5
1.
1.
(a)
(b)
2.
(a)
























ℜn
C
∀x ∈ C, ∀α ≥ 0, αx ∈ C
C
ℜn
C
∀x ∈ C, ∀y ∈ C, ∀α ∈ [0,1], αx + (1 − α)y ∈ C
C
C


























C Rn
clC
y ∈ Rn
clC α ∈ Rn
αt
y < inf
x∈C
αt
x






























w*
C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(0, 0, 0) ∈ C
t = x1 = x2 = x3 = x4 = 0










min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0


























w*
C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(1, 0, 0) ∈ C
1 = c1x1 + c2x2 − tw*
0 = a11x1 + a12x2 + x3 − tb1
0 = a21x1 + a22x2 + x4 − tb2
t = 0
1 = c1x1 + c2x2
0 = a11x1 + a12x2 + x3
0 = a21x1 + a22x2 + x4










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(1, 0, 0) ∈ C
1 = c1x1 + c2x2 − tw*
0 = a11x1 + a12x2 + x3 − tb1
0 = a21x1 + a22x2 + x4 − tb2
t = 0
1 = c1x0
1 + c2x0
2
0 = a11x0
1 + a12x0
2 + x0
3
0 = a21x0
1 + a22x0
2 + x0
4








x1
= (x1
1, x1
2, x1
3, x1
4)
x2
= x1
+ kx0
, ∀k > 0
a11x2
1 + a12x2
2 + x2
3 = a11(x1
1 + kx0
1) + a12(x1
2 + kx0
2) + (x1
3 + kx0
3)
= a11x1
1 + a12x1
2 + x1
3 + k(a11x0
1 + a12x0
2 + x0
3) = a11x1
1 + a12x1
2 + x1
3 = b1








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(1, 0, 0) ∈ C
1 = c1x1 + c2x2 − tw*
0 = a11x1 + a12x2 + x3 − tb1
0 = a21x1 + a22x2 + x4 − tb2
t = 0
1 = c1x0
1 + c2x0
2
0 = a11x0
1 + a12x0
2 + x0
3
0 = a21x0
1 + a22x0
2 + x0
4










x1
= (x1
1, x1
2, x1
3, x1
4)
x2
= x1
+ kx0
, ∀k > 0
c1x2
1 + c2x2
2 = c1x1
1 + c2x1
2 + k(c1x2
0 + c2x2
0) = c1x1
1 + c2x1
2 + k
k > 0








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(1, 0, 0) ∈ C
1 = c1x1 + c2x2 − tw*
0 = a11x1 + a12x2 + x3 − tb1
0 = a21x1 + a22x2 + x4 − tb2
t > 0
t
x3
i =
xi
t










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(1, 0, 0) ∈ C
1 = c1x1 + c2x2 − tw*
0 = a11x1 + a12x2 + x3 − tb1
0 = a21x1 + a22x2 + x4 − tb2
t > 0
t
x3
i =
xi
t








1
t
= c1x3
1 + c2x3
2 − w*
0 = a11x3
1 + a12x3
2 + x3
3 − b1
0 = a21x3
1 + a22x3
2 + x3
4 − b2








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
(1, 0, 0) ∈ C
1 = c1x1 + c2x2 − tw*
0 = a11x1 + a12x2 + x3 − tb1
0 = a21x1 + a22x2 + x4 − tb2
t > 0
t
x3
i =
xi
t








1
t
= c1x3
1 + c2x3
2 − w*
0 = a11x3
1 + a12x3
2 + x3
3 − b1
0 = a21x3
1 + a22x3
2 + x3
4 − b2
x3
= (x3
1, x3
2, x3
3, x3
4)
c1x3
1 + c2x3
2 = w* +
1
t
> w* w*








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0














(1, 0, 0) ∉ C C
(α, d1, d2) ∈ R3
(α, d1, d2)
(
1
0
0)
< inf{(α, d1, d2)
(
r
u1
u2
) (
r
u1
u2
)
∈ C}
(
r
u1
u2
)
∈ C
αr + d1u1 + d2u2 < 0 C k > 0
kr
ku1
ku2
∈ C
α(kr) + d1(ku1) + d2(ku2) < 0
k(αr + d1u1 + d2u2) < α










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















(1, 0, 0) ∉ C C
(α, d1, d2) ∈ R3
(α, d1, d2)
(
1
0
0)
< inf{(α, d1, d2)
(
r
u1
u2
) (
r
u1
u2
)
∈ C}
(0, 0, 0) ∈ C = 0
(α, d1, d2)
(
1
0
0)
< 0 ⇒ α < 0
α = − 1










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0




















(1, 0, 0) ∉ C C
(α, d1, d2) ∈ R3
(α, d1, d2)
(
1
0
0)
< inf{(α, d1, d2)
(
r
u1
u2
) (
r
u1
u2
)
∈ C}
(0, 0, 0) ∈ C = 0
(α, d1, d2)
(
1
0
0)
< 0 ⇒ α < 0
α = − 1 (r, u1, u2) ∈ C
inf{(−1, d1, d2)
(
r
u1
u2
)
} = 0 ≤ (−1, d1, d2)
(
r
u1
u2
)
⇒ 0 ≤ (−1)r + d1u1 + d2u2










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0
























C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2)
⇒ 0 ≤ t(w* − b1d1 − b2d2)
+x1(−c1 + d1a11 + d2a21)
+x2(−c2 + d2a12 + d2a22)
+x3d1
+x4d2










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0
























C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2)
⇒ 0 ≤ t(w* − b1d1 − b2d2)
+x1(−c1 + d1a11 + d2a21)
+x2(−c2 + d2a12 + d2a22)
+x3d1
+x4d2










min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0








t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
w* − b1d1 − b2d2 ≥ 0
−c1 + d1a11 + d2a21 ≥ 0
−c2 + d2a12 + d2a22 ≥ 0
d1 ≥ 0 d2 ≥ 0








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
























C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2)
⇒ 0 ≤ t(w* − b1d1 − b2d2)
+x1(−c1 + d1a11 + d2a21)
+x2(−c2 + d2a12 + d2a22)
+x3d1
+x4d2










min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0








t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
w* ≥ b1d1 + b2d2
d1a11 + d2a21 ≥ c1
d1a12 + d2a22 ≥ c2
d1 ≥ 0 d2 ≥ 0








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
























C = {(r, u1, u2)|r = c1x1 + c2x2 − tw*
u1 = a11x1 + a12x2 + x3 − tb1
u2 = a21x1 + a22x2 + x4 − tb2
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}
0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C
t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2)
⇒ 0 ≤ t(w* − b1d1 − b2d2)
+x1(−c1 + d1a11 + d2a21)
+x2(−c2 + d2a12 + d2a22)
+x3d1
+x4d2










t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
w* ≥ b1d1 + b2d2
d1a11 + d2a21 ≥ c1
d1a12 + d2a22 ≥ c2
d1 ≥ 0 d2 ≥ 0








max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

(d1, d2)
w*








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0






















w* ≥ b1d1 + b2d2
d1a11 + d2a21 ≥ c1
d1a12 + d2a22 ≥ c2
d1 ≥ 0 d2 ≥ 0
(d1, d2)
w*
x = (x1, ⋯, xn) y = (y1, ⋯, ym)
f =
n
∑
j=1
cjxj ≤
m
∑
i=1
biyi = g
w* x = (x*1
, x*2
) w* ≤ b1d1 + b2d2 = g










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0
























w* ≥ b1d1 + b2d2
d1a11 + d2a21 ≥ c1
d1a12 + d2a22 ≥ c2
d1 ≥ 0 d2 ≥ 0
(d1, d2)
w*
w* ≤ b1d1 + b2d2
w* = b1d1 + b2d2
(d1, d2) w*
w*










max c1x1 + c2x2
s . t .
{
a11x1 + a12x2 + x3 = b1
a21x1 + a22x2 + x4 = b2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0








min b1y1 + b2y2
s . t .
{
a11y1 + a21y2 ≥ c1
a12y1 + a22y2 ≥ c2
y1 ≥ 0, y2 ≥ 0
See you next time
5

ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-

  • 1.
  • 2.
  • 3.
  • 5.
    
 
 
 
 
 
 
 
 
 
 
 
 ℜn C ∀x ∈ C,∀α ≥ 0, αx ∈ C C ℜn C ∀x ∈ C, ∀y ∈ C, ∀α ∈ [0,1], αx + (1 − α)y ∈ C C C
  • 6.
    
 
 
 
 
 
 
 
 
 
 
 
 
 C Rn clC y ∈Rn clC α ∈ Rn αt y < inf x∈C αt x 
 
 

  • 8.
    
 
 
 
 
 
 
 
 
 
 
 
 w* C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (0, 0, 0) ∈ C t = x1 = x2 = x3 = x4 = 0 
 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
  • 9.
    
 
 
 
 
 
 
 
 
 
 
 
 
 w* C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (1, 0, 0) ∈ C 1 = c1x1 + c2x2 − tw* 0 = a11x1 + a12x2 + x3 − tb1 0 = a21x1 + a22x2 + x4 − tb2 t = 0 1 = c1x1 + c2x2 0 = a11x1 + a12x2 + x3 0 = a21x1 + a22x2 + x4 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 10.
    
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (1, 0, 0) ∈ C 1 = c1x1 + c2x2 − tw* 0 = a11x1 + a12x2 + x3 − tb1 0 = a21x1 + a22x2 + x4 − tb2 t = 0 1 = c1x0 1 + c2x0 2 0 = a11x0 1 + a12x0 2 + x0 3 0 = a21x0 1 + a22x0 2 + x0 4 
 
 
 
 x1 = (x1 1, x1 2, x1 3, x1 4) x2 = x1 + kx0 , ∀k > 0 a11x2 1 + a12x2 2 + x2 3 = a11(x1 1 + kx0 1) + a12(x1 2 + kx0 2) + (x1 3 + kx0 3) = a11x1 1 + a12x1 2 + x1 3 + k(a11x0 1 + a12x0 2 + x0 3) = a11x1 1 + a12x1 2 + x1 3 = b1 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 11.
    
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (1, 0, 0) ∈ C 1 = c1x1 + c2x2 − tw* 0 = a11x1 + a12x2 + x3 − tb1 0 = a21x1 + a22x2 + x4 − tb2 t = 0 1 = c1x0 1 + c2x0 2 0 = a11x0 1 + a12x0 2 + x0 3 0 = a21x0 1 + a22x0 2 + x0 4 
 
 
 
 
 x1 = (x1 1, x1 2, x1 3, x1 4) x2 = x1 + kx0 , ∀k > 0 c1x2 1 + c2x2 2 = c1x1 1 + c2x1 2 + k(c1x2 0 + c2x2 0) = c1x1 1 + c2x1 2 + k k > 0 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 12.
    
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (1, 0, 0) ∈ C 1 = c1x1 + c2x2 − tw* 0 = a11x1 + a12x2 + x3 − tb1 0 = a21x1 + a22x2 + x4 − tb2 t > 0 t x3 i = xi t 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 13.
    
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (1, 0, 0) ∈ C 1 = c1x1 + c2x2 − tw* 0 = a11x1 + a12x2 + x3 − tb1 0 = a21x1 + a22x2 + x4 − tb2 t > 0 t x3 i = xi t 
 
 
 
 1 t = c1x3 1 + c2x3 2 − w* 0 = a11x3 1 + a12x3 2 + x3 3 − b1 0 = a21x3 1 + a22x3 2 + x3 4 − b2 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 14.
    
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} (1, 0, 0) ∈ C 1 = c1x1 + c2x2 − tw* 0 = a11x1 + a12x2 + x3 − tb1 0 = a21x1 + a22x2 + x4 − tb2 t > 0 t x3 i = xi t 
 
 
 
 1 t = c1x3 1 + c2x3 2 − w* 0 = a11x3 1 + a12x3 2 + x3 3 − b1 0 = a21x3 1 + a22x3 2 + x3 4 − b2 x3 = (x3 1, x3 2, x3 3, x3 4) c1x3 1 + c2x3 2 = w* + 1 t > w* w* 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 15.
    
 
 
 
 
 
 
 (1, 0, 0)∉ C C (α, d1, d2) ∈ R3 (α, d1, d2) ( 1 0 0) < inf{(α, d1, d2) ( r u1 u2 ) ( r u1 u2 ) ∈ C} ( r u1 u2 ) ∈ C αr + d1u1 + d2u2 < 0 C k > 0 kr ku1 ku2 ∈ C α(kr) + d1(ku1) + d2(ku2) < 0 k(αr + d1u1 + d2u2) < α 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 16.
    
 
 
 
 
 
 
 
 
 
 
 (1, 0, 0)∉ C C (α, d1, d2) ∈ R3 (α, d1, d2) ( 1 0 0) < inf{(α, d1, d2) ( r u1 u2 ) ( r u1 u2 ) ∈ C} (0, 0, 0) ∈ C = 0 (α, d1, d2) ( 1 0 0) < 0 ⇒ α < 0 α = − 1 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 17.
    
 
 
 
 
 
 
 
 
 
 (1, 0, 0)∉ C C (α, d1, d2) ∈ R3 (α, d1, d2) ( 1 0 0) < inf{(α, d1, d2) ( r u1 u2 ) ( r u1 u2 ) ∈ C} (0, 0, 0) ∈ C = 0 (α, d1, d2) ( 1 0 0) < 0 ⇒ α < 0 α = − 1 (r, u1, u2) ∈ C inf{(−1, d1, d2) ( r u1 u2 ) } = 0 ≤ (−1, d1, d2) ( r u1 u2 ) ⇒ 0 ≤ (−1)r + d1u1 + d2u2 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 18.
    
 
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} 0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 ⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2) ⇒ 0 ≤ t(w* − b1d1 − b2d2) +x1(−c1 + d1a11 + d2a21) +x2(−c2 + d2a12 + d2a22) +x3d1 +x4d2 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 19.
    
 
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} 0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 ⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2) ⇒ 0 ≤ t(w* − b1d1 − b2d2) +x1(−c1 + d1a11 + d2a21) +x2(−c2 + d2a12 + d2a22) +x3d1 +x4d2 
 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0 
 
 
 
 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 w* − b1d1 − b2d2 ≥ 0 −c1 + d1a11 + d2a21 ≥ 0 −c2 + d2a12 + d2a22 ≥ 0 d1 ≥ 0 d2 ≥ 0 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
  • 20.
    
 
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} 0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 ⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2) ⇒ 0 ≤ t(w* − b1d1 − b2d2) +x1(−c1 + d1a11 + d2a21) +x2(−c2 + d2a12 + d2a22) +x3d1 +x4d2 
 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0 
 
 
 
 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 w* ≥ b1d1 + b2d2 d1a11 + d2a21 ≥ c1 d1a12 + d2a22 ≥ c2 d1 ≥ 0 d2 ≥ 0 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
  • 21.
    
 
 
 
 
 
 
 
 
 
 
 
 C = {(r,u1, u2)|r = c1x1 + c2x2 − tw* u1 = a11x1 + a12x2 + x3 − tb1 u2 = a21x1 + a22x2 + x4 − tb2 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} 0 ≤ (−1)r + d1u1 + d2u2 (r, u1, u2) ∈ C t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 ⇒ 0 ≤ (−1)(c1x1 + c2x2 − tw*) + d1(a11x1 + a12x2 + x3 − tb1) + d2(a21x1 + a22x2 + x4 − tb2) ⇒ 0 ≤ t(w* − b1d1 − b2d2) +x1(−c1 + d1a11 + d2a21) +x2(−c2 + d2a12 + d2a22) +x3d1 +x4d2 
 
 
 
 
 t ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 w* ≥ b1d1 + b2d2 d1a11 + d2a21 ≥ c1 d1a12 + d2a22 ≥ c2 d1 ≥ 0 d2 ≥ 0 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
(d1, d2) w* 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 22.
    
 
 
 
 
 
 
 
 
 
 
 w* ≥ b1d1+ b2d2 d1a11 + d2a21 ≥ c1 d1a12 + d2a22 ≥ c2 d1 ≥ 0 d2 ≥ 0 (d1, d2) w* x = (x1, ⋯, xn) y = (y1, ⋯, ym) f = n ∑ j=1 cjxj ≤ m ∑ i=1 biyi = g w* x = (x*1 , x*2 ) w* ≤ b1d1 + b2d2 = g 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 23.
    
 
 
 
 
 
 
 
 
 
 
 
 w* ≥ b1d1+ b2d2 d1a11 + d2a21 ≥ c1 d1a12 + d2a22 ≥ c2 d1 ≥ 0 d2 ≥ 0 (d1, d2) w* w* ≤ b1d1 + b2d2 w* = b1d1 + b2d2 (d1, d2) w* w* 
 
 
 
 
 max c1x1 + c2x2 s . t . { a11x1 + a12x2 + x3 = b1 a21x1 + a22x2 + x4 = b2 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 
 
 
 
 min b1y1 + b2y2 s . t . { a11y1 + a21y2 ≥ c1 a12y1 + a22y2 ≥ c2 y1 ≥ 0, y2 ≥ 0
  • 25.