛ R ⎞            ⎛ R ⎞⎛ R ⎞
Also ⎜1 + F ⎟⎜ P ⎟ = 1 and ⎜1 + F ⎟ ⎜ P ⎟ = 10
     ⎝ RN ⎠ ⎝ RA ⎠         ⎝ RN ⎠ ⎝ RB ⎠
where RN = R1 R2 = 20 6.25 = 4.76 kΩ and RP = RA RB RC
                RA
We find that       = 10
                RB
Let RA = 200 kΩ, RB = 20 kΩ

     ⎛   500 ⎞ ⎛ RP ⎞              ⎛ RP ⎞
Now ⎜1 +      ⎟⎜    ⎟ = 1 = (106 ) ⎜     ⎟
     ⎝ 4.76 ⎠ ⎝ RA ⎠               ⎝ 200 ⎠
Then RP = 1.89 kΩ
RA RB = 200 20 = 18.2 kΩ
                    18.2 RC
So RP = 1.89 =               ⇒ RC = 2.11 kΩ
                   18.2 + RC

EX9.11 Computer Analysis

TYU9.1
          R2 −100 kΩ
ACL = −      =       ⇒ ACL = −10
          R1   10 kΩ
vI = 0.25 V ⇒ vo = −2.5 V
       vI   0.25
i1 =      =      = 0.025 mA ⇒ i1 = 25 μ A
       R1 10 kΩ
i2 = i1 = 25 μ A
Ri = R1 = 10 kΩ

TYU9.2
(a)
       − R2
 Av =
      R1 + RS
              −100
Av ( min ) =          = −4.926
             19 + 1.3
               −100
Av ( max ) =           = −5.076
             19 + 0.7
so 4.926 ≤ Av ≤ 5.076
(b)
0.1
i1 ( max ) =           = 5.076 μ A
             19 + 0.7
               0.1
i1 ( min ) =          = 4.926 μ A
             19 + 1.3
so 4.926 ≤ i1 ≤ 5.076 μ A
(c)          Maximum current specification is violated.

TYU9.3
v0 = Ad ( v2 − v1 )        Ad = 103




a.
v2 = 0, v0 = 5
         v        5
 v1 = − 0 = − 3 ⇒ v1 = −5 mV
         Ad      10
b.
    v1 = 5, v0 = −10
   v0
       = v2 − v1
   Ad
 −10
     = v2 − 5 ⇒ v2 = 4.99 V
 103
c.
v1 = 0.001, v2 = −0.001
v0 = 103 ( −0.001 − 0.001)
v0 = −2 V
d.
     v2 = 3, v0 = 3
     v0 = Ad ( v2 − v1 )
 v0
    = v2 − v1
 Ad
 3
    = 3 − v1 ⇒ v1 = 2.997 V
103

TYU9.4
       ⎛R        R         R      ⎞
v0 = − ⎜ 4 vI 1 + 4 vI 2 + 4 vI 3 ⎟
       ⎝ R1      R2        R3     ⎠
       ⎡⎛ 40 ⎞         ⎛ 40 ⎞       ⎛ 40 ⎞     ⎤
v0 = − ⎢⎜ ⎟ ( 250 ) + ⎜ ⎟ ( 200 ) + ⎜ ⎟ ( 75 ) ⎥
       ⎣⎝ 10 ⎠         ⎝ 20 ⎠       ⎝ 30 ⎠     ⎦
v0 = − [1000 + 400 + 100]
v0 = −1500 μ V = −1.5 mV

TYU9.5
vI 1 + vI 2 + vI 3 RF
vO =                   =   ( vI 1 + vI 2 + vI 3 )
             3           R
RF 1
   = ⇒ R1 = R2 = R3 ≡ R = 1 M Ω
 R 3
            1
Then RF = M Ω = 333 k Ω
            3

TYU9.6
     v ⎛ R ⎞                  R
Av = 0 = ⎜ 1 + 2 ⎟ = 5 so that 2 = 4
     vI ⎝      R1 ⎠            R1
For v0 = 10 V, vI = 2 V
            2
Then i1 =      = 50 μ A ⇒ R1 = 40 kΩ
            R1
                                         v0 − vI 10 − 2
Then R2 = 160 kΩ we find i2 =                   =       = 50 μ A
                                           R2     160

TYU9.7




v0 = Aod ( v2 − v1 ) = Aod ( vI − v1 )
 v0                              v
    − vI = −v1 or v1 = vI − 0
Aod                             Aod
       v1              v −v
i1 =      = i2 and i2 = 0 1
       R1                R2
        ⎛ 1 ⎞ v −v
Then v1 ⎜ ⎟ = 0 1
        ⎝ R1 ⎠  R2
   ⎛ 1  1 ⎞ v
v1 ⎜ + ⎟ = 0
   ⎝ R1 R2 ⎠ R2
   ⎛ R ⎞          ⎛ R ⎞⎛           v ⎞
v0 ⎜ 1 + 2 ⎟ v1 = ⎜ 1 + 2 ⎟ ⎜ vI − 0 ⎟
   ⎝    R1 ⎠      ⎝     R1 ⎠⎝      Aod ⎠
                    ⎛ R2 ⎞
                    ⎜1 + ⎟
So Av = =
         v0         ⎝     R1 ⎠
         vI          1 ⎛ R2 ⎞
               1+       ⎜1 + ⎟
                    Aod ⎝     R1 ⎠

TYU9.8
⎛ Rb          ⎞
For vI 2 = 0, v2 = ⎜             ⎟ vI 1 and
                   ⎝ Rb + Ra     ⎠
              ⎛ R ⎞ ⎛ Rb ⎞
v0 ( vI 1 ) = ⎜ 1 + 2 ⎟ ⎜         ⎟ vI 1
              ⎝     R1 ⎠⎝ Rb + Ra ⎠
              ⎛ 70 ⎞⎛ 50 ⎞
            = ⎜ 1 + ⎟⎜            ⎟ vI 1
              ⎝      5 ⎠⎝ 50 + 25 ⎠
            = 10vI 1
                   ⎛ Ra ⎞
For vI 1 = 0, v2 = ⎜         ⎟ vI 2
                   ⎝ Rb + Ra ⎠
              ⎛ R ⎞ ⎛ Ra ⎞
v0 ( vI 2 ) = ⎜ 1 + 2 ⎟ ⎜         ⎟ vI 2
              ⎝     R1 ⎠⎝ Rb + Ra ⎠
              ⎛ 70 ⎞⎛ 25 ⎞
            = ⎜ 1 + ⎟⎜           ⎟ vI 2
              ⎝     5 ⎠⎝ 25 + 50 ⎠
            = 5vI 2
Then
v0 = v0 ( vI 1 ) + v0 ( vI 2 )
v0 = 10vI 1 + 5vI 2

TYU9.9




RS      Ri so i1 = i2 = iS = 100 μ A
v0 = −iS RF
We want −10 = − (100 × 10−6 ) RF ⇒ RF = 100 kΩ

TYU9.10
We want iL = 1 mA when vI = −5 V
       −VI       −v   − ( −5 )
iL =       ⇒ R2 = I =          ⇒ R2 = 5 kΩ
        R2        i2   10−3
vL = iL Z L = (10−3 ) ( 500 ) ⇒ vL = 0.5 V
       vL   0.5
i4 =      =     ⇒ i4 = 0.1 mA
       R2 5 kΩ
 i3 = i4 + iL = 0.1 + 1 = 1.1 mA
If op-amp is biased at ±10 V, output must be limited to ≈ 8 V.
So v0 = i3 R3 + vL
     8 = (1.1× 10−3 ) R3 + 0.5 ⇒ R3 = 6.82 kΩ
Let R3 = 7.0 kΩ
R3 RF 7
Then we want           =  = = 1.4
                     R2 R1 5
Can choose R1 = 10 kΩ and RF = 14 kΩ

TYU9.11
a.
    v −v
i1 = I 1 I 2
        R1
                                                   R4
                 ′
v01 = vI 1 + i1 R2 , v02 = vI 2 − i1 R2 and v0 =      ( v02 − v01 )
                                                   R3
       R4
v0 =      [vI 2 − i1 R2 − vI 1 − i1 R2′ ]
       R3
       R4
v0 =      ⎡( vI 2 − vI 1 ) − i1 ( R2 + R2 ) ⎤
                                        ′ ⎦
       R3 ⎣
     R4 ⎡                   ⎛ vI 2 − vI 1 ⎞             ⎤
v0 =    ⎢ ( vI 2 − vI 1 ) − ⎜             ⎟ ( R2 + R2 ) ⎥
                                                    ′
     R3 ⎣                   ⎝ R1 ⎠                      ⎦
For common-mode input vI 2 = vI 1 ⇒ v0 = 0 ⇒ Common Gain = 0, C M R R = ∞
b.          Ad ( min ) ⇒ R2 min, R1 max
                          ′
              ⎛ 20 ⎞ ⎡ 100 + 95 ⎤
        Ad = ⎜ ⎟ ⎢1 +           ⎥ = 4.82
              ⎝ 20 ⎠ ⎣    51 ⎦
              ⎛ 20 ⎞ ⎡ 100 + 105 ⎤
 Ad ( max ) = ⎜ ⎟ ⎢1 +            ⎥ = 206
              ⎝ 20 ⎠ ⎣     1      ⎦
c.
               A
CM RR = d
              Acm
Acm = 0 ⇒ C M R R = ∞

TYU9.12
                            R4 ⎛ 2 R2 ⎞
Differential Gain =            ⎜1 +    ⎟
                            R3 ⎝    R1 ⎠
Let R3 = R4 so the difference amplifier gain is unity.
Minimum Gain ⇒ Maximum R1
   ⎛      2 R2 ⎞
So ⎜1 +
   ⎜ R ( max ) ⎟ = 2
                ⎟
   ⎝    1       ⎠
We want 2 R2 = R1 ( max )
Maximum Gain ⇒ Minimum R1
    ⎛      2 R2 ⎞
    ⎜ R ( min ) ⎟ = 1000 or 2 R2 = 999 R1 ( min )
So ⎜1 +         ⎟
    ⎝    1      ⎠
If R2 = 50 kΩ, let R1 ( min ) = 100 Ω fixed resistor and let R1 ( max ) = 100 kΩ + 100 Ω = 100.1
                                                                          pot

Then actual differential gain is in the range of 1.999 − 1001

TYU9.13
                       −1 10 μ sec −10 × 10−6
End of 1st pulse: v0 =    ×t 0       =
                       r                    r
                           − (10 ) (10 × 10−6 )
After 10 pulses: v0 = −5 =
                                     r
100 × 10−6
So r =            = 20 μ sec = r
           5
r = R1C2 = 20 μ sec = 20 × 10−6
For example, C2 = 0.01× 10−6 = 0.01 μ F ⇒ R1 = 2 kΩ

TYU9.14
      ⎡        R − ΔR                  R + ΔR           ⎤ +
v01 = ⎢                        −                        ⎥V
      ⎢ ( R − ΔR ) + ( R + ΔR ) ( R + ΔR ) + ( R − ΔR ) ⎥
      ⎣                                                 ⎦
     ⎡ R − ΔR R + ΔR ⎤ +
    =⎢        −          V
     ⎣ 2R         2R ⎥ ⎦
     ⎛ R − ΔR − R − ΔR ⎞ +
    =⎜                 ⎟V
     ⎝       2R        ⎠
        ⎛ ΔR ⎞ +
v01 = − ⎜    ⎟V
        ⎝ R ⎠
For V + = 3.5 V, ΔR = 50, R = 10 × 103
        ⎛ 50 ⎞
v01 = − ⎜ 4 ⎟ ( 3.5 ) = −1.75 × 10−2
        ⎝ 10 ⎠
                                          v0      5
Need an amplifier with a gain of Ad =        =            ⇒ Ad = −285.7
                                          vi −1.75 × 10−2
Use instrumentation amplifier, Fig. 9-25. Connect v01 to vI1 and ( −v01 ) to vI2.
      ⎛ R ⎞ ⎛ 2R ⎞
 Ad = ⎜ 4 ⎟ ⎜ 1 + 2 ⎟ = 285.7
      ⎝ R3 ⎠ ⎝   R1 ⎠
                                        R2
Let R4 = 150 kΩ, R3 = 10 kΩ Then           = 9.02
                                        R1
Let R2 = 100 kΩ, R1 = 11.1 kΩ

TYU9.15
      ⎡1       R         ⎤ +
v01 = ⎢ −                ⎥V
      ⎢ 2 R + R (1 + δ ) ⎥
      ⎣                  ⎦
     ⎡ R + R (1 + δ ) − 2 R ⎤ +
    =⎢                      ⎥V
     ⎢ 2 ( R + R (1 + δ ) ) ⎥
     ⎣                      ⎦
           Rδ
    =                ×V +
        2R ( 2 + δ )
      ⎛δ ⎞
v01 ≈ ⎜ ⎟ V +
      ⎝4⎠
V = 5 For δ = 0.01
  +


      ⎛ 0.01 ⎞
v01 = ⎜      ⎟ ( 5 ) = 0.0125
      ⎝ 4 ⎠
                       v      5
Need a gain Ad = 0 =             = 400
                      v01 0.0125
                                            ⎛ R ⎞ ⎛ 2R ⎞
Use an instrumentation amplifier Ad = 400 = ⎜ 4 ⎟ ⎜1 + 2 ⎟
                                            ⎝ R3 ⎠ ⎝  R1 ⎠
                                   R
Let R4 = 150 kΩ, R3 = 10 kΩ then 2 = 12.8
                                   R1
Let R2 = 150 kΩ, R1 = 11.7 kΩ

Ch09p

  • 1.
    Chapter 9 Exercise Solutions EX9.1 R2 Av = −15 = − R1 R1 = Ri = 20 K ⇒ R2 = 15 R1 = 15 ( 20 ) = 300 K EX9.2 R2 ⎛ R3 ⎞ R3 We can write ACL = − ⎜1 + ⎟ − R1 ⎝ R4 ⎠ R1 R1 = R1 = 10 kΩ Want ACL = −50 Set R2 = R3 = 50 kΩ ⎛ R ⎞ ACL = −50 = −5 ⎜ 1 + 3 ⎟ − 5 ⎝ R4 ⎠ R R 50 1+ 3 = 9 ⇒ 3 = 8 = R4 R4 R4 R4 = 6.25 kΩ EX9.3 R2 1 We have ACL = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Ad ⎝ R1 ⎠ ⎦ R Ri = R1 = 25 kΩ Let 2 = x R1 x −12 = − 1 1+ (1 + x ) 5 × 103 −x = x 1.0002 + 5 × 103 ⎛ x ⎞ 12 ⎜ 1.0002 + ⎟=x ⎝ 5 × 103 ⎠ 12.0024 = x − ( 2.4 × 10 −3 ) x 12.0024 R2 x= = 12.0313 = 0.9976 25 kΩ R2 = 300.78 kΩ EX9.4 ⎛R R R R ⎞ v0 = − ⎜ F vI 1 + F vI 2 + F vI 3 + F VI 4 ⎟ ⎝ R1 R2 R3 R4 ⎠
  • 2.
    RF R R R We need = 7, F = 14, F = 3.5, F = 10 R1 R2 R3 R4 Set RF = 280 kΩ 280 Then R1 = = 40 kΩ 7 280 R2 = = 20 kΩ 14 280 R3 = = 80 kΩ 3.5 280 R4 = = 28 kΩ 10 EX9.5 R3 3 R 20 R R We may note that = = 2 and F = = 2 so that 3 = F R2 1.5 R1 10 R2 R1 Then − vI − ( −3) iL = = ⇒ iL = 2 mA R2 1.5 kΩ vL = iL Z L = ( 2 × 10−3 ) ( 200 ) = 0.4 V vL 0.4 i4 = = = 0.267 mA R2 1.5 kΩ i3 = i4 + iL = 0.267 + 2 = 2.267 mA v0 = i3 R3 + vL = ( 2.267 × 10−3 )( 3 × 103 ) − 0.4 ⇒ v0 = 7.2 V EX9.6 Refer to Fig. 9.24 R1 = 2 R1 = 5 kΩ Let R1 = R3 = 2.5 kΩ Set R2 = R4 v0 R2 R2 Differential Gain = = = 100 = ⇒ R2 = R4 = 250 kΩ v1 R1 2.5 kΩ EX9.7
  • 3.
    We have thegeneral relation that ⎛ R ⎞ ⎛ [ R4 / R3 ] ⎞ R v0 = ⎜ 1 + 2 ⎟ ⎜ v − 2v ⎜ 1 + [ R / R ] ⎟ I 2 R I1 ⎟ ⎝ R1 ⎠ ⎝ 4 3 ⎠ 1 R1 = R3 = 10 kΩ, R2 = 20 kΩ, R4 = 21 kΩ ⎛ 20 ⎞ ⎛ [ 21/10] ⎞ ⎛ 20 ⎞ v0 = ⎜ 1 + ⎟ ⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 10 ⎠ ⎜ 1 + [ 21/10] ⎟ ⎝ ⎠ ⎝ 10 ⎠ v0 = 2.0323vI 2 − 2.0vI a. vI 1 = 1, vI 2 = −1 v0 = −2.0323 − 2.0 ⇒ v0 = −4.032 V b. vI 1 = vI 2 = 1 V v0 = 2.0323 − 2.0 ⇒ v0 = 0.0323 V c. vcm = vI 1 = vI 2 so common-mode gain v0 Acm = = 0.0323 vcm d. ⎛ A ⎞ C M R RdB = 20 log10 ⎜ d ⎟ ⎝ Acm ⎠ 2.0323 ⎛ 1⎞ Ad = − ( 2.0 ) ⎜ − ⎟ = 2.016 2 ⎝ 2⎠ ⎛ 2.016 ⎞ C M R RdB = 20 log10 ⎜ ⎟ = 35.9 d B ⎝ 0.0323 ⎠ EX9.8 R4 ⎛ 2 R2 ⎞ v0 = − ⎜1 + ⎟ ( vI 1 − vI 2 ) R3 ⎝ R1 ⎠ R4 ⎛ 2 R2 ⎞ Differential gain (magnitude) = ⎜1 + ⎟ R3 ⎝ R1 ⎠ Minimum Gain ⇒ Maximum R1 = 1 + 50 = 51 kΩ 20 ⎛ 2 (100 ) ⎞ So Ad = ⎜1 + ⎟ ⇒ Ad = 4.92 20 ⎝ 51 ⎠ Maximum Gain ⇒ Minimum R1 = 1 kΩ 20 ⎛ 2 (100 ) ⎞ Ad = ⎜1 + ⎟ ⇒ Ad = 201 20 ⎝ 1 ⎠ Range of Differential Gain = 4.92 − 201 EX9.9 Time constant = r = R1C2 = (104 )( 0.1×10−6 ) = 1 m sec −1 0 ≤ t ≤ 1 ⇒ v0 = ×t R1 C2 At t = 1 m sec ⇒ v0 = −1 V 1 0 ≤ t ≤ 2 ⇒ v0 = −1 + × ( t − 1) R1 C2 ( 2 − 1) At t = 2 m sec ⇒ v0 = −1 + =0 1
  • 4.
    EX9.10 v0 = vI1 + 10vI 2 − 25vI 3 − 80vI 4 From Figure 9.40, v13 input to R1, vI4 input to R2, vI1 input to RA, and vI2 input to RB. From Equation (9.94) RF R = 25 and F = 80 R1 R2 Set RF = 500 kΩ, then R1 = 20 kΩ, and R2 = 6.25 kΩ. ⎛ R ⎞⎛ R ⎞ ⎛ R ⎞⎛ R ⎞ Also ⎜1 + F ⎟⎜ P ⎟ = 1 and ⎜1 + F ⎟ ⎜ P ⎟ = 10 ⎝ RN ⎠ ⎝ RA ⎠ ⎝ RN ⎠ ⎝ RB ⎠ where RN = R1 R2 = 20 6.25 = 4.76 kΩ and RP = RA RB RC RA We find that = 10 RB Let RA = 200 kΩ, RB = 20 kΩ ⎛ 500 ⎞ ⎛ RP ⎞ ⎛ RP ⎞ Now ⎜1 + ⎟⎜ ⎟ = 1 = (106 ) ⎜ ⎟ ⎝ 4.76 ⎠ ⎝ RA ⎠ ⎝ 200 ⎠ Then RP = 1.89 kΩ RA RB = 200 20 = 18.2 kΩ 18.2 RC So RP = 1.89 = ⇒ RC = 2.11 kΩ 18.2 + RC EX9.11 Computer Analysis TYU9.1 R2 −100 kΩ ACL = − = ⇒ ACL = −10 R1 10 kΩ vI = 0.25 V ⇒ vo = −2.5 V vI 0.25 i1 = = = 0.025 mA ⇒ i1 = 25 μ A R1 10 kΩ i2 = i1 = 25 μ A Ri = R1 = 10 kΩ TYU9.2 (a) − R2 Av = R1 + RS −100 Av ( min ) = = −4.926 19 + 1.3 −100 Av ( max ) = = −5.076 19 + 0.7 so 4.926 ≤ Av ≤ 5.076 (b)
  • 5.
    0.1 i1 ( max) = = 5.076 μ A 19 + 0.7 0.1 i1 ( min ) = = 4.926 μ A 19 + 1.3 so 4.926 ≤ i1 ≤ 5.076 μ A (c) Maximum current specification is violated. TYU9.3 v0 = Ad ( v2 − v1 ) Ad = 103 a. v2 = 0, v0 = 5 v 5 v1 = − 0 = − 3 ⇒ v1 = −5 mV Ad 10 b. v1 = 5, v0 = −10 v0 = v2 − v1 Ad −10 = v2 − 5 ⇒ v2 = 4.99 V 103 c. v1 = 0.001, v2 = −0.001 v0 = 103 ( −0.001 − 0.001) v0 = −2 V d. v2 = 3, v0 = 3 v0 = Ad ( v2 − v1 ) v0 = v2 − v1 Ad 3 = 3 − v1 ⇒ v1 = 2.997 V 103 TYU9.4 ⎛R R R ⎞ v0 = − ⎜ 4 vI 1 + 4 vI 2 + 4 vI 3 ⎟ ⎝ R1 R2 R3 ⎠ ⎡⎛ 40 ⎞ ⎛ 40 ⎞ ⎛ 40 ⎞ ⎤ v0 = − ⎢⎜ ⎟ ( 250 ) + ⎜ ⎟ ( 200 ) + ⎜ ⎟ ( 75 ) ⎥ ⎣⎝ 10 ⎠ ⎝ 20 ⎠ ⎝ 30 ⎠ ⎦ v0 = − [1000 + 400 + 100] v0 = −1500 μ V = −1.5 mV TYU9.5
  • 6.
    vI 1 +vI 2 + vI 3 RF vO = = ( vI 1 + vI 2 + vI 3 ) 3 R RF 1 = ⇒ R1 = R2 = R3 ≡ R = 1 M Ω R 3 1 Then RF = M Ω = 333 k Ω 3 TYU9.6 v ⎛ R ⎞ R Av = 0 = ⎜ 1 + 2 ⎟ = 5 so that 2 = 4 vI ⎝ R1 ⎠ R1 For v0 = 10 V, vI = 2 V 2 Then i1 = = 50 μ A ⇒ R1 = 40 kΩ R1 v0 − vI 10 − 2 Then R2 = 160 kΩ we find i2 = = = 50 μ A R2 160 TYU9.7 v0 = Aod ( v2 − v1 ) = Aod ( vI − v1 ) v0 v − vI = −v1 or v1 = vI − 0 Aod Aod v1 v −v i1 = = i2 and i2 = 0 1 R1 R2 ⎛ 1 ⎞ v −v Then v1 ⎜ ⎟ = 0 1 ⎝ R1 ⎠ R2 ⎛ 1 1 ⎞ v v1 ⎜ + ⎟ = 0 ⎝ R1 R2 ⎠ R2 ⎛ R ⎞ ⎛ R ⎞⎛ v ⎞ v0 ⎜ 1 + 2 ⎟ v1 = ⎜ 1 + 2 ⎟ ⎜ vI − 0 ⎟ ⎝ R1 ⎠ ⎝ R1 ⎠⎝ Aod ⎠ ⎛ R2 ⎞ ⎜1 + ⎟ So Av = = v0 ⎝ R1 ⎠ vI 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ Aod ⎝ R1 ⎠ TYU9.8
  • 7.
    ⎛ Rb ⎞ For vI 2 = 0, v2 = ⎜ ⎟ vI 1 and ⎝ Rb + Ra ⎠ ⎛ R ⎞ ⎛ Rb ⎞ v0 ( vI 1 ) = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 1 ⎝ R1 ⎠⎝ Rb + Ra ⎠ ⎛ 70 ⎞⎛ 50 ⎞ = ⎜ 1 + ⎟⎜ ⎟ vI 1 ⎝ 5 ⎠⎝ 50 + 25 ⎠ = 10vI 1 ⎛ Ra ⎞ For vI 1 = 0, v2 = ⎜ ⎟ vI 2 ⎝ Rb + Ra ⎠ ⎛ R ⎞ ⎛ Ra ⎞ v0 ( vI 2 ) = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 ⎝ R1 ⎠⎝ Rb + Ra ⎠ ⎛ 70 ⎞⎛ 25 ⎞ = ⎜ 1 + ⎟⎜ ⎟ vI 2 ⎝ 5 ⎠⎝ 25 + 50 ⎠ = 5vI 2 Then v0 = v0 ( vI 1 ) + v0 ( vI 2 ) v0 = 10vI 1 + 5vI 2 TYU9.9 RS Ri so i1 = i2 = iS = 100 μ A v0 = −iS RF We want −10 = − (100 × 10−6 ) RF ⇒ RF = 100 kΩ TYU9.10 We want iL = 1 mA when vI = −5 V −VI −v − ( −5 ) iL = ⇒ R2 = I = ⇒ R2 = 5 kΩ R2 i2 10−3 vL = iL Z L = (10−3 ) ( 500 ) ⇒ vL = 0.5 V vL 0.5 i4 = = ⇒ i4 = 0.1 mA R2 5 kΩ i3 = i4 + iL = 0.1 + 1 = 1.1 mA If op-amp is biased at ±10 V, output must be limited to ≈ 8 V. So v0 = i3 R3 + vL 8 = (1.1× 10−3 ) R3 + 0.5 ⇒ R3 = 6.82 kΩ Let R3 = 7.0 kΩ
  • 8.
    R3 RF 7 Thenwe want = = = 1.4 R2 R1 5 Can choose R1 = 10 kΩ and RF = 14 kΩ TYU9.11 a. v −v i1 = I 1 I 2 R1 R4 ′ v01 = vI 1 + i1 R2 , v02 = vI 2 − i1 R2 and v0 = ( v02 − v01 ) R3 R4 v0 = [vI 2 − i1 R2 − vI 1 − i1 R2′ ] R3 R4 v0 = ⎡( vI 2 − vI 1 ) − i1 ( R2 + R2 ) ⎤ ′ ⎦ R3 ⎣ R4 ⎡ ⎛ vI 2 − vI 1 ⎞ ⎤ v0 = ⎢ ( vI 2 − vI 1 ) − ⎜ ⎟ ( R2 + R2 ) ⎥ ′ R3 ⎣ ⎝ R1 ⎠ ⎦ For common-mode input vI 2 = vI 1 ⇒ v0 = 0 ⇒ Common Gain = 0, C M R R = ∞ b. Ad ( min ) ⇒ R2 min, R1 max ′ ⎛ 20 ⎞ ⎡ 100 + 95 ⎤ Ad = ⎜ ⎟ ⎢1 + ⎥ = 4.82 ⎝ 20 ⎠ ⎣ 51 ⎦ ⎛ 20 ⎞ ⎡ 100 + 105 ⎤ Ad ( max ) = ⎜ ⎟ ⎢1 + ⎥ = 206 ⎝ 20 ⎠ ⎣ 1 ⎦ c. A CM RR = d Acm Acm = 0 ⇒ C M R R = ∞ TYU9.12 R4 ⎛ 2 R2 ⎞ Differential Gain = ⎜1 + ⎟ R3 ⎝ R1 ⎠ Let R3 = R4 so the difference amplifier gain is unity. Minimum Gain ⇒ Maximum R1 ⎛ 2 R2 ⎞ So ⎜1 + ⎜ R ( max ) ⎟ = 2 ⎟ ⎝ 1 ⎠ We want 2 R2 = R1 ( max ) Maximum Gain ⇒ Minimum R1 ⎛ 2 R2 ⎞ ⎜ R ( min ) ⎟ = 1000 or 2 R2 = 999 R1 ( min ) So ⎜1 + ⎟ ⎝ 1 ⎠ If R2 = 50 kΩ, let R1 ( min ) = 100 Ω fixed resistor and let R1 ( max ) = 100 kΩ + 100 Ω = 100.1 pot Then actual differential gain is in the range of 1.999 − 1001 TYU9.13 −1 10 μ sec −10 × 10−6 End of 1st pulse: v0 = ×t 0 = r r − (10 ) (10 × 10−6 ) After 10 pulses: v0 = −5 = r
  • 9.
    100 × 10−6 Sor = = 20 μ sec = r 5 r = R1C2 = 20 μ sec = 20 × 10−6 For example, C2 = 0.01× 10−6 = 0.01 μ F ⇒ R1 = 2 kΩ TYU9.14 ⎡ R − ΔR R + ΔR ⎤ + v01 = ⎢ − ⎥V ⎢ ( R − ΔR ) + ( R + ΔR ) ( R + ΔR ) + ( R − ΔR ) ⎥ ⎣ ⎦ ⎡ R − ΔR R + ΔR ⎤ + =⎢ − V ⎣ 2R 2R ⎥ ⎦ ⎛ R − ΔR − R − ΔR ⎞ + =⎜ ⎟V ⎝ 2R ⎠ ⎛ ΔR ⎞ + v01 = − ⎜ ⎟V ⎝ R ⎠ For V + = 3.5 V, ΔR = 50, R = 10 × 103 ⎛ 50 ⎞ v01 = − ⎜ 4 ⎟ ( 3.5 ) = −1.75 × 10−2 ⎝ 10 ⎠ v0 5 Need an amplifier with a gain of Ad = = ⇒ Ad = −285.7 vi −1.75 × 10−2 Use instrumentation amplifier, Fig. 9-25. Connect v01 to vI1 and ( −v01 ) to vI2. ⎛ R ⎞ ⎛ 2R ⎞ Ad = ⎜ 4 ⎟ ⎜ 1 + 2 ⎟ = 285.7 ⎝ R3 ⎠ ⎝ R1 ⎠ R2 Let R4 = 150 kΩ, R3 = 10 kΩ Then = 9.02 R1 Let R2 = 100 kΩ, R1 = 11.1 kΩ TYU9.15 ⎡1 R ⎤ + v01 = ⎢ − ⎥V ⎢ 2 R + R (1 + δ ) ⎥ ⎣ ⎦ ⎡ R + R (1 + δ ) − 2 R ⎤ + =⎢ ⎥V ⎢ 2 ( R + R (1 + δ ) ) ⎥ ⎣ ⎦ Rδ = ×V + 2R ( 2 + δ ) ⎛δ ⎞ v01 ≈ ⎜ ⎟ V + ⎝4⎠ V = 5 For δ = 0.01 + ⎛ 0.01 ⎞ v01 = ⎜ ⎟ ( 5 ) = 0.0125 ⎝ 4 ⎠ v 5 Need a gain Ad = 0 = = 400 v01 0.0125 ⎛ R ⎞ ⎛ 2R ⎞ Use an instrumentation amplifier Ad = 400 = ⎜ 4 ⎟ ⎜1 + 2 ⎟ ⎝ R3 ⎠ ⎝ R1 ⎠ R Let R4 = 150 kΩ, R3 = 10 kΩ then 2 = 12.8 R1 Let R2 = 150 kΩ, R1 = 11.7 kΩ