SlideShare a Scribd company logo
saklviTüal½y GnþrCati 
INTERNATIONAL UNIVERSITY 
Master of Civil Engineering (Structural Engineering) 
Shell Theory 
By Seun Sambath, Ph.D, Civil Eng. 
Phnom Penh 2003
Shell Theory 
Shell = 3D thin walled structure. 
Thin shell KWCaGgÁFatu EdlekagtamTismYy b¤BIr edayKμanrbt; nigkMBUlRsYc 
nigmankMras;tUcCagTMhMBIreTot ya:geRcIn . 
RbsinebIeKykkMritlMeGogRtwm 5% enaH shell esþIg manlkçx½NÐ h R ≤1 20 
Edl R CakaMkMeNagtUcCageK . 
plRbeyaCnsMxan;rbs; shell KW multiple function of internal large space. 
Modeling of shell: 
• Three-dimensional elastic body 
• Using static-geometric hypothesis of Kirchhoff-Love 
Æ approximate theory (thin shell theory) 
Shell Theory 
Mathematical theory Engineering theory 
CaRTwsþI sMrab;epÞógpÞat;PaBRtwmRtUv 
elIRTwsþIEdleRbIR)as;kñúgkarGnuvtþn_ 
Cak;Esþg 
sMrab;eRbIR)as;kñúgGnuvtþnCak;Esþg/ 
KuNvibtþi³ EdnkMNt;eRbIR)as;RTwsþIenH 
Page 1
Elements of 
Differential Geometry of Surface 
Equation of surface in vector notation 
r = r(α,β) = x(α,β)i + y(α,β)j+ z(α,β)k 
In parametric form 
x = x(α,β); y = y(α,β); z = z(α,β) 
where α, β = independent parameters. 
Coordinate lines α, β = curvilinear coordinates. 
Equation of surface in Cartesian coordinates: 
z = z(x, y) 
or F(x, y, z) = 0 
As a function z of coordinates x, y. 
Ellipsoid: 
2 
2 
+ + = 
1 2 
2 
2 
2 
z 
c 
y 
b 
x 
a 
⎫ 
sin sin , 
or x a 
= ϕ θ 
sin cos , 
y b 
= ϕ θ 
cos 
z c 
Hyperboloid of one sheet: 
2 
2 
+ − = 
1 2 
2 
2 
2 
z 
c 
y 
b 
x 
a 
⎪⎭ 
⎪⎬ 
= ϕ 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
or 2 
x a u v 
sin 1 , 
= ⋅ + 
y = b u ⋅ + 
v 
z = 
cv 
2 
cos 1 , 
Page 2
Hyperboloid of two sheets: 
2 
2 
+ − = − 
1 2 
2 
2 
2 
z 
c 
y 
b 
x 
a 
⎫ 
⎪⎭ 
⎪⎬ 
or x a u v 
sin , 
= ⋅ 
y b u v 
cos , 
= ⋅ 
= ± + 
1 
z c v2 
Cone: 
2 
2 
+ − = 
0 2 
2 
2 
2 
z 
c 
y 
b 
x 
a 
⎫ 
⎪⎭ 
⎪⎬ 
or x = a sin u ⋅ 
v 
, 
y = b u ⋅ 
v 
z = 
cv 
cos , 
Elliptical paraboloid: 
2 2 
y 
q 
= + 
p 
z x 
2 2 
⎫ 
⎪ ⎪⎭ 
⎪ ⎪⎬ 
or x = 2 p sin u ⋅ 
v 
, 
y = q u ⋅ 
v 
z = 
v 
2 cos , 
Hyperbolic paraboloid: 
2 2 
y 
q 
= − 
p 
z x 
2 2 
Page 3
Elliptical cylinder: 
2 
2 
+ = 
1 2 
2 
y 
b 
x 
a 
⎫ 
⎪⎭ 
⎪⎬ 
x a u 
or = 
sin , 
y = 
b u 
z = 
v 
sin , 
Hyperbolic cylinder: 
2 
2 
− = 
1 2 
2 
y 
b 
x 
a 
⎫ 
⎪ ⎪⎭ 
⎪⎪⎬ 
or x = ± a 1 + 
u 
2 , 
y = 
bu 
z = 
v 
, 
Parabolic cylinder: 
y2 = 2 px 
( ) 
( ) 
( ) 
⎫ 
⎪ ⎪ ⎪ ⎭ 
⎪ ⎪ ⎪ 
⎬ 
= 
y u v u 
, = 
, 
z u v = 
v 
p 
x u v u 
, 
, 
2 
, 
2 
or 
Page 4
z 
O 
r 
r+dr 
χ dr 
α β 
sMNaj;kUGredaen (coodinate 
network) manlkçN³dUcxageRkam ³ 
1- kat;tamcMNucmYyénépÞ 
manExS α nig β EtmYyKt; . 
2- ral;ExS α nig β nImYy² kat;ExS β 
nig α EtmYydgKt; . 
x y 
dr ∂ 
= r ∂ 
d r d 
ds = dr ; β; 
∂β 
α + 
∂α 
ds2 = dr ⋅ dr = A2dα2 + 2Fdαdβ + B2dβ2 , 
First 
Quadratic Form 
Where coefficients of first quadratic form are 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
r r 
A E x y z 
⎛ 
∂α 
⎞ 
⎟ ⎟⎠ 
r r 
F x x y y z z 
⎛ 
∂β 
⎜ ⎜⎝ 
∂ 
⎛ 
∂α 
∂ 
+ 
⎞ 
∂ 
+ ⎟ ⎟⎠ 
⎛ 
∂β 
⎜ ⎜⎝ 
∂ 
⎞ 
⎛ 
∂α 
∂ 
+ 
⎞ 
∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ ⎛ 
∂ 
∂β 
∂ 
= 
∂ 
∂ 
= 
r ∂ 
r 
∂β 
∂ 
∂ 
∂β 
∂ 
∂ 
= 
= = 
∂β 
∂α 
∂β 
∂α 
∂β 
∂α 
∂β 
∂α 
⎞ 
⎟⎠ 
⎜⎝ 
∂ 
+ ⎟⎠⎞ 
⎜⎝ 
∂ 
+ ⎟⎠ 
⎜⎝ 
∂ 
= 
∂α 
∂α 
= = 
. 
; 
; 
2 2 2 
2 
2 2 2 
2 
B G x y z 
So, A E r B G ∂ 
∂ 
∂ 
= = r F = 
r ⋅ 
r 
; ; ⋅ cosχ, 
∂β 
∂α 
∂β 
= = 
∂ 
∂α 
χ = angle between coordinate lines α and β. 
For orthogonal network: χ = 90°, F = 0 
ds2 = A2dα2 + B2dβ2 
Page 5
Area of surface: 
σ = ∫∫ × α β = ∫∫ − α β α β r r d d A2B2 F2 d d 
r r 
∂ 
= α 
∂α 
tangential to α-line, r r tangential to β−line 
Normal unit vector: 
r r 
r × 
r 
α β r r 
= α β 
A2B2 − F2 
= 
× 
× 
α β 
n 
∂ 
= β 
∂β 
Normal section of the surface through a point C is its section by a 
plane containing the surface normal in this point. 
Curvature of normal section: 
2 2 
Ld Md d Nd 
1 2 , 
2 
ds 
R 
k 
n 
n 
α + α β + β 
= − = Rn = radius of curve 
Second 
2 
dr dn d r n 
ϕ = − ⋅ = ⋅ 
2 
= α + α β + β 
Quadratic Form Ld 2 2 Md d Nd 
2 , 
x y z 
αα αα αα 
1 , 
r ⋅ r × 
r 
αα − 
2 2 2 
x y z 
α α α 
β β β 
αα α β 
α β 
= 
× 
= ⋅ = 
x y z 
A B F 
L 
r r 
r n 
x y z 
αβ αβ αβ 
1 , 
r ⋅ r × 
r 
αβ − 
2 2 2 
x y z 
α α α 
β β β 
αβ α β 
α β 
= 
× 
= ⋅ = 
x y z 
A B F 
M 
r r 
r n 
x y z 
ββ ββ ββ 
1 , 
r ⋅ r × 
r 
ββ − 
2 2 2 
x y z 
α α α 
β β β 
ββ α β 
α β 
= 
× 
= ⋅ = 
x y z 
A B F 
N 
r r 
r n 
Page 6
2 2 2 
2 2 
r r r r r r 
∂ 
∂ 
∂ 
= , = 
, = 
; 
αα ∂α 
αβ ∂α∂β 
ββ 
∂β 
L, M, N = coefficients of second quadratic form 
rα dr rβ h 
z r 
r+dr 
x y 
n 
ds1 ds2 
2h 2 ϕ = 
Principal curvatures: 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
L 
1 , 
= = − = 
= = − = 
N 
2 
2 
2 max 
2 
1 
1 min 
1 
B 
R 
k k 
A 
R 
k k 
1 Ld α 2 + Nd 
β 
2 
2 2 2 2 
α + β 
− = 
A d B d 
R 
Gaussian curvature of the surface: 
2 
LN − 
M 
2 2 2 
1 2 
1 2 
1 
A B F 
R R 
k k k 
− 
= = = 
Mean curvature of the surface: 
k + 
H k 
1 2 2 
= 
•Elliptical surface: k > 0 (surface of positive curvature) 
•Hyperbolic surface: k < 0 (surface of negative curvature) 
•Parabolic surface: k = 0 (surface of zero curvature) 
•Minimal surface: H = 0 
Page 7
Ellipsoid x2 
a2 
+ z2 
y2 
b2 
+ = 1 
c2 
a 
b 
c 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
1 
1.5 
0.5 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= N := 20 
i := 0 .. N ϕi i π 
N 
:= ⋅ 
j := 0 .. N θj j 
2 ⋅ π 
N 
:= ⋅ 
Xi, j a sin ϕ⋅ ( i) sin θ:= ⋅ ( j) Yi, j b sin ϕ⋅ ( i) cos θ:= ⋅ ( j) Zi, j c cos ϕ:= ⋅ ( i) 
Ellipsoid 
(X, Y, Z) 
Page 8
Hyperpoloid x2 
a2 
+ z2 
y2 
b2 
− = 1 
c2 
a 
b 
c 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
1 
1 
1.5 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= f (z) 1 
z2 
c2 
:= + F(ϕ, z) 
a ⋅ cos(ϕ) ⋅ f (z) 
b ⋅ sin(ϕ) ⋅ f (z) 
z 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Hyperboloid 
F 
a 
b 
c 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
1 
1 
1.5 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= F1(u, v) 
a ⋅ cos(u) ⋅ v 
b ⋅ sin(u) ⋅ v 
c ⋅ v2 + 1 
⎛⎜⎜⎜⎝ 
⎞⎟⎟⎟⎠ 
:= F2(u, v) 
a ⋅ cos(u) ⋅ v 
b ⋅ sin(u) ⋅ v 
−c ⋅ v2 + 1 
⎛⎜⎜⎜⎝ 
⎞⎟⎟⎟⎠ 
:= 
Hyperboloid 
F1, F2 
x2 
a2 
+ z2 
y2 
b2 
− = −1 
c2 
Page 9
Cone x2 
a2 
+ z2 
y2 
b2 
− = 0 
c2 
a 
b 
c 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
1 
1 
1.5 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= f (z) 
z 
c 
:= F(ϕ, z) 
a ⋅ cos(ϕ) ⋅ f (z) 
b ⋅ sin(ϕ) ⋅ f (z) 
z 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Cone 
F 
Page 10
Elliptical paraboloid 
p 
q 
⎛⎜⎝ 
⎞⎟⎠ 
4 
4 
⎛⎜⎝ 
⎞⎟⎠ 
:= z(x, y) 
x2 
2 ⋅ p 
y2 
2 ⋅ q 
:= + 
Elliptical Paraboloid 
z 
w(z, ϕ) := z u(z, ϕ) := 2 ⋅ p ⋅ sin(ϕ) ⋅ z v(z, ϕ) := 2 ⋅ q ⋅ cos(ϕ) ⋅ z 
H := 6 mesh := 20 S := CreateMesh(u, v, w, 0, H, 0, 2 ⋅ π, mesh) 
Elliptical Paraboloid 
S 
Page 11
Hyperboloic paraboloid 
p 
q 
⎛⎜⎝ 
⎞⎟⎠ 
3 
1 
⎛⎜⎝ 
⎞⎟⎠ 
:= 
z(x, y) 
x2 
2 ⋅ p 
y2 
2 ⋅ q 
:= − 
Hyperbolic Paraboloid 
z 
a 
b 
⎛⎜⎝ 
⎞⎟⎠ 
1 
1 
⎛⎜⎝ 
⎞⎟⎠ 
:= α 
1 
5 
:= F(u, v) 
a 
2 
⋅ (v + u) 
b 
⋅ (v − u) 
2 
α 
1 
2 
⋅ ⋅ u ⋅ v 
⎡⎢⎢⎢⎢⎢⎢⎣ 
⎤⎥⎥⎥⎥⎥⎥⎦ 
:= 
F 
Page 12
Elliptical Cylinder x2 
a2 
y2 
b2 
+ = 1 
a 
b 
⎛⎜⎝ 
⎞⎟⎠ 
5 
6 
⎛⎜⎝ 
⎞⎟⎠ 
:= F(ϕ, z) 
a ⋅ sin(ϕ) 
b ⋅ cos(ϕ) 
z 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Elliptical Cylinder 
F 
Hypobolic Cylinder 
a 
b 
⎛⎜⎝ 
⎞⎟⎠ 
0.8 
1 
⎛⎜⎝ 
⎞⎟⎠ 
:= F1(y, z) 
a 1 
y2 
b2 
⋅ + 
y 
z 
⎛⎜⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎟⎠ 
:= F2(y, z) 
−a 1 
y2 
b2 
⋅ + 
y 
z 
⎛⎜⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎟⎠ 
:= 
Hyperbolic Cylinder 
F1, F2 
Page 13
Parabolic Cylinder y2 = 2 ⋅ p ⋅ x 
p := 2 F(y, z) 
y2 
2 ⋅ p 
y 
z 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
:= 
Parabolic Cylinder 
F 
R 
r 
⎛⎜⎝ 
⎞⎟⎠ 
5 
2 
⎛⎜⎝ 
⎞⎟⎠ 
:= F(ϕ, θ) 
(R + r ⋅ cos(ϕ)) ⋅ cos(θ) 
(R + r ⋅ cos(ϕ)) ⋅ sin(θ) 
r ⋅ sin(ϕ) 
⎡⎢⎢⎣ 
⎤⎥⎥⎦ 
:= 
F 
Page 14
Helicoid 
c := 1 f (u) := 0 F(u, v) 
u ⋅ cos(v) 
u ⋅ sin(v) 
c ⋅ v + f (u) 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Straight Helicoid 
F 
c := 1 f (u) := 1.5 ⋅ u 
x(u, v) := u ⋅ cos(v) y(u, v) := u ⋅ sin(v) z(u, v) := c ⋅ v + f (u) 
r := 2 R := 5 N := 4 H := N ⋅ π 
mesh := 20 S := CreateMesh(x, y, z, 2, 5, 0, 4 ⋅ π, mesh) 
Parabolic Helicoid 
S 
Page 15
c := 1 f (u) 
1 
5 
:= ⋅ u2 
x(u, v) := u ⋅ cos(v) y(u, v) := u ⋅ sin(v) z(u, v) := c ⋅ v + f (u) 
r := 2 R := 5 N := 4 H := N ⋅ π 
mesh := 20 S := CreateMesh(x, y, z, 2, 5, 0, 4 ⋅ π, mesh) 
Parabolic Helicoid 
S 
Page 16
Torse 
a 
b 
⎛⎜⎝ 
⎞⎟⎠ 
1 
0.5 
⎛⎜⎝ 
⎞⎟⎠ 
:= x(u, v) a ⋅ cos(v) a ⋅ u ⋅ sin(v) 
a2 + b2 
:= − 
y(u, v) a ⋅ sin(v) a ⋅ u ⋅ cos(v) 
a2 + b2 
:= + 
z(u, v) b ⋅ v b ⋅ u 
a2 + b2 
:= + 
mesh := 20 S := CreateMesh(x, y, z, 1, 5, 0, 4 ⋅ π, mesh) 
Torse 
S 
Page 17
Catenary surface 
x(u, v) := cosh(u) ⋅ cos(v) y(u, v) := cosh(u) ⋅ sin(v) z(u, v) := u 
mesh := 30 S := CreateMesh(x, y, z, −1, 1, 0, 2 ⋅ π, mesh) 
Caternary surface 
S 
Pseudosphere a := 1 
x(u, v) := a ⋅ sin(u) ⋅ cos(v) y(u, v) := a ⋅ sin(u) ⋅ sin(v) z(u, v) a cos(u) ln tan 
u 
2 
⎛⎜⎝ 
⎞⎟⎠ 
⎛⎜⎝ 
⎞⎟⎠ 
+ ⎛⎜⎝ 
⎞⎟⎠ 
:= ⋅ 
+ , 0 , 2 π ⋅ , mesh , ⎛⎜⎝ 
mesh := 30 S CreateMesh x, y, z π 
2 
2 ⋅ π 
5 
, − π 
2 
3 ⋅ π 
7 
⎞⎟⎠ 
:= 
Caternary surface 
S 
Page 18
H := 3 R := 1 
N := 20 
i := 0 .. N ρi 
R 
N 
:= ⋅ i 
j := 0 .. N ϕj 
2 ⋅ π 
N 
:= ⋅ j 
Xi, j ρi cos ϕ:= ⋅ ( j) Yi, j ρi sin ϕ:= ⋅ ( j) 
Z1i, j 
H 
R 
ρ( i):= + − 2 
ρ:= ⋅ i Z2i, j H R2 
X := stack(X, X) Y:= stack(Y, Y) Z := stack(Z1, Z2) 
(X, Y, Z) 
Page 19
R := 1 
N := 20 
i := 0 .. N φi 
2 ⋅ π 
N 
:= ⋅ i 
j := 0 .. N ρj 
R 
N 
:= ⋅ j 
Xi, j ρj cos φ:= ⋅ ( i) Yi, j ρj sin φ:= ⋅ ( i) 
Zi, j ρ( j):= 2 
Page 20
Moment Theory of Shells 
Symbols 
h thickness 
Nα, Nβ normal forces 
Sα, Sβ tangential shears 
Qα, Qβ shears 
Mα, Mβ bending moments 
Mαβ, Mβα torsion moments 
X, Y, Z external forces 
C Æ (α,β) 
D Æ (α+dα,β+dβ) 
C1 Æ (α+dα,β) 
D1 Æ (α,β +dβ) 
CD = ds 
CC1 = Adα 
CD1 = Bdβ 
⎞ 
β ∂ ⎟⎠ 
∂ 
C D = B + B d 1 
⎛ α 
⎜⎝ 
∂α 
⎞ 
α ∂ ⎟ ⎟⎠ 
⎛ 
D D = A+ A d 1 
⎜ ⎜⎝ 
β 
∂ 
∂β 
x 
y 
z 
C 
n 
Mα 
Mβ 
C1 D1 
D 
Nα 
Qα 
Sα 
Mαβ 
Qβ 
Nβ Sβ 
Mβα Z 
X Y 
M 
α β 
Page 21
z 
x X 
Z 
C1 
Qα 
C Adα 
dϕα 
dϕα 
Nα 
α 
∂ 
+ α 
α N N d 
∂α 
∂ 
Q + Q α 
d α 
α R1 
∂α 
Q 
∂ 
+ β 
β d 
C 
dϕβ 
R2 
Qβ 
Nβ 
z 
Y 
Z 
dϕβ Bdβ 
y 
N 
∂ 
+ β 
β d 
β 
∂β 
N 
β 
∂β 
Q 
D1 
d A 
ϕ = α α d 
R 
1 
d B 
ϕ = β β d 
R 
2 
C 
C1 
D1 
D 
X Y 
y, β 
x, α 
Nβ Sα Nα Sβ 
Mβα Mβ 
Mα 
Mαβ 
dψα dψβ 
d D D CC 1 
ψ = α A d 
d C D CD 1 
∂ 
ψ = B d 
β 1 1 α 
β 
∂ 
∂β 
= 
− 
CD B 
1 
∂α 
= 
− 
1 1 
CC A 
1 
Page 22
Equilibrium Equations 
⎞ 
⎛ 
S 
∂ 
d d D D 
X S CC S 
1 1 
d sin d cos 
d D D N CD 
cos 
1 1 
N 
N 
N N d d d C D S S d ⎞ 
d C D 
⎞ 
∂ 
∂ 
+ + ⋅ ϕ ψ ⎟⎠ 
⎛ α 
cos cos sin 
1 1 
d sin d sin 
d D D 
⎞ 
Q 
cos sin 0 
1 
1 
∂ 
⎞ 
= β α + ⋅ ϕ ψ ⎟⎠ 
∂ 
⎛ 
∂ 
⎛ 
⎛ α 
Q 
⎛ α 
⎜⎝ 
∂α 
− + 
− ⋅ ϕ ψ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
β 
∂β 
+ + 
+ ⋅ ψ ⎟⎠ 
⎜⎝ 
∂α 
⎞ 
⎜⎝ 
∂α 
+ + 
+ ⋅ − ⋅ ϕ ψ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
β 
∂β 
− + 
+ ⋅ ψ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
β 
∂β 
= − ⋅ + + 
α α 
α 
α 
β β 
β 
β 
α 
α 
α α α 
α 
α 
β β α 
β 
β 
β 
β 
β β Σ 
Q Q d d d C D XABd d 
A S AB 
∂ 
∂ 
0 : 1 0, 
( ) ( ) 
( ) ( ) 
α β α 
B S AB 
0 : 1 0, 
∂ 
+ 
∂ 
β 
2 
( ) ( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎬ 
∂ 
∂ 
N AB 
Z AB 
0 : 0, 
α β β α 
( ) ( ) 
( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎭ 
1 2 
0 : 1 0, 
β α β 
+ = 
∂ 
∂ 
∂α 
+ 
∂ 
− 
∂ 
− 
∂α 
∂ 
∂ 
∂β 
= 
+ = 
∂β 
+ 
∂β 
∂α 
= 
− = 
∂α 
∂β 
∂ 
∂ 
= + + 
− + = 
∂α 
+ 
∂β 
− 
∂β 
= 
− + = 
∂β 
+ 
∂α 
− 
∂α 
= 
α β α 
β α 
Σ 
Σ 
Σ 
Σ 
Σ 
2 
0 : 1 2 
0, 
2 
1 
2 
A H BM M B ABQ 
A 
M 
B H AM M A ABQ 
B 
M 
N AQ BQ ABZ 
R 
R 
Q ABY 
R 
B 
Y AN N A 
Q ABX 
R 
A 
X BN N B 
x 
y 
M 
α β Σ R 
= − − βα + αβ ≡ 
0 : 0 
R 
2 1 
M 
M S S z 
S = S = S M = M = H α β αβ βα Because , 
N , N , S,Q ,Q ,M ,M ,H α β α β α β 8 unknowns and 5 equations. 
Page 23
Internal Forces 
Αdα 
⎛ 
+ d 
A z 
dϕα α 
⎞ 
α ⎟ ⎟⎠ 
⎜ ⎜⎝ 
R 
1 
1 
h 2 
h 2 
dz 
z 
z 
σβ 
τβα 
τβz 
⎞ 
N z 
1 , 
⎞ 
S z 
1 , 
⎞ 
Q z 
1 , 
h 
β β 
− 
h 
β βα 
2 
⎛ 
⎛ 
β β 
2 
1 
∫ 
2 
2 
1 
2 
2 
1 
∫ 
∫ 
− 
− 
⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
= − τ + 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
= τ + 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
= σ + 
h 
h 
z 
h 
h 
dz 
R 
dz 
R 
dz 
R 
⎛ 
+ τ = ⎟ ⎟⎠ 
⎛ 
zdz M z 
M z 
∫ ∫ 
1 , 1 
β ⎟⎠ 
⎟ β βα βα 
− 
− 
⎞ 
⎜ ⎜⎝ 
⎞ 
⎜ ⎜⎝ 
= − σ + 
2 
2 
1 
2 
2 
1 
h 
h 
h 
h 
zdz 
R 
R 
R1 
⎛ 
+ τ − = ⎟ ⎟⎠ 
⎛ 
+ τ = ⎟ ⎟⎠ 
⎛ 
dz Q z 
dz S z 
N z 
∫ ∫ ∫ 
1 , 1 ⎟ ⎟⎠ 
, 1 
α α α α 
− 
α αβ 
− 
− 
⎞ 
⎜ ⎜⎝ 
⎞ 
⎜ ⎜⎝ 
⎞ 
⎜ ⎜⎝ 
= σ + 
2 
2 
2 
2 
2 
2 
2 
2 
2 
h 
h 
z 
h 
h 
h 
h 
dz 
R 
R 
R 
⎛ 
+ τ = ⎟ ⎟⎠ 
⎛ 
zdz M z 
M z 
∫ ∫ 
1 , 1 
α ⎟⎠ 
⎟ α αβ αβ 
− 
− 
⎞ 
⎜ ⎜⎝ 
⎞ 
⎜ ⎜⎝ 
= − σ + 
2 
2 
2 
2 
2 
2 
h 
h 
h 
h 
zdz 
R 
R 
⎛ 
+ ≈ ⎟ ⎟⎠ 
⎛ 
z 
z R z 
1 ≈ ⎟ ⎟⎠ 
1 1, 1 1 
1 2 
⎞ 
⎜ ⎜⎝ 
⎞ 
⎜ ⎜⎝ 
<< → + 
R 
R 
So, S = S = S M = M = H α β αβ αβ , 
Page 24
Strain Determination. 
Hooke’’s Law. Boundary Conditions 
n 
eβ 
M 
M’ 
u 
uz 
eα 
uβ uα 
eα, eβ, n = unit vectors 
e = r e r α A β B 
1 , 1 ∂ 
, 
∂β 
= 
∂ 
∂α 
r × 
r 
n 
= α β A2B2 − F2 
α β u = resultant displacements; 
uα, uβ, uz = displacement 
components in α-, β- and z-direction 
Position of M: r, 
Position of M’: r r u r e e n z = + = + u + u + u α α β β ' 
For a point M’: 
⎞ 
⎛ 
⎛ 
∂ 
∂ ′ 
′ 
u u 
⎟ e ⎟⎠ 
′ = r e e α 
n ⎜ ⎜⎝ 
− 
∂ 
∂α 
+ ⎟ ⎟⎠ ⎞ 
⎜ ⎜⎝ 
∂ 
∂β 
− 
∂α 
≈ + 
∂α 
α β 
β 
α α 
1 
1 1 1 1 
R 
A 
A u 
AB 
u 
A A 
z 
⎞ 
⎛ 
∂ ′ 
′ 
u u 
⎟ e ⎟⎠ 
′ = r e e β 
n ⎜ ⎜⎝ 
− 
∂ 
∂β 
⎞ 
+ + ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
∂ 
∂α 
− 
∂ 
∂β 
≈ 
∂β 
β α β 
α 
β 
2 
1 1 1 1 
R 
B 
B u 
AB 
u 
B B 
z 
⎞ 
⎞ 
⎟ ⎟⎠ 
A r 
A A u u 
z ′ = β 
⎛ 
∂ 
∂ 
∂ ′ 
B r 
B B u u 
z ′ = α 
⎜ ⎜⎝ 
+ 
∂ 
∂α 
+ 
∂ 
∂β 
≈ + 
∂ ′ 
∂β 
β 
2 
1 1 1 
R 
AB 
u 
B 
⎟ ⎟⎠ 
⎜ ⎜⎝ ⎛ 
+ 
∂β 
+ 
∂α 
≈ + 
∂α 
α 
1 
1 1 1 
R 
AB 
u 
A 
Normal strains: 
ds ds ′ − 
ds ds 
, 2 2 
, 
2 
′ − 
ε = 1 1 
α β 
ds 
1 
ds 
ε = 
, , 1 2 ds = Adα ds = Bdβ , . 1 2 ds′ = A′dα ds′ = B′dβ 
Page 25
B u u 
∂ 
1 1 . 
2 R 
β 
ε = α 
AB 
u 
B 
+ z 
∂ 
∂α 
+ 
∂β 
A u u 
∂ 
β 1 1 , 
1 R 
ε = β 
AB 
u 
A 
+ z 
∂ 
∂β 
+ 
α 
∂α 
α 
Shear strain: 
′ ′ = ′ ′ ⎛ π − ε 
⎞ 
⎛ − ε 
⎞ 
sin 
α β α β αβ αβ αβ αβ ε ≈ ε = ⎟⎠ 
⎜⎝ 
π 
= ⎟⎠ 
⎜⎝ 
2 
cos 
2 
e e e e cos 
⎞ 
⎟⎠ 
⎛ 
∂β 
A 
u 
B 
ε = β α 
αβ A 
⎜⎝ 
∂ 
⎞ 
+ ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
∂ 
∂α 
u 
B 
B 
A 
Kichhoff-Love’s Assumptions: 
1. About normal to middle surface: ε = ε = ε = 0 βz zα z 
2. About normal stress: σ = 0 z 
After deformation: 
ds ds ( ) 
( ) 
( )⎭ ⎬ ⎫ 
′ = + ε 
1 , 
α 
1 1 
ds ds 
′ = + ε 
1 , 
β 
2 2 
′ = + ε 
1 , 
A A 
( )⎭ ⎬ ⎫ 
′ = + ε 
α 
1 . 
β 
B B 
′ = ′ ′ π ⎞ 
1 1 
( )( ) αβ α β αβ ε ε + ε + = ⎟⎠ 
⎛ − ε 
F A B cos AB 
⎜⎝ 
2 
Love’s formulas: 
M 
′ 
ε 
ε 
1 1 , 1 1 β 
, . 
A B 
1 1 1 2 2 κ = αβ 
κ = − 
− + 
′ 
κ = 
− + 
′ 
R R R R R R ′ ′ 
2 
β 
α 
α 
κα, κβ = changes of bending curvatures ¬pldkkMeNagBt;¦, 
καβ = change of twisting curvatures ¬pldkkMeNagrmYr¦. 
Page 26
In the distance z form midplane: 
⎪⎬ ⎫ 
R = R + 
z 
, 
( ) 
( ) ⎪⎭ 
ds A d 
= α 
z ( ) ( ) 
1 1 
R = R + 
z 
, 
z 
2 2 
⎪⎬ ⎫ 
, 
, 
z z 
1 
ds B d 
= β 
( ) ( ) ⎪⎭ 
2 
z z 
A A z 
( ) 
⎫ 
⎪ ⎪ 
⎬ 
⎞ 
1 , 
⎞ 
⎛ 
⎛ 
R 
1 
z 
B B z 
( ) ⎪ ⎪ 
⎭ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
= + 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
= + 
1 . 
R 
2 
z 
z 
ε = ε + κ 
( ) 
( ) 
( ) 
⎫ 
u u zV 
z ( ) 
⎪⎭ 
⎪⎬ 
α α α 
z 
ε = ε + κ 
z 
β β β 
, 
, 
z 
2 . 
ε = ε + κ 
z 
αβ αβ αβ 
z 
α α 
u u zV 
( ) 
( ) 
⎫ 
⎪⎭ 
⎪⎬ 
= + 
= + 
z 
β β 
u = 
u 
. 
, 
1 
, 
2 
z z z 
( ) 
u 
1 1 , 
( ) 
( ) 
( ) ( ) 
( ) 
( ) 
( ) 
( ) 
1 
u 
1 1 , 
( ) 
( ) 
( ) ( ) 
( ) 
( ) 
( ) 
( ) 
B 
( ) 
( ) 
( ) 
( ) 
∂ 
∂ 
A 
( ) 
( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
( ) 
( ) ⎪ ⎪ ⎪ ⎪ 
⎭ 
⎞ 
⎟ ⎟ 
⎠ 
⎛ 
∂β 
⎜ ⎜ 
⎝ 
∂ 
⎞ 
+ ⎟ ⎟ 
⎠ 
⎛ 
⎜ ⎜ 
⎝ 
∂ 
∂α 
ε = 
+ 
∂α 
+ 
∂β 
∂ 
ε = 
+ 
∂β 
+ 
∂α 
∂ 
ε = 
z 
z 
u 
u 
β α 
αβ 
α 
β 
β 
β 
α 
α 
. 
2 
z 
z 
z 
z 
z 
z 
z 
z z 
z 
z 
z z 
z 
z 
z 
z z 
z 
z 
z z 
z 
z 
z 
A 
B 
B 
A 
R 
u 
B 
A B 
u 
B 
R 
u 
A 
A B 
u 
A 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
⎞ 
⎟⎠ 
⎛ 
⎜⎝ 
1 1 , 
1 1 , 
∂ 
1 
∂α 
∂ 
⎞ 
∂ 
+ ⎟⎠ 
⎛ 
∂β 
⎜⎝ 
∂ 
α 
κ = 
∂α 
+ 
∂ 
∂ 
∂β 
κ = 
∂β 
+ 
∂α 
κ = 
αβ 
β 
V 
A 
V 
B 
2 2 1 
. 
2 
2 
1 
A 
B 
B 
A 
B V 
AB 
V 
B 
AV 
AB 
V 
A 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
1 ∂ 
, 
∂ 
z 
∂β 
α 
V u 
u 
= − 
∂α 
= − 
β 
1 . 
2 
2 
1 
1 
z 
u 
R B 
V 
u 
R A 
Hooke’s law 
E E z 
( ) ( ) ( ) [ ( )] 
z z 
α α β α β α β 
2 2 
E E z 
( ) ( ) ( ) [ ( )] 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
z z 
β β α β α β α 
( ) ( ) ( )( ) ⎪ ⎪ ⎪ 
⎭ 
2 . 
ε + κ 
+ ν 
ε = 
+ ν 
τ = τ = 
ε + νε + κ + νκ 
− ν 
ε + νε = 
− ν 
σ = 
ε + νε + κ + νκ 
− ν 
ε + νε = 
− ν 
σ = 
αβ βα αβ αβ αβ 
2 1 2 1 
, 
1 1 
, 
1 1 
2 2 
E E z 
z 
Page 27
Internal forces: 
N C ( ) 
( ) 
( ) 
( ) ⎪⎭ 
⎫ 
⎪⎬ 
= ε + νε 
α α β 
N C 
= ε + νε 
β β α 
S 1 C 
1 , 
= − ν ε 
αβ 
, 
, 
2 
⎫ 
⎪⎬ 
M D 
= − κ + νκ 
α α β 
, 
( ) 
( ) ⎪⎭ 
M D 
= − κ + νκ 
β β α 
1 . 
= − − ν κ 
αβ 
, 
H D 
C = Eh shell stiffness (rigidity) for tension, 
1− ν2 
3 
D = Eh shell stiffness (cylindrical rigidity) for bending, 
( 2 ) 
12 1− ν 
Boundary Conditions 
Equations (17) 
• 5 equations of statics, 
• 6 strain components, 
• 6 physical equations. 
Unknowns (17) 
• 8 internal forces: α β α β α β N , N , S,M ,M ,H,Q ,Q 
• 3 displacements: z u ,u ,u α β 
• 6 strains: α β αβ α β αβ ε ,ε , ε , κ , κ , κ 
Generalized shears and tangential shears (β=const): 
H S S H 
~ 1 , ~ . 
1 R 
∂ 
Q Q = − 
A 
∂α 
= + β β 
enAelIRCugnImYy² RtUvman 4 
lkçx½NÐRBMEdn 
Page 28
Rim β=const is free: 
H N S H 
0, 1 0, 0, 0. 
= + β β β R 
= = − = 
1 
∂ 
∂α 
A 
M Q 
Rim β=const is built-in: 
∂ 
0, 1 = 
0. 2 ∂β 
= = = = − α β 
z 
z 
u 
B 
u u u V 
Rim β=const is hinge supported: 
= 0, = = = 0. β α β z M u u u 
Rim β=const is simple supported with normal movement: 
= + β β α β H u u 
∂ 
0, 1 = 0, = = 0. 
∂α 
A 
M Q 
Rim β=const is simple supported with tangential movement: 
M N S H 
= = − = = β β z u 
0, 0, 0, 0. 
R 
1 
Page 29
Analysis of Cylindrical Shells 
z 
y 
x 
f l 
β=s 
α=x 
dx ds 
a 
x=l 
x=0 
C 
Z 
X Y 
z 
x,α y,β 
D 
C1 
D1 
Qx 
S Nx S 
H H Mx 
Qs 
Ns 
Ms 
Equations of cylindrical shell: x = α, y = y(β), z = z(β) 
Coordinate lines: α = x, β = s, s = arc length. 
A B F d dx d ds 
= ∞ = ϕ = ϕ = 
1, 0, , ,cos 0, 
= = = α = β = χ = 
R R R s d d ds 
, ( ), 0, . 
1 2 α β 
R 
Equilibrium equations: 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
0, 
− = 
Q 
s s 
Q 
∂ 
+ 
∂ 
S 
∂ 
+ 
N 
x 
∂ 
+ 
Q 
∂ 
+ 
∂ 
− + = 
∂ 
N 
∂ 
S 
∂ 
∂ 
+ = 
∂ 
∂ 
0, 
0, 
N 
2 
2 
Z 
x 
s 
R 
Y 
R 
s 
x 
X 
s 
x 
s s x 
⎫ 
⎪ ⎪⎭ 
⎪ ⎪⎬ 
+ = 
M 
∂ 
− 
H 
∂ 
− 
∂ 
H 
∂ 
− 
M 
∂ 
− 
∂ 
+ = 
∂ 
∂ 
0, 
0, 
x 
x 
s 
s 
Q 
s 
x 
Q 
s 
x 
⎫ 
⎪ ⎪⎭ 
⎪ ⎪⎬ 
H 
∂ 
+ 
M 
∂ 
+ 
∂ 
∂ 
Q = 
M 
Q ∂ 
= 
H 
∂ 
∂ 
∂ 
, 
. 
s 
x 
s 
x 
s 
s 
x 
x 
Page 30
CMnYs Qx nig Qs cUleTAkñúgsmIkarbIxagmux eyIgTTYl)an ³ 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
0, 
M 
H 
1 1 0, 
− = 
∂ 
s x 
∂ 
+ 
M 
∂ 
∂ 
∂ 
H 
∂ ∂ 
+ 
S 
∂ 
+ 
N 
x 
∂ 
+ 
∂ 
+ 
M 
∂ 
+ = 
∂ 
− 
∂ 
− 
∂ 
N 
∂ 
S 
∂ 
∂ 
+ = 
∂ 
∂ 
2 0. 
2 
2 2 
2 
2 
N 
2 
Z 
s 
x s 
x 
R 
Y 
s 
x R 
s R 
x 
X 
s 
x 
s x s 
Strain components: 
u 
u 
u 
u 
∂ 
+ 
∂ 
∂ 
, , , 
2 
u 
u 
u 
u 
, , 2 1 2 . 
u 
2 
2 
∂ 
x s 
x 
⎞ 
s R 
R 
∂ 
x s 
s 
x 
R 
s 
u 
x 
s z 
xs 
∂ 
− 
s z 
y 
z 
x 
s x 
xs 
s z 
y 
x 
x 
∂ ∂ 
− 
∂ 
∂ 
= κ ⎟⎠ 
⎛ 
⎜⎝ 
∂ 
∂ 
κ = 
∂ 
∂ 
∂ 
κ = − 
∂ 
∂ 
+ ε = 
∂ 
ε = 
∂ 
ε = 
Internal forces: 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
u 
⎛ + 
∂ 
u 
u 
∂ 
s z x 
⎞ 
⎟⎠ 
⎡ 
N C u 
N C ⎡ 
u 
∂ 
∂ 
u 
S − ν C ⎛ 
∂ 
u 
⎜⎝ 
u 
∂ 
+ 
∂ 
∂ 
= 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
+ + ν 
∂ 
= 
⎤ 
⎥⎦ 
⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
∂ 
+ ν 
∂ 
= 
, 
2 
1 
, 
, 
s 
x 
x 
R 
s 
R 
s 
x 
s x 
s 
x s z 
x 
M D u 
⎡ 
u 
s 
∂ 
s z z 
1 1 
( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
u 
∂ 
− 
u 
⎞ 
⎟ ⎟⎠ 
∂ 
⎛ 
⎛ 
⎜ ⎜⎝ 
⎛ 
u 
∂ 
ν − ⎟⎠ 
∂ 
− 
u 
∂ ∂ 
u 
∂ 
− 
u 
∂ 
∂ 
= − − ν 
⎞ 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
⎞ 
⎜⎝ 
∂ 
∂ 
= − 
⎤ 
⎥⎦ 
⎢⎣ ⎡ 
⎟⎠ 
⎜⎝ 
∂ 
∂ 
∂ 
+ ν 
∂ 
= − − 
. 
2 
, 
, 
2 
2 
2 
2 
2 
x s 
x 
R 
H D 
x 
s 
R 
M D 
s 
R 
x s 
s z 
s 
z s z 
x 
CMnYstMélkMlaMgkñúgxagelIcUleTAkñúgsmIkarlMnwg eyIgnwg)an 
Page 31
X 
− ν ∂ 
0, 
⎞ 
1 2 
u u 
2 
+ ν ∂ 
⎛ 
+ ν ∂ 
2 2 
2 
12 
1 
2 
⎡ 
u 
ν ∂ 
+ 
2 2 
2 12 
− ν ∂ 
1 
⎛ 
+ ν ∂ 
2 
1 
∂ 
2 
2 
2 
2 
2 
2 
2 
2 
∂ 
2 2 
2 
⎛ 
⎤ 
⎞ 
u Y 
= + ⎥⎦ 
⎡ 
⎢⎣ 
⎞ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
∂ 
∂ 
∂ 
∂ 
⎞ 
− ⎟⎠ 
∂ 
⎛ 
∂ 
⎜⎝ 
∂ 
+ 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
+ ⎟⎠ 
⎜⎝ 
∂ 
+ 
∂ 
+ 
∂ 
+ 
u 
∂ ∂ 
C 
R s x s 
h 
s R 
u 
R s R R x 
h 
x s s x 
z 
s 
x 
∂ 
+ ⎟⎠ 
4 
⎡ 
2 2 
∂ 
4 
2 
⎤ 
⎞ 
∂ 
+ 
∂ 
⎤ 
⎞ 
⎛ 
⎛ 
∂ 
u Z 
2 0. 
∂ 
⎛ 
2 4 
12 
1 
12 
1 
4 
2 2 
4 
2 
2 
2 
= − ⎥⎦ 
u 
ν ∂ 
⎡ 
⎢⎣ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
∂ ∂ 
+ 
∂ 
∂ 
+ + 
+ 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
⎥⎦ 
⎢⎣ 
⎟⎠ 
⎜⎝ 
∂ 
⎞ 
⎜⎝ 
∂ 
∂ 
− 
∂ 
+ 
∂ 
C 
x x s s 
h 
R 
u 
s x R s R 
h 
x R s 
R 
z 
s 
x 
0, 
2 
1 
2 
2 
2 
+ = 
∂ 
∂ ∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
C 
x 
x s R 
x s 
s z 
x 
For circular cylindrical shell: R = r = const 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
L u L u L u X 
+ + + = 
x s z 
11 12 13 
C 
L u L u L u Y 
+ + + = 
x s z 
21 22 23 
C 
L u L u L u Z 
+ + − = 
0, 
0, 
0. 
31 32 33 
C 
x s z 
Equilibrium 
equations 
, 
1 + ν ∂ 
2 
12 21 x s 
2 
L L 
∂ ∂ 
, = = 
− ν ∂ 
∂ 
= 
11 x s 
2 
1 
2 
2 
2 
2 
L 
∂ 
+ 
∂ 
, 
∂ 
+ 
+ ν ∂ 
22 x s 
2 
1 
2 
2 
2 
2 
L 
∂ 
∂ 
= 
L L 
ν ∂ 
= = 
, 13 31 r ∂ 
x 
, 
⎛ 
2 3 
⎡ 
⎞ 
∂ 
+ 
∂ 
∂ 
23 32 12 
⎥⎦ 
1 
3 
3 
2 
⎤ 
⎢⎣ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
∂ ∂ 
− 
∂ 
= = 
x s s 
h 
r s 
L L 
4 
4 
⎛ 
∂ 
+ 
∂ 
∂ 
2 33 ⎟ ⎟⎠ 
2 . 
2 4 
12 
1 
4 
2 2 
4 
⎞ 
⎜ ⎜⎝ 
∂ 
∂ ∂ 
+ 
∂ 
= + 
x x s s 
h 
r 
L 
Page 32
Case X=Y=0: 
u L 
u L s 
1 4 
L L 
11 12 ∇ 
= , = , 
, 
x L 
L 
s 
x 
2 
21 22 
− ν 
= = 
L L 
L 
L − 
L u 
− 
= . 
, 
L u L 
z 
13 12 
L u L 
23 22 
L 
z 
x − 
11 13 
22 23 
z 
z 
L 
s L − 
L u 
= 
⎞ 
, 
r u uz 1 
z z z 
⎛ 
2 5 
+ ν 
h u 
1 12 
4 
5 
3 2 
2 
3 
3 
3 
4 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
u 
∂ ∂ 
∂ 
∂ ∂ 
− ν 
− 
∂ 
+ 
u 
∂ ∂ 
∂ 
∂ 
∇ = −ν 
x s 
x s 
x s 
x 
x 
5 
⎡ 
2 5 
3 
r u ∂ 
uz ∂ 
− 
u 
h ∂ 
u 
∂ 
u 
∂ 
u 
z z z z 
( ) ( ) 2 (3 ) (1 ) . 
4 ⎥⎦ 
2 5 
s 
12 1 
12(1 ) 2 (3 ) (2 ) 1 4 , 
5 
2 3 
4 
3 
3 
2 
⎤ 
⎢⎣ 
∂ 
+ − ν 
∂ ∂ 
+ − ν 
∂ ∂ 
− ν 
+ 
∂ 
∂ ∂ 
∇ = − + ν 
s 
x s 
x s 
s 
x s 
6 
u 
⎡ 
∂ 
∂ 
∂ 
− ν ∂ 
⎥⎦ 
u z z z z 
= ∇ z 4 2 
6 
u 
2 4 
u 
6 
6 
u 
4 2 
4 
2 2 
2 
8 Z 
x s D 
x s 
s 
x r 
r h 
⎤ 
⎢⎣ 
∂ ∂ 
+ + ν 
∂ ∂ 
+ + ν 
∂ 
+ 
∂ 
∇ + 
4 
4 
4 
∂ 
+ 
∂ 
∂ 
Where 4 
2 , 4 
2 2 
4 
x ∂ x ∂ 
s ∂s 
+ 
∂ 
∇ = 
8 
8 
8 
∂ 
2 6 
8 
∂ 
∂ 
∂ 
8 4 4 4 6 4 
4 4 
8 
6 2 
8 
8 
∂ 
+ 
x x s x s ∂ x ∂ 
s ∂s 
+ 
∂ 
+ 
∂ ∂ 
+ 
∂ 
∇ = ∇ ∇ = 
L.N.Donnel’s equations: 
u 
1 , 
ν ∂ 
3 
u 
u 
∇ = − 2 1 , 
u z z 
x ∂ ∂ 
2 
3 
u 
3 
3 
4 
x s 
x r 
r 
∂ 
+ 
∂ 
+ ν ∂ 
u z z 
s ∂ 
3 
3 
2 
4 
s 
x s r 
r 
∂ 
− 
∂ ∂ 
∇ = − 
12 ( 1 − ν ) ∂ 
u 
1 4 . 
u z 
z = ∇ 
4 
4 
2 2 
2 
8 Z 
x D 
r h 
∂ 
∇ + 
For closed shell: 
Σ Σ∞ 
( )cos , ( )cos , 
z zm u u x m Z Z x m 
= ϕ = ϕ 
0 = 
0 
∞ 
= 
m 
m 
m 
Page 33
∫ π 
where ϕ = s 
, Z ( x ) = Z cos mϕdϕ 
. −π 
r 
m 
2 
m 
, 2 
2 
2 
2 
4 
m 
m 
∂ 
∂ 
∇ = 2 , 2 
4 
2 
2 
2 
2 
2 
r 
∂ 
= 
∂ 
+ 
∂ 
x s x 
− 
∂ 
∂ 
∂ 
4 
2 
2 
4 
4 
r 
r x 
x 
+ 
∂ 
− 
∂ 
∇ = 
8 
2 
6 
4 
4 
6 
2 
m 
m 
m 
m 
∂ 
∂ 
∂ 
4 6 4 , 2 
6 
4 
4 
6 
2 
8 
8 
8 
8 
r 
r x 
r x 
r x 
∂ 
x 
+ 
∂ 
− 
∂ 
+ 
∂ 
− 
∂ 
∇ = 
smIkar Donnel TI3 manragCa 
( ) 
4 
2 
⎛ 4 
− ν 
6 
2 
⎞ 
d 
m 
d 
m 
4 6 121 4 
4 
2 
d 
+ + − Σ∞ 
= 
2 
4 
2 
6 
⎤ 
⎡ 
d 
m 
Z x ms 
m 
d 
m 
d 
1 2 ( ) cos 0 
4 
− − + 
2 
2 
4 
0 
8 
m 
8 
2 
6 
4 
2 2 
4 
6 
2 
8 
8 
= 
⎭ ⎬ ⎫ 
⎥⎦ 
⎢⎣ 
⎪⎩ 
⎪⎨ ⎧ 
⎤ 
− ⎥⎦ 
⎡ 
⎢⎣ 
+ − ⎟ ⎟⎠ 
⎜ ⎜⎝ 
r 
r 
dx 
r 
dx 
D 
u x 
r 
dx 
r 
dx 
r r h 
dx 
r 
dx 
m 
m 
zm 
Tangential displacements: 
( )cos , 
Σ∞ 
x xm u u x m 
= ϕ 
0 
= 
m 
( )sin , 
Σ∞ 
s sm u u x m 
= ϕ 
0 
= 
m 
For open shell: 
u u s m x ⎫ 
( ) 
( ) 
( ) 
( ) ⎪ ⎪ ⎪ 
⎪ ⎪ ⎪ 
⎬ 
⎭ 
cos , 
l 
u u s m x 
sin , 
l 
u u s m π 
x 
x xm 
m 
s sm 
= 
π 
= 
π 
= 
∞ 
Σ 
= 
∞ 
0 
Σ 
= 
m 
∞ 
0 
Σ 
z zm 
= 
sin , 
0 
m 
l 
⎫ 
⎪ ⎪ ⎪ 
X X s m x 
cos , 
Y Y s m x 
( ) 
( ) ⎪ ⎪ ⎪ 
⎬ 
⎭ 
sin , 
l 
π 
Z = 
Z s m x 
π 
= 
π 
= 
∞ 
Σ 
= 
∞ 
0 
Σ 
= 
0 
∞ 
Σ 
= 
sin . 
0 
m 
m 
m 
m 
m 
m 
l 
l 
Z m x 
l 
Y m x 
l 
X m x 
l 
2 cos , 2 sin , 2 sin . 
∫ π 
∫ π 
π 
= 
= 
∫ 0 0 0 
= 
l 
m 
l 
m 
l 
m dx 
l 
dx Z 
l 
dx Y 
l 
X 
Boundary conditions 
= 0 and = : = = = = 0. s z x x x x l u u N M 
where 
(Simple-supported on the rigid diaphragm) 
Page 34
Example 
Axis-symmetrical Cylindrical Shell 
z 
x 
l 
2R 
h 
x 
Z 
External forces: 
X = Y = 0, Z = q(l − x) 
Data: 
R = 1 m , h = 5 mm , l = 
5 
m 
= 
0.001 3 
q kgf cm 
Steel: 
2 106 2 , 
E = ⋅ kgf cm 
0.3 
ν = 
In a case of axis symmetry (Y = 0): 
∂ 
0, = 0. 
∂ 
= = = = 
s 
u Q S H s s 
L 
Internal forces: 
du 
N C u 
⎞ 
⎞ 
= ⎛ + ν ⎟⎠ 
, , 
D d u 
⎟⎠ 
Q dM 
u 
⎜⎝ 
M D d u 
= ⎛ + ν 
, , . 
3 
3 
2 
2 
N C du 
⎜⎝ 
M D d u 
2 
2 
dx 
dx 
dx 
dx 
dx 
R 
R 
dx 
x z 
x 
z 
s 
z 
x 
z x 
s 
x z 
x 
= = ν = = 
Equilibrium equations: 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
⎞ 
u ZR 
= − ⎟ ⎟⎠ 
x z 
⎛ 
⎜ ⎜⎝ 
d u 
du 
du 
ν + + 
X 
+ = 
ν 
+ 
0. 
2 4 
Rh d 
12 
1 
0, 
4 
2 
2 
C 
dx 
dx R 
C 
dx 
dx R 
z 
x 
Page 35
sikSakrN I X=0: ecjBIsmIkarlMnwgTI 1 eyIg)an 
∫ ν 
u C N 
x = = → = + − 
u dx 
ν 
+ 
x 
x z 
x 
z 
R 
u C C x 
C 
du 
dx R 
0 
6 5 6 
CMnYscUleTAkñúgsmIkarTI 2 eyIgTTYl)an 
ν 
( )3 z + γ = − N 
1 . 
d u x 
u Z 
4 4 , 
4 
4 
RD 
D 
dx 
z 
− ν 
2 2 
2 
4 
R h 
γ = 
Common solution: 
u 0 
= e −γ x (C cos γ x + C sin γ x) + e γ x (C cos γ x + C sin γ x) 
z 1 2 3 4 
~ 
Particular solution: u (x) z 
sMrab;krNI]TahrNxagmux KWecjBIlkçx½NÐ)atxagelITMenr eyIgrkeXIj 
0 0 6 N = → C = x 
( ) ( ) 
u q l x 
D 
u q l x 
D 
d u 
dx 
z z 
z 
4 
4 
4 
4 
4 
4 ~ 
γ 
− 
→ = 
− 
+ γ = 
( ) ( ) ( ) 
− 
u = e −γ x C cos γ x + C sin γ x + e γ x C cos γ x + C sin 
γ x + 
q l x 
z 1 2 3 4 4 
γ 
4 D 
Boundary conditions: 
x u u duz 
= 0 : = 0, = 0, = 0. 
dx 
x z 
3 
x l M D d u Q D d u 
z 
: 0, 0. 2 
3 
2 
= = = = = 
d x 
dx 
x 
z 
x 
∫ ν 
= − 
x 
x zu dx 
R 
u C 
0 
5 
Page 36
Circular Tank 
Radius R := 1 
Heigth L := 3 
Thickness h := 0.1 
Fluid density q := 10 
Modulus of elasticity E 2 10 4 
⋅ 10− 3 
:= ⋅ Poisson ratio ν := 0.2 
10− 6 
Cylindrical stiffness D 
E ⋅ h3 
⋅ ( − 2) 
12 1 ν 
:= 
γ4 
⋅ ( − 2) 
R2 ⋅ h2 
3 1 ν 
:= γ 
4 
:= γ4 
Particular solution u1z(x) 
q ⋅ (L − x) 
4 ⋅ γ4 ⋅ D 
:= u01z(x) 
q L ⋅ x x2 
2 
− 
⎛⎜⎝ 
⎞⎟⎠ 
⋅ 
4 ⋅ γ4 ⋅ D 
:= 
F(x) 
e − γ⋅x ⋅ cos(γ ⋅ x) 
e − γ⋅x ⋅ sin(γ ⋅ x) 
eγ⋅x ⋅ cos(γ ⋅ x) 
eγx ⋅ ⋅ sin(γ ⋅ x) 
⎛⎜⎜⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎟⎟⎠ 
:= 
K 
−γ 
γ 
0 
0 
−γ 
−γ 
0 
0 
0 
0 
γ 
γ 
0 
0 
−γ 
γ 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
:= K2 := K ⋅ K K3 := K2 ⋅ K 
K01 K− 1 := 
F1(x) := K ⋅ F(x) F2(x) := K2 ⋅ F(x) F3(x) := K3 ⋅ F(x) 
D1 
−q 
:= D2 := 0 D3 := 0 
4 ⋅ γ4 ⋅ D 
Boundary conditions: 
A 0 〈 〉 
:= F(0) A 1 〈 〉 
:= F1(0) A 2 〈 〉 
:= F2(L) A 3 〈 〉 
:= F3(L) 
B0 := −u1z(0) B1 := −D1 B2 := −D2 B3 := −D3 
Integration constants: C (AT) − 1 
:= ⋅ B 
Page 37
Normal displacement uz(x) := C ⋅ F(x) + u1z(x) 
u1x(x) ν 
R 
K01T C ⋅ ( ) F x ( ) F 0 ( ) − ( ) ⋅ u01z x ( ) u01z 0 ( ) − ( ) + ⎡⎣ 
⎤⎦ 
:= ⋅ 
c5 := u1x(0) c5 = 0 
Longitudinal displacement ux(x) := c5 − u1x(x) 
C0 
E ⋅ h 
1 ν 
− 2 
:= 
⋅ ( − 2) uz(x) 
Normal force Ns(x) C0 1 ν 
R 
:= ⋅ 
Bending moment Mx(x) := D ⋅ (C ⋅ F2(x) + D2) 
Ms(x) := ν ⋅ Mx(x) 
Shear Qx(x) := D ⋅ (C ⋅ F3(x) + D3) 
ξ := 0, 0.02 ⋅ L .. L 
0 1 2 3 
30 
20 
10 
0 
− 10 
Normal forces 
Ns(x) 
Ns(ξ) 
x, ξ 
L1 := 0.2 ⋅ L 
ξ := 0, 0.02 ⋅ L1 .. L1 
0 0.2 0.4 0.6 
1 
0.8 
0.6 
0.4 
0.2 
0 
− 0.2 
Bending moments 
Mx(x) 
Mx(ξ) 
x, ξ 
Page 38
Analysis of Shallow Shells 
Shallow shell: 20, 5, min min R h ≥ l f ≥ 
where lmin = least dimension in plane, f = rise. 
x 
y 
z 
α ≡ x, β ≡ y 
cosϕ =1, sin ϕ = 0, ϕ− slope angle 
Tangential stresses = their projectives 
Assumptions: 
1. In rectangular coordinate: z = z(x, y) 
2 2 2 
ds = dx + 
dy 
2. Zero Gauss’s curvature k = k k = 
0 1 2 3. Q 
Q 
α = 0, β = 
0 
R 
R 
1 2 
1 
, 
2 2 2 2 2 
→ = = 
⎪⎭ 
⎪⎬ ⎫ 
= α + β 
A B 
ds A d B d 
In polar coordinates (r, β): 
ds2 = dr2 + r2dβ2 → A =1, B = r(z) 
u 
4. α = 0, β = 
0. 
R 
R 
1 2 
u 
So, 
Page 39
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
A u u 
1 1 , 
⎞ 
⎟⎠ 
B u u 
⎛ 
∂β 
⎜⎝ 
∂ 
⎞ 
∂ 
∂ 
+ ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
∂ 
∂ 
∂ 
∂α 
ε = 
+ 
∂α 
+ 
∂β 
ε = 
+ 
∂β 
+ 
∂α 
ε = 
z 
1 
u 
A 
u 
β α 
αβ 
α 
β 
β 
β 
α 
α 
, 
1 1 , 
2 
A 
B 
B 
B 
A 
R 
AB 
u 
B 
R 
AB 
u 
A 
z 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
⎞ 
⎟ ⎟⎠ 
1 ⎛ 
1 1 , 
⎛ 
z z 
2 
1 1 1 , 
⎛ 
⎜ ⎜⎝ 
A ∂ 
u 
∂α 
∂ 
∂β 
∂ 
∂ 
z z 
− 
∂ 
∂ 
∂ 
∂α 
∂ 
2 
∂α 
⎞ 
⎞ 
− 
∂ 
∂ 
∂ 
2 
∂α∂β 
α 
β 
κ = − 
∂α 
∂α 
− ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂β 
∂ 
∂ 
∂β 
κ = − 
∂β 
∂β 
− ⎟⎠ 
⎜⎝ 
∂α 
∂α 
κ = − 
αβ 
1 1 1 z z z 
. 
A 
B u 
B 
u 
AB 
B u 
A B 
u 
B B 
A u 
AB 
u 
A A 
1 ∂ 
0, 
Equilibrium Equations: 
∂ 
( ) ( 2 
) 
( ) ( ) 
∂ 
+ 
∂ 
( ) ( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎬ 
∂ 
∂ 
α β 
N AB 
α β β α 
( ) ( ) 
( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎭ 
AB 
1 2 
1 0, 
β α β 
+ = 
∂ 
∂ 
∂α 
+ 
∂ 
− 
∂ 
− 
∂α 
∂ 
∂ 
∂β 
+ = 
∂β 
+ 
∂β 
∂α 
− = 
∂α 
∂β 
+ + 
+ = 
∂α 
+ 
∂β 
− 
∂ 
∂ 
∂β 
+ = 
∂β 
+ 
∂α 
− 
∂α 
α β α 
β α 
2 
1 0, 
0, 
1 0, 
2 
2 
A H BM M B ABQ 
A 
B H AM M A ABQ 
B 
N AQ BQ ABZ 
R 
R 
B S ABY 
B 
AN N A 
A S ABX 
A 
BN N B 
Page 40
Integration of equilibrium equations 
ecjBIsmIkarBIrxageRkay eyIgTTYl)an³ 
⎤ 
⎡ 
1 1 ∂ 
, 
( ) ( 2 
) 
⎤ 
α α β 
⎡ 
∂ 
∂ 
B H M A 
1 ( ) 1 ( 2 
) . 
⎥⎦ 
⎢⎣ 
∂ 
∂β 
− 
∂ 
∂α 
− 
∂ 
∂β 
= 
⎥⎦ 
⎢⎣ 
∂α 
− 
∂β 
− 
∂α 
= 
β β α 
B 
AM 
AB 
Q 
A H M B 
A 
BM 
AB 
Q 
edayeyageTAelIlkçx½NÐCab; (compatibility conditions) 
1 ∂ 
0, 
∂ 
( ) ( 2 
) 
α α αβ 
( ) 1 ∂ 
( 2 
κ ) = 
0, 
∂α 
− 
∂ 
∂β 
κ − κ 
∂ 
∂ 
∂β 
κ = 
∂β 
− 
∂α 
κ − κ 
∂α 
B 
β β αβ 
B 
A A 
A 
A 
B B 
eyIgnwgTTYl)an ³ 
D 
∂ 
∂ 
( ) ( ) 
( ) ( ) . 1 
α α β 
12 1 
1 , 
12 1 
2 
2 
3 
2 
2 
3 
z 
z 
u 
D 
A 
B 
Q Eh 
u 
A 
A 
Q Eh 
∂ 
∇ 
∂β 
κ + κ = 
∂ 
∂β 
− ν 
= − 
∇ 
∂α 
κ + κ = 
∂α 
− ν 
= − 
β α β 
CMnYstMélxagelI eTAkñúgsmIkarTIbI eyIgTTYl)an³ 
⎡ 
1 1 1 
∂ 
( ) ( ) 
β α 
⎤ 
∂ 
∂ 
∂ 
( ) 1 ( 2 
) 0 
2 
N 
1 2 
− = 
⎭ ⎬ ⎫ 
⎥⎦ 
⎢⎣ ⎡ 
∂ 
∂α 
− 
∂ 
∂β 
− 
∂ 
∂α 
∂ 
+ 
∂α 
+ 
⎩ ⎨ ⎧ 
⎤ 
⎥⎦ 
⎢⎣ 
∂β 
− 
∂α 
− 
∂β 
∂β 
+ + 
α β 
α β 
A H M B Z 
A 
BM 
B H M A 
B 
AM 
R AB B 
N 
R 
tagGnuKmnsMBaFkñúg (stress function) ϕ tamrUbmnþxageRkam ³ 
Page 41
⎞ 
⎛ 
1 1 1 , 
2 
∂ϕ 
∂ 
∂ϕ 
∂ 
1 1 1 , 
2 
2 
⎞ 
∂ 
⎛ 
∂ϕ 
∂ 
⎞ 
⎛ 
∂ϕ 
1 1 1 . 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ϕ 
∂α 
∂ 
∂β 
− 
∂ϕ 
∂β 
∂ 
∂α 
− 
∂ ϕ 
∂α∂β 
α 
= − 
∂β 
∂β 
+ ⎟⎠ 
⎜⎝ 
∂α 
∂α 
= 
∂α 
∂α 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂β 
∂β 
= 
β 
A 
A 
B 
AB B 
S 
A 
A A AB 
N 
B 
B B A B 
N 
bnÞab;BICMnYscUleTAkñúgsmIkarlMnwgsþaTic eyIgsegáteXIjfa smIkarbYn 
RtUv)anepÞógpÞat; KWBIrxagmux cMeBaHkrNI X=Y=0 nigBIrxageRkay 
rIÉsmIkarTIbI nwgTTYl)anrag ³ 
N 
⎛ 
− α + β Eh u Z 
( ) 0 
12 1 
2 2 
2 
3 
1 2 
∇ ∇ + = 
− ν 
⎞ 
− ⎟ ⎟⎠ 
⎜ ⎜⎝ 
R 
N 
R 
z 
eyIgman N + N = ∇2ϕ , k N + k N 
= ∇ 2 ϕ , 
α β 1 α 2 
β k edayEp¥kelIsmIkar Kodazzi 
∂ ∂ 
B ∂ 
∂ 
k B k k A k 
A ( ) , ( ) = 
, 2 1 1 2 ∂β 
∂β 
∂α 
= 
∂α 
Edl 
⎤ 
⎡ 
⎞ 
⎛ 
A 
B 
1 , 
⎤ 
⎡ 
⎞ 
∂ 
⎛ 
k A 
A 
∂ 
+ ⎟⎠ 
∂ 
∂ 
1 . 
∂ 
+ ⎟⎠ 
∂ 
2 1 
2 
2 
⎥⎦ 
⎢⎣ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
∂β 
∂β 
⎞ 
⎛ 
⎜⎝ 
∂α 
∂ 
∂α 
∇ = 
⎥⎦ 
⎢⎣ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂β 
∂β 
⎞ 
⎜⎝⎛ 
∂α 
∂α 
∇ = 
L L 
L 
L L 
L 
k 
B 
B 
AB 
B 
A 
AB 
k 
dUecñH lkçx½NÐCab;TIbI nigsmIkarlMnwg manragdUcteTA ³ 
1 ∇2∇2ϕ −∇2u = 0, ∇2ϕ + D∇2∇2u − Z = 0. 
Eh k z k z 
Page 42
Analysis of Rectangular Shallow Shells 
∂ 
∂ 
Strain components: 
u y u 
x 
u 
u 
u 
∂ 
+ 
, , , 
y 
R 
x 
y 
1 2 u 
R 
x 
xy 
y z 
y 
x z 
∂ 
x ∂ 
∂ 
+ ε = 
∂ 
+ ε = 
∂ 
ε = 
2 2 
u ∂ 
u 
∂ 
u 
z z 
κ = − αβ 
, , . 
2 
2 
x y 
y 
x 
y 
z 
κ = − 
∂ 
x ∂ 
∂ ∂ 
κ = − 
∂ 
Internal forces: 
( ) 
( ) 
⎡ 
M D u 
⎡ 
∂ 
M D ∂ 
u 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
1 2 
⎞ 
⎛ 
u 
u 
u 
∂ 
+ 
N C u 
u 
∂ 
S C u 
⎤ 
, 
⎤ 
⎡ 
⎡ 
∂ 
∂ 
∂ 
∂ 
z z 
H D u 
( ) ( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
∂ 
∂ ∂ 
= − − ν 
⎤ 
, 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
∂ 
∂ 
+ ν 
∂ 
= − 
⎥⎦ 
⎢⎣ 
∂ 
+ ν 
∂ 
= − 
⎪ ⎪ ⎪ ⎪ 
⎭ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
∂ 
= − ν 
⎥⎦ 
⎢⎣ 
+ + ν 
∂ 
+ ν 
∂ 
= 
⎥⎦ 
⎢⎣ 
+ + ν 
∂ 
+ ν 
∂ 
= 
1 . 
, 
1 , 
2 
, 
2 
u 
u 
2 
2 
2 
2 
2 
2 
2 
2 
2 1 
x y 
x 
y 
y 
x 
x 
y 
k k u 
x 
y 
N C 
k k u 
y 
x 
z 
y 
z z 
x 
x y 
z 
y x 
y 
z 
x y 
x 
2 
2 
3 
k z 
C Eh D Eh k z 
∂ 
= 
∂ 
= 
where = 
, 
= 
1 − ν 
2 12 ( 1 
− ν 
2 ), , . 
1 
∂ 
x 
2 2 
∂ 
y 
2 
Equilibrium equations: 
k k u 
( ) 
( ) 
+ ν ∂ 
2 
2 
− ν ∂ 
⎛ 
⎞ 
2 2 
2 
⎤ 
∂ 
u 
u k k ∂ 
u 
⎞ 
X 
Y 
⎡ 
+ ∇ + + ν + 
− ν ∂ 
u 
∂ 
u 
k k ∂ 
u 
∂ 
∂ 
+ ν ∂ 
⎛ 
h k k k k u Z 
( ) ( ) ( 2 ) 0, 
12 
0, 
2 
1 
2 
1 
0, 
2 
1 
2 
1 
2 
1 2 2 
2 
1 
4 
2 
1 2 2 1 
2 2 1 
2 
1 2 
2 
2 
2 
= − ⎥⎦ 
⎢⎣ 
∂ 
+ + ν 
∂ 
+ ν 
+ = 
∂ 
ν + + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
+ 
∂ ∂ 
+ = 
∂ 
+ + ν 
∂ ∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
C 
y 
k k 
x 
C 
y 
x y y x 
C 
x 
x y 
u 
x y 
z 
x y 
z 
y 
x 
y z 
x 
∂ 
( ) 
( ) ⎪ ⎪⎭ 
⎫ 
⎪ ⎪⎬ 
x x y z 
∂ 
2 
∇ 
∂ 
κ + κ = 
∂ 
∂ 
∂ 
= − 
∇ 
∂ 
κ + κ = 
∂ 
= − 
, 
. 
2 
u 
y x y z 
y 
D 
y 
Q D 
u 
x 
D 
x 
Q D 
Page 43
Stress function ϕ = ϕ(x, y): 
2 
∂ ϕ 
= 
∂ ϕ 
= 
N x y ∂ ∂ 
, , . 
2 
2 
2 
2 
x y 
S 
y 
N 
x 
∂ ϕ 
= − 
∂ 
∂ 
Mixed differential equations of shallow shells: 
⎪⎭ 
⎪⎬ ⎫ 
2 2 2 
D ∇ ∇ u +∇ ϕ = 
Z 
z k 
Eh u 
∇ ∇ ϕ− ∇ = 
, 
0, 
2 2 2 
k z 
where 
∂ 
∂ 
, , 
4 
∂ 
+ 
∂ 
2 . 
4 
4 
2 2 
4 
4 
4 
2 
2 
2 1 
2 
2 
2 
2 
2 
2 
2 
2 
x x y y 
y 
k 
x 
k 
∂ 
+ 
x y k 
∂ 
∂ ∂ 
+ 
∂ 
∂ 
∇ = 
∂ 
+ 
∂ 
∇ = 
∂ 
∂ 
∂ 
∇ = 
L L L 
L 
L L 
L 
L L 
L 
Example 1. Mixed Method 
Equation of shallow shell: 
( ) ( ) 
. 
⎞ 
2 4 
z z x z y 
− − , 
⎟⎠ 
= −⎛ − 2 4 
, 
2 
2 
2 
2 
2 
2 2 
2 
2 
1 
2 
= 2 
−⎛ − 
1 1 
1 2 
z R x a R a z R y b R b 
− − ⎟⎠ 
⎜⎝ 
⎞ 
⎜⎝ 
= + 
1 , 1 . 
k k x y Curvatures: ≈ = ≈ = 
Assume that all rims are simple supported: 
1 R 
2 
2 
1 
k k 
R 
x x a u u M N 
0, 0, 
= = → = = = = 
= = → = = = = 
z y x x 
y y b u u M N 
0, 0. 
z x y y 
dUecH eyIgGaceRCIserIsykGnuKmnbMlas;TI nigGnuKmnsMBaFkñúg 
dUcmanrag 
Page 44
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
n y 
u C m x 
sin sin , 
n y 
D m x 
π π 
z mn 
ϕ = 
π π 
Σ Σ 
= 
Σ ∞ 
Σ 
m = 
n 
1,3 1,3 
∞ 
= 
∞ 
= 
∞ 
= 
sin sin , 
1,3 1,3 
mn 
m n 
b 
a 
b 
a 
where Cmn, Dmn = const. 
Surface distributed forces in double Fourier’s series: 
n y 
Z q m x 
sin sin , 
Σ ∞ 
Σ ∞ 
= 
1,3 = 
1,3 
π π 
= 
m n 
mn a 
b 
where 
n y 
Z m x 
4 sin sin 
∫ ∫ π π 
= 
a b 
mn dxdy 
b 
a 
ab 
q 
0 0 
2 
n y 
dxdy q 
b 
m x 
Z q q q 
4 sin sin 16 
0 0 
π 
= − 
π π 
= − → = − mn 
∫ ∫ a 
mn 
a b 
mn 
smIkarDIepr:g;Esülrbs;sMbk nwgmanragCasmIkarBICKNit ³ 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
⎤ 
= − 
⎤ 
⎥ ⎥⎦ 
EhC k n 
⎛ π 
⎡ 
DC m 
⎛ π 
⎢ ⎢⎣ 
k m 
⎛ π 
⎞ 
⎟⎠ 
n 
⎛ π 
+ ⎟⎠ 
⎜⎝ 
⎞ 
⎜⎝ 
n 
D m 
mn mn 
− 
⎤ 
⎥ ⎥⎦ 
⎡ 
⎛ π 
⎡ 
D k n 
⎢ ⎢⎣ 
⎞ 
⎟⎠ 
⎤ 
⎞ 
⎛ π 
+ ⎟⎠ 
k m 
⎛ π 
⎜⎝ 
⎞ 
+ ⎟⎠ 
⎛ π 
⎜⎝ 
= 
⎥ ⎥⎦ 
⎡ 
⎢ ⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
+ ⎟⎠⎞ 
⎜⎝ 
+ 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
⎟⎠ 
⎜⎝ 
⎞ 
⎜⎝ 
. 
0, 
2 2 2 
2 
2 
1 
2 
2 
2 
1 
2 2 
q 
mn mn mn 
b 
a 
a 
b 
a 
b 
b 
a 
edaHRsaysmIkarenH eyIgTTYl)an ³ 
D Ehl q 
, , 
2 
mn mn 
D ⎛ k + 
Eh 
⎞ 
mn mn 
D k Eh 
4 2 4 2 
⎞ 
⎟⎠ 
⎜⎝ 
= − 
⎟⎠ 
⎜⎝⎛ + 
= 
mn mn 
mn 
mn mn 
mn 
l 
D 
l 
D 
C k q 
2 
⎞ 
k m 
⎛ π 
⎞ 
l k n 
⎛ π 
k m mn mn 
, . 
2 
2 
1 
2 2 
⎟⎠ 
⎜⎝ 
+ ⎟⎠ 
⎜⎝ 
⎞ 
= ⎟⎠ 
n 
⎛ π 
+ ⎟⎠ 
⎜⎝ 
⎞ 
⎛ π 
= 
⎜⎝ 
a 
b 
b 
a 
Page 45
Example 2. Method of Displacements 
For rectangular shallow shell of simple-supported rims: 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
n y 
u A m x 
cos sin , 
n y 
u B m x 
sin cos , 
n y 
u C m x 
π π 
x mn 
m n 
y mn 
= 
π π 
= 
π π 
= 
ΣΣ 
0 1 
ΣΣ 
m n 
∞ 
1 0 
ΣΣ 
z mn 
m = 
n 
∞ 
= 
∞ 
= 
∞ 
= 
∞ 
= 
∞ 
= 
sin sin . 
1 1 
b 
a 
b 
a 
b 
a 
External distributed forces: 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
n y 
X a m x 
cos sin , 
n y 
Y b m x 
sin cos , 
n y 
Z c m x 
π π 
= 
π π 
= 
π π 
= 
ΣΣ 
0 1 
ΣΣ 
1 0 
∞ 
ΣΣ 
m = 
n 
∞ 
= 
∞ 
= 
∞ 
= 
∞ 
= 
∞ 
= 
sin sin , 
1 1 
mn 
m n 
mn 
m n 
mn 
b 
a 
b 
a 
b 
a 
where 
n y 
X m x 
4 cos sin , 
∫ ∫ 
0 0 
n y 
Y m x 
4 sin cos , 
∫ ∫ 
0 0 
n y 
Z m x 
4 sin sin . 
∫ ∫ 
0 0 
π π 
= 
π π 
= 
π π 
= 
a b 
mn 
a b 
mn 
a b 
mn 
dxdy 
b 
a 
ab 
c 
dxdy 
b 
a 
ab 
b 
dxdy 
b 
a 
ab 
a 
a b c q mn mn mn 
If 16 X = Y = 0, Z = −q, then = = 0, = − 
. π2 
mn 
dUecñH smIkarlMnwgsþaTic manragCasmIkarBICKNitdUcteTA ³ 
B k k m 
( ) 0, 
A mn 
2 
1 
n 
− ν ⎛ π 
2 
1 
1 2 
⎤ 
2 2 2 
= 
π 
− + ν 
+ ν π 
+ 
⎥ ⎥⎦ 
⎡ 
m 
⎛ π 
⎢ ⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
⎞ 
+ ⎟⎠ 
⎜⎝ 
mn mn mn C 
a 
ab 
b 
a 
B k k n 
( ) 0, 
m 
− ν ⎛ π 
2 
1 
2 
1 
2 1 
⎡ 
2 2 2 
= 
π 
− + ν 
⎤ 
⎥ ⎥⎦ 
A n 
⎛ π 
+ 
⎢ ⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
⎞ 
+ ⎟⎠ 
⎜⎝ 
+ ν π 
mn mn mn C 
b 
a 
b 
mn 
ab 
Page 46
A k k n 
a 
( ) ( ) 
mn mn 
1 2 2 1 
⎤ 
k k k k C c 
2 . 
⎛ 
4 2 2 
h m 
12 
2 
1 2 2 
2 
1 
2 
2 
2 
2 
C 
n 
b 
a 
B 
b 
k k m 
mn 
mn 
= − 
⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ 
⎣ 
⎞ 
+ ν + + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
π 
− 
− 
π 
+ + ν 
π 
+ ν 
edaHRsaysmIkarxagelI eyIgTTYl)an 
( ) ( ) 
( ) ( ) 
m 
A k k k l 
1 , 
mn mn 
n 
B k k k l 
1 , 
mn mn 
, 
1 2 
2 1 
2 
2 
2 
mn mn 
D ⎛ k + 
Eh 
4 2 
⎞ 
⎟⎠ 
⎜⎝ 
= 
− + + ν π 
= 
− + + ν π 
= 
mn mn 
mn 
mn 
mn 
mn 
mn 
mn 
mn 
l 
D 
C c k 
C 
b 
k 
C 
a 
k 
⎫ 
⎪ ⎪⎭ 
⎪ ⎪⎬ 
2 2 
π 
n 
+ 
2 2 
2 2 
π 
where, 
k m 
mn 
l = 
k m 
2 2 
π 
+ 
π 
= 
. 
, 
2 
k n 
2 1 
2 
2 
2 
b 
a 
b 
a 
mn 
Page 47
Analysis of Rectangular Shallow Shell 
(method of displacements) 
ORIGIN := 1 
a 
b 
⎛⎜⎝ 
⎞⎟⎠ 
8 
6 
⎛⎜⎝ 
⎞⎟⎠ 
:= 
R1 
R2 
⎛⎜⎝ 
⎞⎟⎠ 
20 
2000 
⎛⎜⎝ 
⎞⎟⎠ 
:= 
E 
ν 
⎛⎜⎝ 
⎞⎟⎠ 
2 10 8 
⋅ 
0.2 
⎛⎜⎝ 
⎞⎟⎠ 
:= 
h := 0.15 
n1 
n2 
⎛⎜⎝ 
⎞⎟⎠ 
3 
3 
⎛⎜⎝ 
⎞⎟⎠ 
:= q := 1.1 
External force: Z(x, y) := −q 
Equation of shallow shell: 
− R12 a2 
z1 x ( ) R1 2 
x 
a 
2 
− ⎛⎜⎝ 
⎞⎟⎠ 
2 
− R22 b2 
− − := z2 y ( ) R2 2 
y 
4 
b 
2 
− ⎛⎜⎝ 
⎞⎟⎠ 
2 
4 
:= − − 
z(x, y) := z1(x) + z2(y) z 
a 
2 
b 
2 
, ⎛⎜⎝ 
⎞⎟⎠ 
= 0.406 
Axial stiffness C1 
E ⋅ h 
1 ν 
− 2 
:= 
Flexural stiffness D 
E ⋅ h3 
⋅ ( − 2) 
12 1 ν 
:= 
Curvatures k1 
1 
R1 
:= k2 
1 
R2 
:= 
m := 1 .. max(n1, n2) Im := 2 ⋅ m − 1 I 
1 
3 
5 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
= 
m := 1 .. n1 αm 
Im ⋅ π 
a 
:= 
n := 1 .. n2 βn 
In ⋅ π 
b 
:= 
Coefficients of external forces: m := 1 .. n1 n := 1 .. n2 
cm, n 
4 
a ⋅ b 
b 
0 
y 
a 
Z(x, y) sin α x ⋅ ( m ⋅ x) sin β⋅ ( n ⋅ y) 
⌠⎮⌡ 
0 
d 
⌠⎮⌡ 
:= ⋅ d 
c 
⎛⎜⎜⎝ ⎞⎟⎟⎠ 
−1.783 
−0.594 
−0.357 
−0.594 
−0.198 
−0.119 
−0.357 
−0.119 
−0.071 
= 
Page 48
i := 0 .. 10 j := 0 .. 10 z0i+1, j+1 z a 
i 
10 
⋅ b 
j 
10 
⋅ , ⎛⎜⎝ 
⎞⎟⎠ 
:= 
Rectangular Shallow Shell 
z0 ⋅ 10 
Coefficients of system: 
A11(m, n) α( m)2 1 − ν 
β( n):= + ⋅ 2 A12(m, n) 
2 
1 + ν 
2 
αm ⋅ βn := ⋅ 
A13(m, n) −(k1 + ν ⋅ k2) αm := ⋅ A21(m, n) 
1 + ν 
2 
αm ⋅ βn := ⋅ 
A22(m, n) β( n)2 1 − ν 
α( m):= + ⋅ 2 A23(m, n) k2 −( + ν ⋅ k1) βn := ⋅ 
2 
A31(m, n) (k1 + ν ⋅ k2) αm := ⋅ A32(m, n) (k2 + ν ⋅ k1) βn := ⋅ 
Page 49
A33(m, n) 
h2 
12 
⎡⎣ 
( 2 
αm)+ ( 2 βn)⎤⎦ 
2 
⋅ + k12 + 2 ⋅ ν ⋅ k1 ⋅ k2 + k22 
⎡⎢⎣ 
⎤⎥⎦ 
:= − 
B1(m, n) 
0 
0 
cm, n − 
C1 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
:= A1(m, n) 
A11(m, n) 
A21(m, n) 
A31(m, n) 
A12(m, n) 
A22(m, n) 
A32(m, n) 
A13(m, n) 
A23(m, n) 
A33(m, n) 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Coefficients of displacement: 
m := 1 .. n1 n := 1 .. n2 
Am, n 
Bm, n 
Cm, n 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
A1(m, n)− 1 := ⋅ B1(m, n) 
A 
−3.445 10− 6 × 
−1.538 10− 7 × 
−9.168 10− 9 × 
−2.012 10− 8 × 
−5.915 10− 9 × 
−1.149 10− 9 × 
−7.331 10− 10 × 
−4.193 10− 10 × 
−1.707 10− 10 × 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
= 
B 
5.673 10− 7 × 
4.462 10− 8 × 
2.034 10− 9 × 
−5.318 10− 9 × 
9.742 10− 10 × 
3.227 10− 10 × 
−4.153 10− 10 × 
−4.655 10− 12 × 
2.811 10− 11 × 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
= 
C 
−4.264 10− 5 × 
−3.622 10− 6 × 
−3.568 10− 7 × 
−1.267 10− 6 × 
−2.197 10− 7 × 
−5.05 10− 8 × 
−1.209 10− 7 × 
−2.948 10− 8 × 
−1.057 10− 8 × 
⎛⎜⎜⎜⎜⎝ 
⎞⎟⎟⎟⎟⎠ 
= 
Displacements 
ux(x, y) 
1 
n1 
n2 
Am, n cos α⋅ ( m ⋅ x) sin βn y ⋅ ( ) ⋅ ( ) Σ= 
m n 
1 
Σ= 
:= 
uy(x, y) 
Bm, n sin α( m ⋅ x) cos βn y ⋅ ( ) ⋅ ( ) Σ=Σ= 
1 
n1 
n2 
m n 
1 
:= 
uz(x, y) 
1 
n1 
n2 
Cm, n sin α⋅ ( m ⋅ x) sin βn y ⋅ ( ) ⋅ ( ) Σ= 
m n 
1 
Σ= 
:= 
Page 50
Internal forces: 
Nx(x, y) C1 
1 
n1 
n2 
m n 
1 
(k1 + ν ⋅ k2) ⋅ Cm, − α⋅ Am, − ν ⋅ β⋅ Bm, ⋅ n m n n n sin ( α⋅ m x) ⋅ sin ( β⋅ n y ⎡⎣ 
⎡⎣ 
) ⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
Ny(x, y) C1 
1 
n1 
n2 
m n 
1 
(k2 + ν ⋅ k1) ⋅ Cm, − ⋅ n ν α⋅ m Am, − β⋅ Bm, ⋅ sin ( α⋅ n n n m x) ⋅ sin ( β⋅ n y ⎡⎣ 
⎡⎣ 
) ⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
S(x, y) 
1 − ν 
2 
⋅ C1 
1 
n1 
n2 
m n 
1 
αm Am, n ⋅ βn Bm, n ( + ⋅ ) cos α⋅ ( m ⋅ x) cos βn y ⋅ ( ) ⋅ ⎡⎣ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
Mx(x, y) −D 
1 
n1 
n2 
m n 
1 
⎡⎣ 
Cm, ⋅ ( 2 
αm)+ 2 n ν ⋅ ( βn)⋅ sin ( α⋅ x) ⋅ sin ( β⋅ m n ⎡⎣ 
y) ⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
My(x, y) −D 
1 
n1 
n2 
m n 
1 
⎡⎣ 
Cm, ⋅ ( 2 
βn)+ 2 n ν ⋅ ( αm)⋅ sin ( α⋅ x) ⋅ sin ( β⋅ m n ⎡⎣ 
y) ⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
H(x, y) (1 − ν) ⋅ D 
1 
n1 
n2 
Cm, n αm ⋅ βn ⋅ cos α⋅ ( m ⋅ x) cos βn y ⋅ ( ) ⋅ ( ) Σ= 
m n 
1 
Σ= 
:= ⋅ 
Qx(x, y) D 
1 
n1 
n2 
m n 
1 
⎡⎣ 
Cm, ⋅ α⋅ ( 2 
αm)+ n m ( βn)2 ⋅ cos ( α⋅ x) ⋅ m sin ( β⋅ n y) ⎡⎣ 
⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
Qy(x, y) D 
1 
n1 
n2 
m n 
1 
⎡⎣ 
Cm, ⋅ β⋅ ( 2 
αm)+ n n ( βn)2 ⋅ sin ( α⋅ x) ⋅ m cos ( β⋅ n y) ⎡⎣ 
⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
Rx(y) D 
1 
n1 
n2 
m n 
1 
⎤⎦⋅ sin β⋅ ( n ⋅ y) ⎡⎣ 
Cm, n αm ⋅ α( m)2 (2 − ν) β( n)2 ⋅ + ⎡⎣ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
Ry(x) D 
1 
n1 
n2 
m n 
1 
Cm, ⋅ ⋅ n βn ⎡⎣ 
( 2 βn)+ (2 − ν) ⋅ ( m)2 α⋅ sin ( α⋅ m x) ⎡⎣ 
⎤⎦ 
⎤⎦ 
Σ= 
Σ= 
:= ⋅ 
R0 2 ⋅ (1 − ν) ⋅ D 
1 
n1 
n2 
Cm, n αm ⋅ βn ⋅ ( ) Σ= 
m n 
1 
Σ= 
:= ⋅ 
Page 51
At the section y 
b 
2 
:= 
x := 0, 0.01 ⋅ a .. a 
0 2 4 6 8 
0 
− 1 10− 5 × 
− 2 10− 5 × 
− 3 10− 5 × 
− 4 10− 5 × 
Deflection uz at section y=b/2 
uz(x, y) 
x 
0 2 4 6 8 
0 
− 10 
− 20 
− 30 
Normal force diagrams at y=b/2 
Nx(x, y) 
Ny(x, y) 
x 
0 2 4 6 8 
0 
− 0.2 
− 0.4 
− 0.6 
Bending moment diagrams at y=b/2 
− Mx(x, y) 
− My(x, y) 
x 
0 2 4 6 8 
1 
0.5 
0 
− 0.5 
− 1 
Shearing force diagrams at y=b/2 
Qx(x, y) 
Qy(x, y) 
x 
Page 52
At the section x 
a 
2 
:= 
y := 0, 0.01 ⋅ b .. b 
0 2 4 6 
0 
− 1 10− 5 × 
− 2 10− 5 × 
− 3 10− 5 × 
− 4 10− 5 × 
Deflection uz at section x=a/2 
uz(x, y) 
y 
0 2 4 6 
0 
− 10 
− 20 
− 30 
Normal force diagrams at x=a/2 
Nx(x, y) 
Ny(x, y) 
y 
0 2 4 6 
0 
− 0.2 
− 0.4 
− 0.6 
Bending moment diagrams at x=a/2 
− Mx(x, y) 
− My(x, y) 
y 
0 2 4 6 
1 
0.5 
0 
− 0.5 
− 1 
Shearing force diagrams at x=a/2 
Qx(x, y) 
Qy(x, y) 
y 
Page 53
m := 0 .. 20 x1m+1 a 
m 
20 
:= ⋅ 
n := 0 .. 20 y1n+1 b 
n 
20 
:= ⋅ 
uz1m+1, n+1 uz x1m+1 y1n+1 := ( , ) 
Mx1m+1, n+1 Mx x1m+1 y1n+1 := ( , ) 
My1m+1, n+1 My x1m+1 y1n+1 := ( , ) 
Deflection uz 
uz1 ⋅ 105 
Page 54
Bending moment Mx 
−Mx1 
Bending moment My 
−My1 
Page 55
Shells of Revolution 
r O 
α 
dα 
α 
Nα 
r 
ds1 
dr 
Nα+d Nα 
α 
z 
dz 
C 
C1 
R2 
R1 
z 
= sin α 2 r R 
ds CC R d Ad 
= = α = α 
1 1 1 
A R 
⇒ = (α) 
1 
( 
α, β = meridian and parallel. 
r(α) – meridian equation. 
ds rd R sin 
d 
= β = α β 
2 2 
B R 
sin 
⇒ = α 
2 
dr CC cos R cos 
d 
1 1 
B r R 
= α 
∂ 
= 
∂α 
∂ 
∂α 
⇒ 
= α = α α 
cos 
1 
( 
Case of Axis-Symmetrical Shell: Y = 0 
= = = 0, = ε = κ = 0 β β αβ αβ S Q H u 
= 0 
∂ 
k L 
∂β 
k 
Equilibrium equations: 
( ) 
R N R N R Q R R X 
sin α − cos α − sin α + sin α = 
0, 
2 α 1 β 2 α 
1 2 
( ) 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
d 
R N R N d 
sin cos sin sin 0, 
2 α 1 β 2 α 
1 2 
( ) ⎪ ⎪ ⎪ 
⎭ 
R M R M R R Q 
sin α + cos α + sin α = 
0. 
d 
α 
− 
α − α = 
α 
α + α + 
α 
2 1 1 2 
α β α 
d 
R Q R R Z 
d 
d 
Strains: 
du 
1 ⎛ + 
⎞ 
, 1 ( cotg ) 
, 
z β α 
z 
α 
1 2 
⎤ 
⎡ 
u du 
u du 
d 
1 1 ⎛ − 
⎞ 
, cotg . 
1 1 1 2 
⎞ 
⎟⎠ 
⎛ − 
⎜⎝ 
α 
= κ ⎥⎦ 
⎢⎣ 
⎟⎠ 
⎜⎝ 
α 
α 
κ = 
+ α = ε ⎟⎠ 
⎜⎝ 
α 
ε = 
α α β α 
dz 
dz R R 
d R 
R 
u u 
R 
u 
d 
R 
z z 
Page 56
E.Meissner’s unknowns: 
⎞ 
duz 
1 , 
χ = − R Q 
α α = ψ ⎟⎠ 
⎛ + 
⎜⎝ 
α 
R 
u 
d 
2 
1 
ecjBIsmIkarbMErbMrYlragxagelI b¤ecjBIlkçx½NÐCab; edayeyagelIc,ab; 
Hooke eyIg)an ³ 
1 ( cotg ) 
, 
2 
du 
1 ⎛ + 
, 
N N 
N N 
α β α 
( ) 
( ) 
⎞ 
M M 
12 
1 ⎡ 
1 ⎛ 
, M M 
u du 
d 
cotg . 12 
1 2 
3 
1 1 
3 
1 
⎞ 
⎟⎠ 
⎛ 
⎜⎝ 
u du 
α 
− 
α 
= 
− ν 
− 
⎤ 
⎥⎦ 
⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
α 
− 
α 
= 
− ν 
− 
⎟⎠ 
⎜⎝ 
α 
= 
− ν 
= + α = ε 
− ν 
α 
β α 
α 
α β 
α β 
β α 
d 
Eh R R 
d 
d R 
Eh R 
u 
d 
Eh R 
u u 
Eh R 
z 
z 
z 
z 
ecjBIsmIkarBIrmun eyIgTTYl)an ³ 
[( R R ) N ( R R ) N 
] α α β 
du 
α − α = + ν − + ν 
α 
Eh 
u 
d 
1 2 2 1 
cotg 1 
eFVIDIepr:g;EsülelIsmIkarTImYy eyIgnwgman ³ 
⎤ 
R 
u u d 
⎡ − ν 
α 
( ) ( ) 
cotg , 
⎤ 
α β α 
R 
d 
⎡ − ν 
α 
( ) . 
u du 
sin 
cotg 
2 
2 
2 
⎥⎦ 
⎢⎣ 
= 
α 
+ 
α 
α − 
d 
du 
α 
⎥⎦ 
⎢⎣ 
+ α = 
α 
β α 
α α 
N N 
Eh 
d 
d 
d 
N N 
Eh 
d 
d 
z 
z 
ecjBIsmIkarBIrxagelIenH eyIgTTYl)an ³ 
1 
R 
R R N R R N d 
u duz 
cotg [( ) ( ) ] ( ) . 2 
1 2 2 1 
⎤ 
⎥⎦ 
⎡ − ν 
α 
⎢⎣ 
+ ν − + ν − 
α 
= 
= χ = 
α 
− 
α β β α 
α 
N N 
Eh 
d 
Eh 
R 
d 
Page 57
müa:geTot eyIgGacsresr)anfa 
d 
R 
cotg 0 
, 1 , 
α α β β 
d 
R 
1 χ 
, cotg , 
α β 
d R 
1 2 
0 
1 
⎞ 
⎛ 
⎞ 
ψ 
d 
d 
R 
1 χ 
cotg , cotg 1 , 
1 2 2 1 
2 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
χ 
α 
χ + ν 
α 
− = ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
χ 
α 
+ ν 
α 
= − 
χ 
α 
κ = 
α 
κ = 
+ 
α 
ψ + = − 
α 
= − 
α β 
d 
R R 
M D 
d R 
M D 
N 
d 
N N 
R 
N 
Edl 0 , 0 α β N N CakMlaMgEkg tamRTwsþIKμanm:Um:g; (zero moment 
theory of shells) Ed;lmanragdUcteTA ³ 
⎤ 
sin ( cos sin ) , 
= ∫ α 
1 
α C R R Z X d 
sin 
⎡ 
2 1 2 
1 
2 
0 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
+ α α − α α 
α 
α 
R 
N 
⎞ 
. 
1 
N R Z N 
2 
0 
⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
= − α 
β R 
bnÞab;BICMnYstMélkMlaMgEkg cUleTAkñúgsmIkarlMnwgBIrdMbUg eyIgeXIjfa 
vaRtUv)anepÞógpÞat; . rIÉsmIkarTIbI rYmCamYynwglkçx½NÐCab; begáIt)anCa 
cotg 3 
R 
2 
R 
2 
⎤ 
⎤ 
⎡ 
⎞ 
⎛ 
α 
χ 
dh 
R 
R 
dh 
d 
R 
d 
3 cotg cotg , 
cotg 
R 
2 
R 
1 
R 
2 
1 
⎤ 
χ 
d 
ψ 
⎤ 
⎡ 
⎞ 
⎛ 
α 
ψ 
dh 
dh 
d 
cotg cotg ( ), 
1 
2 
d 
R 
d 
R 
R 
1 
2 
1 
2 
1 
2 
2 
2 
⎡ 
2 
1 
2 1 
2 
1 
2 
1 
1 
2 
2 
1 
α Φ + χ = ψ ⎥⎦ 
⎡ 
⎢⎣ 
α − ν 
α 
ν 
− α − 
− 
α 
⎥⎦ 
⎢⎣ 
α 
− α + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
α 
ψ − = χ ⎥⎦ 
⎢⎣ 
+ α 
α 
ν α 
− ν − 
− 
α 
⎥⎦ 
⎢⎣ 
α 
+ α + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
α 
EhR 
d 
R h 
d 
d 
R h 
R 
R 
d 
d 
R 
D 
R 
d 
h 
d 
d 
R h 
R 
R 
d 
d 
R 
where 
( ) h d 
R 
( ) cotg [( ) ( ) 0 ]. 
Φ α = N N R R N R R N 
2 1 
0 
1 2 
⎡ − ν 
α 
2 0 0 
⎤ 
β α α β ν + − ν + α − ⎥⎦ 
⎢⎣ 
h 
d 
Page 58
Case h=const: 
( ) ν 
ν 
χ = − 1 ψ , ( ψ ) + 
ψ = χ + 1 Φ ( α 
). 
1 1 1 
χ − 
R 
Eh 
R 
L 
R D 
L 
where 
d 
R 
R 
⎛ 
α 
d 
d 
L R 
⎤ 
⎡ 
⎞ 
1 cotg 
2 L cotg L 
2 
( L 
) (L) 
2 
2 
1 
2 
1 
1 
2 
2 
2 
1 
d R 
R 
R 
d 
d R 
R 
α 
− 
α ⎥⎦ 
⎢⎣ 
α + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
α 
= 
ecjBIsmIkarxagelI eyIgGacTaj)anfa 
( ) ( ) ( ) 
( ) ( ) ( )⎪ ⎪ 
⎫ 
⎪ ⎪ 
⎬ 
⎭ 
Φ α 
⎞ 
ν 
− ⎟ ⎟⎠ 
Eh 
⎛ 
⎜ ⎜⎝ 
− 
⎞ 
ν 
2 
ψ = ψ 
⎞ 
ν 
− ⎟ ⎟⎠ 
⎞ 
⎛ χ 
⎛ Φ 
⎜ ⎜⎝ 
ψ − 
ν 
ψ − 
Φ α 
− χ ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
− 
ν 
χ = 
ν 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
χ − ν 
, 
, 
2 
1 
2 
2 
1 
1 1 1 
1 
2 
1 
1 1 
Eh 
D R 
R 
L 
R R R 
LL L 
D R D 
R 
L 
R R 
LL L 
ebI]bmafa 
L ( ) 
, 1 
ϕ 
ϕ χ = − 
ν 
ψ = ϕ − 
R D 
1 
enaHsmIkarTI1 nwgepÞógpÞat; ehIysmIkarTI2 nwgTTYl)anragCa 
( ) ⎞ 
( ) ⎛ ν 
⎞ 
( ) 
ν 
+ ⎟ ⎟⎠ 
⎛ ϕ 
LL L Φ α 
1 
2 
2 
1 
L Eh 
R R 
= ϕ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
ϕ + − 
1 1 D R R 
⎜ ⎜⎝ 
ϕ − ν 
For spherical, toroidal, conical, cylindrical shells: R1=const. So, 
( ) ( ) 
LL Φ α 
1 
2 
R 
ϕ + μ ϕ = 
where 
( ) 2 2 
( ) μ = − 1 12 1 b 
, 
12 1 1 
. 
2 
1 
2 
Eh = 
2 
1 
2 
2 
1 
2 
R 
h 
R 
D R R 
− ν 
≈ 
ν 
− ν 
b R 
2 
2 
1 
2 
2 
h 
= 
Page 59
smIkarcugeRkayenH Gacsresr)aneTACa 
[ ( ) ][ ( ) ] ( ), 
1 R 
L i L i 
Φ α 
L + μ ϕ − μ = 
b¤k¾ [ ( ) ] [ ( ) ] ( ), 
1 R 
L L i i L i 
Φ α 
ϕ + μ − μ ϕ + μ = 
dMeNaHRsayrYmrbs;smIkarTaMgenH GacTTYl)anCaragkMpøic . 
krNIEs‘Vr R1=R2=R smIkaredImrbs;smIkarDIepr:g;EsülxagelI manragCa 
( ∇ 2 
+ μ ) ϕ = 0, ( ∇ + μ ) ϕ = 
0, 1 2 2 
22 
1 1 
where 
RL d 
d 
μ = 1 + bi = ζ ( ζ + 1), μ = 1 − bi = ζ ( ζ + 
1), 1 1 1 2 2 2 ∇ = − = L L L 
( )( ) , 
1 cotg 2 2 
sin 
2 
2 
1 L L 
+ α 
− 
α 
α 
α 
d 
d 
dMeNaHRsayBiessrbs;smIkarDIepr:g;EsülxagelI Gacrk)anecjBIsmIkar 
( ) ( ). 
L i i Φ α 
b 
ϕ + μϕ = 
smIkaredImk¾Gacsresr)anCarag 
⎫ 
⎤ 
d 
cotg 1 1 
( ) 
( ) ⎪ ⎪ 
⎪ ⎪ 
⎬ 
⎭ 
⎤ 
= ϕ ⎥⎦ 
d 
cotg ⎡ 
1 1 
⎢⎣ 
α 
ϕ 
ϕ 
+ ζ ζ + − 
α 
+ α 
ϕ 
1 
ϕ 
α 
= ϕ ⎥⎦ 
⎢⎣⎡ 
α 
+ ζ ζ + − 
α 
+ α 
α 
0. 
sin 
0, 
sin 
2 2 2 2 
2 
2 
2 
2 
1 1 2 1 
1 
2 
2 
d 
d 
d 
d 
d 
d 
smIkarDIepr:g;EsülxagelIenH GacGaMgetRkal)an edayeRbIGnuKmn_ 
Legendre . 
Page 60
Example. Spherical Cupola 
, const 1 2 R = R = R h = 
Equations: 
⎫ 
L R 
( ) 
( ) ( )⎪⎭ 
⎪⎬ 
χ − νχ = − ψ 
1 
L EhR 
ψ + νψ = χ +Φ α 
, 
, 
1 
D 
d 
L RL d 
L L 
( ) ( ) ( ) 
( ) (1 ) . 
cotg cotg , 
= = L 
R dZ 
2 2 
2 
2 
2 
1 
R X 
d 
d 
d 
+ + ν 
α 
Φ α = 
α − α 
α 
+ 
α 
L L 
where 
Common solutions: 
C X C X C Y C Y 
ψ = + + + 
0 1 1 2 2 3 1 4 2 
1 
, 
[ X ( C C ) X ( C C 
) 
( ) ( )] 1 1 3 2 2 4 
χ = λ + ν + λ + ν + 
0 1 3 1 2 4 2 
EhR 
Y C C Y C C 
+ − λ + ν + − λ + ν 
Legendre functions: 
, 
⎛ π 
2 8 
sin 
⎛ π 
2 8 
cos 
1 3 2 cotg 
8 
λ 
4 sin 
2 
⎤ 
⎡ 
⎞ 
⎞ 
⎞ 
⎛ 
1 ⎥ ⎥⎦ 
⎢ ⎢⎣ 
⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
− 
λ 
α − ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
− 
λ 
α ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
λ 
α 
− 
π α 
≈ 
λ 
α 
X e 
, 
⎛ π 
2 8 
sin 
1 3 2 cotg 
8 
⎛ π 
2 8 
cos 
λ 
4 sin 
2 
⎤ 
⎡ 
⎞ 
⎞ 
⎛ 
⎞ 
1 ⎥ ⎥⎦ 
⎢ ⎢⎣ 
⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
− 
λ 
α ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
λ 
α 
− + ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
− 
λ 
α 
π α 
≈ 
λ 
α 
Y e 
, 
⎛ π 
2 8 
sin 
1 3 2 cotg 
8 
⎛ π 
2 8 
cos 
λ 
sin 
2 
⎤ 
⎡ 
⎞ 
⎞ 
⎛ 
⎞ 
2 ⎥ ⎥⎦ 
⎢ ⎢⎣ 
⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
+ 
λ 
α ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
λ 
α 
+ − ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
+ 
λ 
α 
π α 
≈ 
λ 
−α 
X e 
⎤ 
. 
⎛ π 
2 8 
sin 
⎛ π 
2 8 
cos 
1 3 2 cotg 
8 
λ 
sin 
2 
⎡ 
⎞ 
⎞ 
⎞ 
⎛ 
2 ⎥ ⎥⎦ 
⎢ ⎢⎣ 
⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
+ 
λ 
α + ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
+ 
λ 
α ⎟ ⎟ 
⎠ 
⎜ ⎜ 
⎝ 
λ 
α 
+ 
π α 
≈ 
λ 
−α 
Y e 
Solution of differential equations: 
( ) ( ) 
( ) ( ) ⎭ ⎬ ⎫ 
ψ = ψ α +ψ α 
0 1 ψ (α) χ (α) 1 1 , = particular solutions 
χ = χ α + χ α 
. 
, 
0 1 
Page 61
h X 
45° 45° 
20m 
α 
z 
R 
Z 
q 
p 
R = 14.4 m , h = 
1 
cm 
E kgf 
= ⋅ 6 ν = 
Self weight: 
Support 2 
2 10 , 0.3 
2 
cm 
g = kgf 
2 0.008 
cm 
Live load: 
p = kgf 
2 0.02 
cm 
Support 1 
2 
2 
R EhR 
λ2 = 2μ2 = − ν 
D 
enARtg;kMBUlEs‘Vr α=0 GnuKmn_ X2, Y2 mantMél infinity . RbkarenHxusBI 
karBitCak;Esþg dUecñHRtUvlubbM)at;va edaydak;eGay C2 = C2 = 0 . rIÉ 
)a:ra:Em:Rtefr C1, C3 kMNt;ecjBIlkçx½NÐRBMEdn . 
Vertical load on 1m2 of cupola surface: 
q = g + p cosα 
Components of the vertical load: 
X q g p 
sin sin sin cos , 
= α = α + α α 
Z = q α = g α + p 
2 α 
cos cos cos . 
Load function: 
R dZ 
( ) ( ) 
R 1 
X 
2 2 
+ + ν 
α 
Φ α = 
= 2 ( + ν) α α + 2 
( + ν) α 
pR gR 
3 sin cos 2 sin 
d 
Page 62
dMeNaHRsayBiess eKrkCarag 
A A 
sin sin cos , 
χ = α + α α 
1 1 2 
ψ = α + α α 
B B 
sin sin cos . 
1 1 2 
bnÞab;BICMnYstMélTaMgenH cUleTAkñúgsmIkarxagedIm eKrkeXIj 
A R 
g A + ν 
R 
D 
( ) 
( ) + ν 
(3 ). 
25 
2 , 5 
+ ν 
1 
1 
, 
25 
2 , 3 
1 
1 
p 
D 
2 
2 2 
2 
1 2 
3 
2 2 
3 
1 2 
+ ν 
λ + 
+ ν = − 
λ + 
= − 
λ + 
+ ν = − 
λ + 
= − 
B gR B pR 
dMeNaHRsaysrubrbs;smIkarDIepr:g;Esül Gacsresr)anfa 
( ) 
⎫ 
⎪⎬ 
C X C Y 
ψ = + +ψ α 
, 
1 1 3 1 1 
1 . 
[ X ( ⎪⎭ 
C C ) Y ( C C 
) ] ( )χ = λ + ν + − λ + ν + χ α 
1 3 1 1 1 3 1 
EhR 
)a:ra:Em:Rtefr C1, C3 kMNt;ecjBIlkçx½NÐRBMEdn α=45° dUcteTA 
X d 
cotg 0 
⎛ + νχ α 
α 
M D 
45 = ⎟⎠ 
45 
⎞ 
⎜⎝ 
χ 
= − 
α= ° 
α= ° R 
d 
C C dY 
C C dX 
1 ( ) ( ) 
cotg 
+ ν 
d 
C C X C C Y R 
[( ) ( ) ]} 
( ) + ν 
(cos 2 cos ) 0 
25 
g R 
1 cos 3 
1 
2 
45 
2 
2 
3 
2 
3 
3 1 1 1 3 1 
1 
1 3 
1 
3 1 
α + ν α = 
λ + 
⋅ + ν α − 
⋅ 
λ + 
+ λ + ν + − λ + ν − 
+ 
⎩ ⎨ ⎧ 
+ ν α 
α 
+ − λ + ν 
α 
λ + ν 
α= ° 
p 
D 
D 
d 
EhR 
Y Case of simple support 
α α= ° z α= ° β α= ° u u 
0 0 45 45 45 = = → ε = 
Page 63
( ) ( ) ( ) 
1 0 
ZR F 
⎡ α + +ψ + 
cotg 
sin 
1 1 
45 
d 
ψ 
C dY 
1 1 
3 
1 
C dX 
R 
1 
2 1 1 3 1 1 
⎤ 
= ⎥⎦ 
⎞ 
⎟⎠ 
⎛ 
⎜⎝ 
α 
+ 
α 
+ 
α 
+ 
⎢⎣ 
ν 
+ 
α 
α 
→ − + ν 
α= ° d 
d 
d 
C X C Y 
R R 
Eh 
enARtg;enH 
= α α − α α = α ∫ α 
( ) ( ) 
F R sin Z cos X sin 
d 
= − 2 2 α − 2 
( − α) 
sin 1 cos 
1 
2 
0 
2 
pR gR 
Z Case of roller support 
sin cos 0, 0 45 45 α − α = = α α α= ° α α= ° Q N u 
Internal forces: 
⎞ 
⎛ 
d 
ν χ 
⎞ 
χ 
d 
R 
1 cotg ; cotg ; 
⎛ 
α β 
( ) N ZR F 
( ) 1 ; 
sin 
cotg ; 
; 
R 
N F 
sin 
1 
2 
1 
2 
2 
2 
ψ 
= 
2 
2 
1 2 2 1 
ψ 
α 
− 
α 
α 
α = − 
ψ 
− 
α 
α 
= 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
α 
χ + 
α 
− = ⎟ ⎟⎠ 
⎜ ⎜⎝ 
χ 
ν α 
+ 
α 
= − 
α 
α β 
d 
d 
R R 
R R 
Q 
d 
R R 
M D 
d R 
M D 
Strains: 
( ) 
⎤ 
⎞ 
⎛ 
ψ 
⎞ 
⎛ ν 
α 
d 
R 
( ) 1 1 cotg . 
sin 
1 
1 cotg 1 ; 
sin 
1 
2 
2 
⎞ 
⎛ ν 
2 1 2 
α 
2 
2 
2 
2 1 2 
2 
⎤ 
⎥⎦ 
⎡ 
⎢⎣ 
α 
νψ 
ψ 
+ + 
α 
− ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
α 
α 
ε = − 
⎥⎦ 
⎢⎣ ⎡ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
α 
α − ν − 
ψ 
− ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
α 
ε = 
β 
R 
ZR 
d 
d 
R R R 
F 
Eh 
d 
ZR 
R R R 
F 
Eh 
Page 64
Displacements: 
edaHRsaysmIkar 
du 
1 ⎞ 
, 1 ( u cotg u 
), 
z z 1 2 
ε = β α 
R 
u 
⎛ + 
d 
R 
+ α = ε ⎟⎠ 
⎜⎝ 
α 
α 
α 
eyIgTTYl)an 
( ) 
α 
⎤ 
( ) (1 ) . 
sin 
R F 
sin 1 1 sin 2 
α ∫ 
d 
cotg 1 cotg 
, 
⎡ − 
sin sin 
RZ F 
⎡ + α 
2 
1 
2 2 
2 
⎤ 
⎥⎦ 
⎢⎣ 
α 
α 
⎞ 
R 
− + ⎟⎠ 
⎛ − νψ α 
α 
⎜⎝ 
ψ 
= − α − 
α 
⎥⎦ 
⎢⎣ 
α 
α 
α 
+ ν 
ψ + 
+ ν 
= α + 
α 
α 
α 
R 
Eh 
d 
Eh 
u u 
RZ d 
R 
Eh Eh 
u A 
z 
Edl A2 Ca)a:ra:Em:Rtefr nigkMNt;)anecjBIlkçx½NÐRBMEdn . 
Page 65
Zero Moment (Membrane) 
Theory of Shells 
= = = 0, = = 0 α β α β M M H Q Q 
Equilibrium equations: 
1 ∂ 
0, 
∂ 
( ) ( ) 
( ) ( ) 
⎫ 
⎪⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
∂ 
α β 
β α 
N 
+ − = 
+ = 
∂ 
∂α 
+ 
∂β 
− 
∂ 
∂ 
∂β 
+ = 
∂β 
+ 
∂α 
− 
∂α 
α β 
0. 
2 
1 0, 
1 2 
2 
Z 
R 
N 
R 
B S ABY 
B 
AN N A 
A S ABX 
A 
BN N B 
The problem is statically determinate. 
eKaledAénkar 
KNnaKμanm:Um:g; 
KWkMNt;rksPaB 
sMBaFkñúgem 
(principal 
stress state) 
mYyEdledIr 
tYnaTIsMxan; . 
lkçx½NÐ zero-moment stress-strain state: 
X Shell RtUvEtmankMras;efr b¤ERbRbYledaysnSwm² ehIydUcKñaEdr cMeBaH 
kaMkMeNag minRtUvERbRbYlya:gxøaMgenaHeT . 
Y kMlaMgeRkA RtUvEtCab;Kña nigERbRbYledaysnSwm². Zero-moment shell 
minGaceFVIkarnwgkMlaMgeTal)aneT . 
Z Shell RtUvmanTMrya:gNa Edlpþl;lTæPaBeFVIclnatamTisEkg edayesrI 
KWenAelIEKmrbs; shelltamTisEkg minRtUvTb;sáat;mMurgVil nigbMlas;TIeT . 
edIm,IeGayeBjelj TMrkñúgbøg;b:H k¾minRtUvnaMeGaymankarBt;esaHeLIy . 
[ kMlaMg Edlsgát;elIEKmrbs; shell RtUvsßitenAkñúgbøg;b:Hnwg shell enaH. 
Page 66
Analysis of Shells of Revolution 
r O 
α 
dα 
α 
Nα 
r 
ds1 
dr 
Nα+d Nα 
α 
z 
dz 
C 
C1 
R2 
R1 
z 
α, β = meridian and parallel. 
( ) 
sin , 
, 
A R 
= α 
B r R 
= = α 
cos . 
B R 
1 
2 
1 
= α 
∂ 
∂α 
Equilibrium equations: 
( ) 
sin cos sin 0, 
( ) 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
∂ 
β 
1 
+ − = 
∂ 
sin α + sin α = 
0, 
∂α 
α 
+ 
∂ 
∂β 
+ α = 
∂β 
α − α + 
∂ 
∂α 
α β 
α β 
0. 
sin 
2 1 1 2 
1 2 
2 2 
2 
2 
1 
2 1 1 1 2 
R N R N R R Z 
R S R R Y 
R 
N 
R 
R N N R R S R R X 
∂ 
k 
Y L 
Case of axis symmetrical problem: 0, = 0 
= k 
∂β 
= = = 0 β H Q S 
( ) 
⎫ 
⎪⎭ 
⎪⎬ 
R N N R R R X 
sin α − cos α + sin α = 
0, 
2 1 1 2 
d 
R N R N R R Z 
+ − = 
α 
α β 
α β 
0. 
2 1 1 2 
d 
Page 67
⎞ 
⎛ 
ecjBIsmIkarTI 2 eyIgTTYl)an ³ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
= − α 
β 
2 R 
1 
N R Z N 
CMnYscUleTAkñúgsmIkarTI 1 eyIgnwgman ³ 
d 
( sin ) ( sin cos ) 0 1 α + α − α = 
α α rN rR X Z 
d 
ecjBIenH 
rN sin α = rR ( Z cos α − X sin α ) d α + C 1 
∫ α 
α 
α 
1 
( ) 
⎤ 
⎥ ⎥⎦ 
⎡ 
= ∫ α 
⎢ ⎢⎣ 
+ α α − α α 
α 
α 
α 
1 
sin cos sin 
1 
sin 
2 1 2 
2 
C R R Z X d 
R 
N 
Edl C Ca)a:ra:Em:Rt nigrk)anecjBIlkçx½NÐRBMEdn . 
RbsinebI smIkaremrIdüanRtUv)aneKeGayCarag r = r(z) enaHsmIkarrbs; 
épÞrgVil KitenAkUGredaenEkg Gacsresr)anfa 
x = r sinβ, y = r cosβ, z = z 
r dr 
dUecñH eyIg)an ′ = = cotgα, 
dz 
( ) 
( ) ⎪⎭ 
⎪⎬ ⎫ 
= + ′ 
A r 
= 
1 2 , 
. 
2 1 
B r z 
⎪⎭ 
⎪⎬ ⎫ 
= = + ′ 
CC ds dz r 
1 , 
. 
= = β 
2 1 
2 
1 1 
( 
ds CD rd 
( 
Curvatures: 
, 1 
k r 
′′ 
( ) . 
1 2 1 
2 
2 
( 1 
2 ) 1 
2 
1 
r r 
k 
r 
+ ′ 
= 
+ ′ 
= − 
Page 68
Equilibrium equations: 
( rN ) 
∂ − r ′ N + + 
r ′ S r r X 
z 
1 1 1 0, 
( ) 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
∂ 
α β 
β 
2 2 2 
+ − + ′ = 
′′ 
rr 
+ ′ 
∂ 
− 
+ + ′ = 
∂ 
+ 
∂ 
∂β 
+ ′ 
+ + ′ = 
∂β 
∂ 
α β 
1 0. 
1 
1 1 0, 
2 
2 
2 2 
N N r r Z 
r 
r S r r Y 
r z 
N 
r 
For homogeneous problem: X = Y = Z = 0 
eKtag stress function: 
⎞ 
⎟⎠ 
⎛ ϕ 
∂ 
N A , N r 
, 2 
= α β z r 
⎜⎝ 
∂ 
= − 
′′ ∂ϕ 
∂β 
= 
∂ϕ 
∂β 
S 
rA 
r 
enAkñúgkrNIenH smIkarTI 1 nigTI 3 epÞógpÞat; rIÉsmIkarTTYl)anrag ³ 
⎞ 
∂ ϕ 
0 2 
2 
∂ ϕ 
2 
2 
= ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
∂β 
ϕ+ 
′′ 
− 
∂ 
r 
r 
z 
For axis symmetrical problem: Y = 0 
( ) 
⎫ 
⎪ ⎪⎭ 
⎪ ⎪⎬ 
rN r N r r X 
α β 
+ − + ′ = 
′′ 
rr 
+ ′ 
d 
− 
− ′ + + ′ = 
α β 
1 0. 
1 
1 0, 
2 
2 
2 
N N r r Z 
r 
dz 
Equilibrium 
equations 
( ) 
α ∫ 
1 . 
N r 
N rr 
1 
⎤ 
⎡ 
1 ; 
2 
2 
2 
0 
N r r Z 
′′ 
r 
C r r Z X dz 
r 
z 
z 
+ + ′ 
+ ′ 
= 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
+ ′ − 
+ ′ 
= 
β α 
Solution 
Page 69
z 
q Q q z 
α0 r0 
R2 
R1 α 
dα 
r 
k2 k1 X 
Nα 
Nαsinα 
Z 
rUbmnþ Nα Gacsresr)anfa³ 
N sin α ⋅ R sin α ⋅ 2 π = 2 π R R sin α ( Z cos α − X sin α ) d α + 2 
π C ∫ α 2 1 2 
α 
α 
0 
Integration 
Technique 
( ) q r d R r X Z N r ⋅ π + α ⋅ π ⋅ α − α = α ⋅ π ∫ α 
α 1 0 2 sin cos sin 2 2 
or 
α 
0 
tYeqVgénsmPaBxagelI KWCacMeNalelIG½kS z énpÁÜbrbs;kMlaMgEkg tamrgVg; 
EdlmankaM r . edayehtufa 2πrR1dα KWCaépÞénvgStUcminkMNt;mYy 
EdlRtUvnwgmMu dα/ rIÉ Zcosα nig Xsinα KWCacMeNalelIG½kS z énkMlaMgeRkA 
dUecñH 
( Z cos α − X sin α ) ⋅ 2 
π r ⋅ R d α = Q 1 z ∫ α 
α0 
Edl Qz CacMeNalénpÁÜbrbs;kMlaMgeRkA EdleFVIGMeBIelIépÞrbs; shell enA 
EpñkxagelIénmuxkat; α . 
)a:ra:Em:Rtefr C GacsresrCarag C=r0q/ Edl q CaGaMgtg;suIeténkMlaMg 
tamTisG½kS z Edlsgát;tamrgVg;kaM r0 . sMrab;krNIGvtþmankMlaMgenH KW 
C=0 ehIy 
Page 70
. 
N Qz 
= α r 
2π sin α 
kñúgkarkMNt; Qz eKGaceRbIR)as;RTwsþIbT dUcxageRkam . 
RTwsþIbT 1> RbsinebI elIépÞNamYy eFVIGMeBIsMBaFBRgayesμI p enaHminGaRs½y 
nwgrUbragépÞ cMeNalénkMlaMgpÁÜbrbs;sMBaFelIG½kSNamYy esμIplKuNsMBaF p 
enaH nwgRkLaépÞrbs;cMeNalénépÞelIbøg; EdlEkgnwgG½kSenaH . 
RTwsþIbT 2> RbsinebI elIépÞNamYy eFVIGMeBIsMBaFGgÁFaturav enaHkMlaMgpÁMú 
bBaÄrrbs;sMBaFenaH esμITMgn;GgÁFaturavkñúgmaD EdlenAelIépÞ . 
Example 1. 
R 
α 
p 
dα 
α α 
p 
R 
Nq α 
Nq α 
q 
Spherical cupola: 
Thickness h, 
Self weight q, 
Vertical live load p, 
Simple support at α = 90° 
Page 71
smIkarlMnwgsMrab;EpñkxagelIénBuH α manragdUcteTA ³ 
q 
z 
rNq Q 
− 2π sin α − = 0, α 
where r = Rsin α, 
Q q 
z = resultant of self weight, 
α α 
= ∫ 2 π α = 2 π ∫ sin α α = 2 π 2 ( 1 − cos 
α) 
Qq q rRd qR d qR 
z 
0 
2 
0 
So, 
. 
1 cos 
= − 
− α 
N Q 
2 sin sin 2 α 
1 + cos 
α 
= − 
π α 
= − α 
qR qR 
r 
q 
q z 
eday Z = −q α R = R = R 1 2 cos , eyIgnwg)an 
⎛ 
[ − α( + α)] 
⎞ 
N R Z N 
+ α 
⎛ 
= 
⎞ 
⎟⎠ 
⎜⎝ 
+ α 
+ α − = ⎟ ⎟⎠ 
⎜ ⎜⎝ 
= − 
β 
α 
β 
1 cos 1 cos 
1 cos 
1 cos 
cos 
1 
2 
N qR 
R q q 
R 
q 
q 
q 
Analysis on vertical live load 
eyagtamRTwsþIbT 1 eyIgGacsresrsmIkarlMnwg)andUcteTA 
− 2π sin α − π 2 = 0, α rN p p r 
where r = Rsin α. 
N p = − pR α 
. 
2 
eday Z = − p cosα⋅cosα eyIgnwgrkeXIj 
⎞ 
⎟⎠ 
= ⎛− α + ⎟ ⎟⎠ 
⎜⎝ 
⎞ 
⎛ 
N R Z N 
⎜ ⎜⎝ 
= − α 
cos2 
β 2 
1 
2 
R p p 
R 
p 
p 
N p pR 
= − α β cos 2 
2 
Page 72
Nq α Diagram Nq β Diagram 
N p α Diagram N p β Diagram 
Cylindrical and Conical Shells 
C 
x 
y 
z 
α 
β 
x 
y 
z 
C 
α β 
θ 
⎫ 
⎪⎬ 
= α 
( ) 
( ) ⎪⎭ 
x 
y y 
= β 
= β 
, 
. 
, 
z z 
( ). 
= α θ 
cos , 
= α θ β 
sin sin , 
sin cos , 
θ = θ β 
⎫ 
⎪⎭ 
⎪⎬ 
= α θ β 
x 
y 
z 
Page 73
Cylindrical and conical shells are shells with zero Gaussian 
curvatures: 
1 1 0 
1 2 
1 2 = = = 
R R 
k k k 
For cylindrical shells: 
A B y z 
⎞ 
⎛ 
∂β 
⎞ 
⎛ 
∂β 
1, ; 
[( ′ ) 2 + ( 3 
′ 
) 2 ] 2 
, . 
R R y z 
1 2 
2 2 
′ ′′ − ′ ′′ 
y z z y 
= ∞ = 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
= = 
For conical shells: 
⎞ 
⎛ 
∂β 
A B 
1, sin ; 
[ ( ) ] 
2 
2 3 2 
α θ + θ′ 
( ) . 
, sin 
2 2 
cos sin 2 cos sin 
1 2 
2 
2 
θ θ + θ′ θ − θ′′ θ 
= ∞ = − 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂θ 
= = α θ + 
R R 
edayyk A=1 nig R1=∞ smIkarlMnwgsþaTic TTYl)anragdUcteTA ³ 
( ) 
∂ 
1 0, 
( ) 
⎫ 
⎪⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
− = 
∂ 
+ 
+ = 
∂ 
∂α 
+ 
∂ 
∂ 
∂β 
+ = 
∂β 
∂α 
− 
∂α 
β 
β 
α β 
0. 
0, 
N 
2 
2 
Z 
R 
B S BY 
B 
N 
BN N B S BX 
edaHRsaysmIkarenH eyIgTTYl)an ³ 
; 2 N = R Z = RZ β 
( ) ( ) ∫ α 
1 1 B RZ B Y d 
α 
⎤ 
α ⎥⎦ 
⎡ 
⎢⎣ 
+ 
∂ 
∂β 
= β − 
0 
2 
2 1 2 
B 
f 
B 
S 
Page 74
( ) ( ) 
1 ⎤ 
1 
⎡ β 
∂ 
∫ 1 2 
∫ 
0 0 
α 
⎡ 
∂ 
∂ 
1 ∂ 
1 
∫ ∫ ( ) 
α 
α 
α 
α 
α 
α 
α 
α 
α 
⎛ − 
∂α 
⎪⎭ 
⎪⎬ ⎫ 
⎪⎩ 
⎪⎨ ⎧ 
⎤ 
α ⎥⎦ 
⎢⎣ 
+ 
∂β 
∂β 
∂β 
+ 
⎞ 
+ α ⎟⎠ 
⎜⎝ 
∂ 
+ 
β 
+ α ⎥⎦ 
⎢⎣ 
∂β 
= − 
0 0 
2 
2 
B RZ B Y d d 
B B 
B RZ BX d 
B B 
d f 
B 
f 
B 
N 
enARtg;enH f1(β), f2(β) CaGnuKmnGaRs½ynwgGefr β . 
Example 2. Horizontal Pipeline of Circular Section 
α (x) 
y y 
Y R 
β 
Z O 
z 
l 
q 
Rims are rigidly in 
plane and free out 
plane. 
For cylindrical shell: 
R = R, B = R 2 
Analysis on Self Weight 
Components of self weight: X = 0, Y = qsinβ, Z = q cosβ 
Normal forces: = = − β β N RZ qRcos 
Page 75
( ) ( ) 
( β 
) − α β 
S f Tangential 
force 
= 
⎤ 
⎥⎦ 
⎡ 
⎢⎣ 
α α 
− β α + β α 
∂ 
∂β 
− 
β 
2 
R 
= ∫ ∫ 
2 sin 
cos sin 
2 
f 
1 
0 0 
2 
2 
1 
q 
R 
q d q d 
R 
R 
Normal 
force 
[ ( )] ( ) ∂ 
( ) 
[ ( )] ( ) 
1 1 2 sin 
R 
− = ∫ α 
q 
R 
f f 
R 
q d 
R R 
f f 
R 
N 
2 
α β 
− 
β 
β α + 
∂ 
∂ 
∂β 
= − 
− α β α 
∂β 
+ 
β 
β α + 
∂β 
α 
1 cos 
2 
2 1 
0 
2 
2 1 
Boundary conditions: 
0, 0 ( ) 0; 2 α = = → β = α N f 
, 0 ( ) 2 sin . 
1 α = l N = → f β = qR l β +C α 
)a:ra:Em:Rtefr C/R2 KWCakMlaMgkat;BRgayesμI elIEKmrbs;bMBg; . dUecñH 
RbsinebI bMBg;minrgkarrmYreT KWmann½yfa )a:ra:Em:RtefrenHesμIsUnü ³ 
0, ( ) 2 sin . 
1 C = f β = R ql β 
srubmk eyIgTTYl)an 
( ) 
cos , 
N q l 
α −α 
R 
cos , 
= 
N qR 
= − β 
β 
(2 )sin . 
α 
β 
S q l 
= − α − β 
Page 76
α β=0 N 
α=0 S 
- 
+ 
- 
ql 
ql 
ql2 4R 
+ ql 
+ 
- 
β N 
qR 
qR 
π 
2 
β= S 
Diagrams 
Analysis on Fluid Weight 
Components of 
fluid weight: 0, cos . 0 X = Y = Z = p − γR β 
dUecñH eyIgrkeXIj 
( cos ), 0 = = − γ β β N RZ R p R 
( ) 1 R ∂ 
( p R cos ) f 
( ) d sin , 
= ∫ α 
S f 
1 − γ α β 
2 
1 
0 
0 
2 
2 2 
β 
− γ β α = 
∂β 
− 
β 
R 
R 
R R 
[ ( )] ( ) ( ) 
[ ( )] ( ) β 
− = ∫ α 
1 1 sin 
γα 
+ 
β 
β α + 
∂ 
∂ 
∂β 
= − 
γ α β α 
∂ 
∂β 
+ 
β 
β α + 
∂β 
α 
cos 
2 
1 
2 
2 
3 1 
0 
2 
3 1 
R 
f f 
R 
R d 
R R 
f f 
R 
N 
p0 = fluid pressure in a plane zOx. 
Page 77
edayeRbIR)as;lkçx½NÐRBMEdn dUcbgðajxagmux eyIgGackMNt;)an ³ 
f f R γ 
β = β = l 
( ) ( ) sin . 
srubmk eyIgnwgmanlTæpl 
( ) 
( ) 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
cos , 
N l 
N R p R 
= − γ β 
⎞ 
β ⎟⎠ 
α 
= γ ⎛ −α 
⎜⎝ 
α −α β 
γ 
= − 
β 
sin . 
2 
cos , 
2 
0 
S R l 
2 
0, 
2 
2 1 β 
α β=π N 
α=0 S 
- 
+ 
γRl 
2 
+ 
γRl 
2 
+ 
- 
β N 
R(p + γR) 0 
γl2 8 
π 
2 
β= S 
Diagrams 
+ 
γRl 
2 
R(p − γR) 0 
Page 78
Example 3. Analysis of Cylindrical Tank on Wind Load 
y 
x 
α 
l 
p 
Wind 
direction 
β 
R 
Components of wind load: 
X Y 
= = 
0, 
= ( − β − β) 
0.7 0.5cos 1.2cos 2 
Z p 
where p = max. wind pressure. 
]bmafa sMBaFxül;minERbRbUltamkMBs; 
suILaMg KWminGaRs½ynwgkUGredaen x=α . 
kMlaMgxül;elIsuILaMg 
dUecñH eyIg)an 
= = (0.7 − 0.5cosβ −1.2cos 2β), β N RZ pR 
( ) ( ) ( β 
) − α( β + β) 
R RZ d f 
S f 
1 α = 
p 
∂ 
∂β 
∫ α 
β 
= − 
1 0.5sin 2.4sin 2 
2 
1 
0 
2 2 
R 
B R 
( ) 
⎤ 
∂ 
α α 
1 1 
= ∫ ∫ 
0 0 
( ) ( β 
) α 
β + 
+ 
( β + β) 
∂ 
∂ 
∂β 
= 
α 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
⎥⎦ 
⎢⎣ ⎡ 
α 
∂β 
∂β 
α 
0.5cos 4.8cos 2 
2 
1 
2 
2 
3 1 
2 
R 
p 
R 
f f 
R 
B RZ d d 
B B 
N 
ecjBIlkçx½NÐRBMEdn α = 0, = = 0 α S N eyIgkMNt;)an 
( ) ( ) 0 1 2 f β = f β = 
Page 79
srubmk eyIgnwgman 
(0.5cos 4.8cos 2 ), 
N p 
α 
= α R 
2 
2 
β + β 
= (0.7 − 0.5cosβ −1.2cos 2β), β N pR 
S = − pα(0.5sinβ + 2.4sin 2β). 
Diagrams 
l N α α= 
l S β α= N 
Page 80
Zero-Moment Spherical Cupola 
Radius R := 10 
Self weight q := 0.100 ⋅ 25.00 ⋅ 1.1 q = 2.75 
Vertical live load p := 0.50 ⋅ 1.3 p = 0.65 
Normal forces: 
Nαq(α) 
q ⋅ R 
1 + cos(α) 
:= − Nβq(α) 
q ⋅ R 
1 + cos(α) 
:= ⋅ [1 − cos(α) ⋅ (1 + cos(α))] 
Nαp(α) 
p ⋅ R 
2 
:= − Nβp(α) 
p ⋅ R 
2 
:= − ⋅ cos(2 ⋅ α) 
Equations of section: 
x(α) := R ⋅ sin(α) y(α) := R ⋅ cos(α) 
α1 π 
:= − α2 π 
2 
2 
:= 
n := 50 Δα 
α2 − α1 
n 
:= 
i := 0 .. n αi := α1 + i ⋅ Δα 
⎯→⎯ 
⎯→⎯ 
X := x(α) 
Y := 
y(α) 
Diagrams: 
Nx(α, N, scale) := x(α) + scale ⋅ N ⋅ sin(α) Ny(α, N, scale) := y(α) + scale ⋅ N ⋅ cos(α) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
Nαqx Nx(α, Nαq(α) , 0.1) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
:= Nαqy := 
Ny(α, Nαq(α) , 0.1) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
Nβqx Nx(α, Nβq(α) , 0.1) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
:= Nβqy := 
Ny(α, Nβq(α) , 0.1) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
Nαpx Nx(α, Nαp(α) , 0.5) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
:= Nαpy := 
Ny(α, Nαp(α) , 0.5) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
Nβpx Nx(α, Nβp(α) , 0.5) 
⎯⎯⎯⎯⎯⎯⎯→⎯ 
:= Nβpy := 
Ny(α, Nβp(α) , 0.5) 
Page 81
i := 0 .. n 
X1 i 〈 〉 Xi 
:= Y1 i 〈 〉 Yi 
Nαqxi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
Nαqyi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
X2 i 〈 〉 Xi 
:= Y2 i 〈 〉 Yi 
Nβqxi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
Nβqyi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
X3 i 〈 〉 Xi 
:= Y3 i 〈 〉 Yi 
Nαpxi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
Nαpyi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
X4 i 〈 〉 Xi 
:= Y4 i 〈 〉 Yi 
Nβpxi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
Nβpyi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Diagram N1q 
Diagram N2q 
Page 82
Diagram N1p 
Diagram N2p 
Page 83
Analysis of Horizontal Pipeline 
Radius: R := 10 
Length: L := 1 
Self weight: q := 1 
Components of self weight: 
X(β) := 0 Y(β) := q ⋅ sin(β) Z(β) := −q ⋅ cos(β) 
Coefficients of first quadratic form: 
A := 1 B := R 
Range: 
α0 := 0 α1 := L 
Normal forces: 
Nβ(β) := −q ⋅ R ⋅ cos(β) 
S(α, β) := −q ⋅ (2 ⋅ α − L) ⋅ sin(β) 
Nα(α, β) 
q ⋅ α ⋅ (α − L) 
:= ⋅ cos(β) 
R 
N := 50 Δα 
α1 − α0 
N 
:= 
α := α0, α0 + Δα .. α1 
0 0.2 0.4 0.6 0.8 
0.03 
0.02 
0.01 
0 
Diagram Nx 
Nα(α, π) 
Nα(α, π) 
α 
Page 84
0 0.2 0.4 0.6 0.8 
1 
0.5 
0 
− 0.5 
− 1 
Diagram S 
S α 
π 
2 
, ⎛⎜⎝ 
⎞⎟⎠ 
S α 
π 
2 
, ⎛⎜⎝ 
⎞⎟⎠ 
α 
N := 50 Δβ 
π 
N 
:= 
i := 0 .. N βi := i ⋅ Δβ 
:= Sy i 〈 〉 βi 
S1i S 0 βi := ( , ) Sx i 〈 〉 0 
S1i 
⎛⎜⎝ 
⎞⎟⎠ 
βi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
:= Ny i 〈 〉 βi 
N2i Nβ β:= ( i) Nx 〈i〉 0 
N2i 
⎛⎜⎝ 
⎞⎟⎠ 
βi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Diagram S 
3 
2 
1 
− 0.5 0 0.5 1 
β 
Sy 
S1, Sx 
Diagram N2 
3 
2 
1 
− 10 − 5 0 5 10 
β 
Ny 
N2, Nx 
Page 85
Fluid density γ := 1 
Fluid pressure p := 0.5 ⋅ γ ⋅ R 
Normal and tangential forces: 
Να(α, β) γ 
:= − ⋅ α ⋅ (L − α) ⋅ cos(β) 
2 
Nβ(β) := R ⋅ (p − γ ⋅ R ⋅ cos(β)) 
S(α, β) γ ⋅ R L 
− α 2 
⎛⎜⎝ 
⎞⎟⎠ 
:= ⋅ ⋅ sin(β) 
N := 50 Δα 
α1 − α0 
N 
:= 
α := α0, α0 + Δα .. α1 
0 0.2 0.4 0.6 0.8 
0.03 
0.02 
0.01 
0 
Diagram Nx 
Nα(α, π) 
Nα(α, π) 
α 
0 0.2 0.4 0.6 0.8 
6 
4 
2 
0 
− 2 
− 4 
− 6 
Diagram S 
S α 
π 
2 
, ⎛⎜⎝ 
⎞⎟⎠ 
S α 
π 
2 
, ⎛⎜⎝ 
⎞⎟⎠ 
α 
Page 86
N := 50 Δβ 
π 
N 
:= 
i := 0 .. N βi := i ⋅ Δβ 
:= Sy i 〈 〉 βi 
S1i S 0 π βi := ( , − ) Sx i 〈 〉 0 
S1i 
⎛⎜⎝ 
⎞⎟⎠ 
βi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
:= Ny i 〈 〉 βi 
:= ( − ) Nx i 〈 〉 0 
N2i Nβ π βi 
N2i 
⎛⎜⎝ 
⎞⎟⎠ 
βi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
3 
2 
1 
Diagram S 
− 2 0 2 4 6 
β 
Sy 
S1, Sx 
3 
2 
1 
Diagram N2 
− 50 0 50 100 150 
β 
Ny 
N2, Nx 
Page 87
Analysis of Cylindrical Tank on Wind Load 
Radius R := 1 Heigth L := 3 ⋅ R 
Wind load p := 0.50 
Z(β) := p ⋅ (0.7 − 0.5 ⋅ cos(β) − 1.2 ⋅ cos(2 ⋅ β)) 
Section: 
y(β) := R ⋅ cos(β) z(β) := R ⋅ sin(β) 
Diagram of wind load: Sz := 0.5 
Zx(β) := −(y(β) − Z(β) ⋅ cos(β) ⋅ Sz) 
Zy(β) := z(β) − Z(β) ⋅ sin(β) ⋅ Sz 
N := 50 
i := 0 .. N βi i 
2 ⋅ π 
N 
:= ⋅ 
vxi y β:= − ( i) vyi z β:= ( i) 
Z1i Zx β:= ( i) Z2i Zy β:= ( i) 
L1 i 〈 〉 vxi 
Z1i 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
⎞⎟⎟⎠:= 
:= L2 i 〈 〉 vyi 
Z2i 
⎛⎜⎜⎝ 
vy 
Z2 
L2 
vx, Z1, L1 
Page 88
Normal and tangential forces: 
Nα(α, β) 
⋅ 2 
2 ⋅ R 
p α 
:= ⋅ (0.5 ⋅ cos(β) + 4.8 ⋅ cos(2 ⋅ β)) 
Nβ(β) := p ⋅ R ⋅ (0.7 − 0.5 ⋅ cos(β) − 1.2 ⋅ cos(2 ⋅ β)) 
S(α, β) := −p ⋅ α ⋅ (0.5 ⋅ sin(β) + 2.4 ⋅ sin(2 ⋅ β)) 
Diagram scales: s1 
1 
25 
:= s2 
1 
2 
:= s3 
1 
20 
:= 
Nαx(α, β) := −(y(β) + Nα(α, β) ⋅ cos(β) ⋅ s1) Nαy(α, β) := z(β) + Nα(α, β) ⋅ sin(β) ⋅ s1 
Nβx(β) := −(y(β) + Nβ(β) ⋅ cos(β) ⋅ s2) Nβy(β) := z(β) + Nβ(β) ⋅ sin(β) ⋅ s2 
Sx(α, β) := −(y(β) + S(α, β) ⋅ cos(β) ⋅ s3) Sy(α, β) := z(β) + S(α, β) ⋅ sin(β) ⋅ s3 
i := 0 .. N 
N1xi Nαx L βi := ( , ) N1yi Nαy L βi := ( , ) 
L1x i 〈 〉 vxi 
:= L1y i 〈 〉 vyi 
N1xi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
N1yi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
N2xi Nβx β:= ( i) N2yi Nβy β:= ( i) 
L2x i 〈 〉 vxi 
:= L2y i 〈 〉 vyi 
N2xi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
N2yi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Diagram N1 
vy 
N1y 
L1y 
vx, N1x, L1x 
Page 89
Sxi := Sx(L, βi) Syi Sy L β:= ( , i) 
L3x i 〈 〉 vxi 
Sxi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= L3y i 〈 〉 vyi 
Syi 
⎛⎜⎜⎝ 
⎞⎟⎟⎠ 
:= 
Diagram N2 
vy 
N2y 
L2y 
vx, N2x, L2x 
Diagram S 
vy 
Sy 
L3y 
vx, Sx, L3x 
Page 90
Example 4. Spherical Tank under Fluid 
R 
α0 
α 
A A 
r 
z 
Nα 
Nα 
2α 
p 
TMrragrgVg; AA CaRbePT simple 
kaMmuxkat; ³ r = Rsin α 
sMBaFGgÁFaturav ³ 
p = γR(1− cosα) 
ecjBIlkçx½NÐlMnwgtamG½kS 
bBaÄr eKrkeXIj ³ 
N Qz z 
= α 2 sin 2 Rsin2 
π α 
= 
π α 
Q 
r 
r 
z 
dQz ( ) 
ϕ 
dϕ 
R α 
dP 
dP p r Rd R rRd 
2 1 cos 2 
3 
= ⋅ π ⋅ ϕ = γ − ϕ π ϕ 
= π γ ϕ( − ϕ) ϕ 
R d 
2 sin 1 cos 
dQ dP z 
cos 
3 
= ϕ 
= π γ ϕ ϕ( − ϕ) ϕ 
R d 
2 sin cos 1 cos 
( ) 
= ∫ = ∫ π γ ϕ ϕ − ϕ ϕ 
Q dQ R d z z 
⎤ 
⎥⎦ 
⎡ 
3 
cos 1 2 
2 
0 
2 1 
= π γ − α⎛ − α 
⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
α α 
cos 
3 
1 
6 
2 sin cos 1 cos 
3 2 
0 
R 
⎞ 
⎛ 
[ ( )] ⎟ ⎟⎠ 
⎜ ⎜⎝ 
α 
1 2cos 
+ α 
− 
N 
R2 γ 
− α − α = 
R α 
γ 
= α 6 
1 cos 
1 cos 3 2cos 
6sin 
2 2 
2 
2 
Page 91
⎞ 
⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
α 
5 6cos 2cos 
+ α 
− α + 
Normal component of external force: 
⎞ 
γ 
= − = ⎟ ⎟⎠ 
⎛ 
N R Z N 
⎜ ⎜⎝ 
= − α 
α 
β 6 
1 cos 
2 2 
1 
2 
RZ N R 
R 
rUbmnþ Nα nig Nβ xagelIenH eRbI)ansMrab;EtkrNI . 0 0 ≤ α ≤ α 
edIm,IkMNt;kMlaMgpÁÜb Qα sMrab;EpñkxageRkamTMr eRkABIsMBaFkñúg eKRtUv 
KitRbtikmμbBaÄrrbs;TMrcUlbEnßmeTot EdlesμITMgn;GgÁFaturavTaMgmUl ³ 
R 4 R A 
= π 3γ 
3 
dUecñH 
⎤ 
⎥⎦ 
⎡ 
Q 4 R3 R3 2 z 
cos 1 2 
2 
2 1 
= π γ + π γ − α⎛ − cosα 
⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
3 
1 
6 
3 
Z = p = γR(1− cosα) 
ecjBIenH eyIgnwgTTYl)an 
⎞ 
. 
⎛ 
2 2 
5 2cos 
⎞ 
α 
N R 
6 
2 2 
1 6cos 2cos 
1 cos 
N R 
6 
, 
1 cos 
⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
α 
− α 
− α − 
γ 
= 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
− α 
+ 
γ 
= 
α 
β 
enARtg;cMNuc α=α0 tMélkMlaMg Nα nig Nβ minCab;Kña . enHmann½yfa RTwsþIKμan 
m:Um:g; minGacbMeBjlkçx½NÐCab;enARtg;TMrxagelI)aneT . ehtudUecñH enAEk,rTMr 
nwgekItman local bending Edl stresses rbs;va GackMNt;)antamRTwsþIm:Um:g;. 
Page 92
Example 5. Ellipsoid of Revolution 
r 
z 
p 
a 
b 
α α 
r 
z 
Nα Nα 
p 
α α 
r 
p CasMBaFBRgayesμIelI shell. 
kMlaMgpÁÜbbBaÄr ³ = π = π 2 sin α 
Q r2 p R z 
2 
R1 
ecjBIsmIkarlMnwgtamG½kSbBaÄr eyIg)an ³ 
N Qz = 
2 pr pR 
r 
2 sin 2sin α 
2 
= 
π α 
= α 
Equation of ellipse: 
2 
2 
+ = 
1 2 
2 
z 
b 
r 
a 
⎞ 
⎟ ⎟⎠ 
⎛ 
− = ⎟ ⎟⎠ 
pR R 
⎜ ⎜⎝ 
⎞ 
⎛ 
N R Z N 
⎜ ⎜⎝ 
= − α 
β 
2 
1 
1 
2 2 
1 
R 
R 
, 1 1 
′′ 
Curvatures: . 
1 1 
R r 1 
r 
1 
2 
2 
2 2 
1 
k 
r 
r 
R 
k 
+ ′ 
= = 
+ ′ 
= = − 
Radius of curvature: 
2 
R a r b z = 
R R 3 
b 
, . 4 
4 2 4 2 
2 b 
2 1 2 
a 
+ 
= 
2 
3 
b 
R = R = a . 
enARtg;kMBUl r = 0, z = b : , 
1 2 b 
N = N = pa α β 
2 
2 
R = a R = a , 
enAeGkVaT½r r = a, z = 0 : , , 
2 2 b 
N = pa α 
2 
⎞ 
, 
N pa a 
1 2 
2 
2 
⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
= − β b 
Page 93
Example 6. Conical Shell under Fluid 
z 
β β 
l 
z 
Qz 
V2 
Nα Nα 
V1 
β β 
z 
l 
R2 
2α 
r 
γ 
r = z tgβ 
N Qz z 
ecjBIlkçx½NÐlMnwgtamG½kSbBaÄr eyIg)an π β 
= = 
α 2 π cos β 
2 z sin 
Q 
r 
kMlaMgpÁÜbbBaÄr ³ 
⎞ 
1 2 2 2 
Q = γ V +V = γ⎡ πr z + πr l − z r l z z 3 
= γπ ⎛ − ⎥⎦ 
( ) ( ) ⎟⎠ 
⎜⎝ 
⎤ 
⎢⎣ 
2 
3 
1 2 
⎞ 
β ⎟⎠ 
2 2 z l z 
z 
β 
2 
γπ ⎛ − 
γ ⎛ − 
= = 
α 2cos 
⎜⎝ 
r l z 
3 
π β 
⎞ 
⎟⎠ 
⎜⎝ 
tg 
3 
2 sin 
N 
N N l z l 
( ) 
tg 
3 2 
γ β 
β 
= = α max α = 3 
4 
16 
cos 
Radius: 
β 
β 
R r z 
= 
β 
= 
tg 
cos 
cos 2 
Normal component of force: Z = γ(l − z) 
( ) 
N R Z l z z 
γ − β 
β 
= = β cos 
tg 
2 
N l 
γ β 
= β 4cos 
( ) 
β 
2 tg 
max 
z 
α N β N 
+ 
l 
2 
+ 
3l 
4 
Page 94
PROBLEMS OF SHELL THEORY 
1. Differential Geometry Of Surface 
1.1. eKeGayépÞmYyCarag z = z(x, y) . cUrrk first nig second quadratic forms RBmTaMg 
Gaussian nig mean curvatures . 
1.2. eKeGayépÞrgVilmYyCarag 
r(u,ϕ) = x(u) i + ρ(u)cosϕ j+ ρ(u)sin ϕ k, ρ(u) > 0 
cUrkMNt; first nig second quadratic forms . 
1.3. Translation surface KWCaépÞ EdlekIteLIgedayclnarMkilExSekagmYy z f (x) 1 1 = 
tambeNþayExSekagmYyeTot z f (y) 2 2 = . ExSekagrag nigExSekagTis GacepSg²Kña b:uEnþCaTUeTA eK 
eRCIserIsykragEtmYy dUcCa )ara:bUl/ FñÚrgVg; .l. 
smIkarrbs;épÞrMkil manrag 
z f (x) f (y) 1 2 = + 
]TahrN_ ³ 
2 
2 
z f x R x a − R − a ⎟⎠ 
= = − ⎛ − 
( ) , 
2 
1 
2 4 
2 
1 1 1 
⎞ 
⎜⎝ 
2 
2 
z f y R y b − R − b ⎟⎠ 
= = − ⎛ − 
( ) . 
2 
2 
2 4 
2 
2 2 2 
⎞ 
⎜⎝ 
sMrab;épÞxagelIenH cUrrk first nig second quadratic forms RBmTaMg curvatures . 
1.4. ]bmafa mankUGredaensuILaMg (z = α,β) Edl β KWCamMucab;BIG½kS Ox dl;cMeNalénvicT½rkaM 
r . dUecñH épÞrgVilGacmansmIkardUcxageRkam 
r(z,β) = r(z)cosβ i + r(z)sinβ j + z k 
cUrrk first nig second quadratic forms RBmTaMg curvatures rbs;épÞxagelIenH . 
1.5. cUrkMNt; first nig second quadratic forms RBmTaMg curvatures rbs;épÞCak;EsþgmYy 
cMnYnxageRkam ³ 
a) Ellipsoid 
x = a cosu cos v, y = a cosu sin v, z = c sin v 
b) Sphere 
x = Rcosαcosβ, y = Rcosαsinβ, z = Rsinα 
c) Cylinder of revolution 
x = α, y = Rcosβ, z = Rsinβ 
Page 95
d) Shallow shell 
z 
∂ 
= 
z z x y ∂ 
z 
( , ), ≈ 0 
∂ 
∂ 
= 
y 
x 
e) Conical surface of revolution 
x = α, y = Rcosβ⋅α, z = Rsinβ ⋅α 
2. Shell Analysis 
2.1. eFVIkarKNna circular cylindrical shallow shell nwgbnÞúkeRkAbBaÄrBRgayesμI q sMrab; 
krNIEdlTMrTaMgbYnRCugrbs;va CaRbePTsnøak; (simple supports) . 
a b h . 
8m, 6m, 0 2m 
= = = 
R R f 
40m, 1.2m 
= = = 
2 
= ⋅ ν = 
, 0.25 
2 10 kg 
m 
2 
9 
E 
y 
z 
f 
b 
a 
2.2. eFVIkarKNnaEkvragekan EdlmanmMukMBUlesμI 2β nigpÞúk 
x 
edayGgÁFaturav Edlmanma:smaD γ . 
2.3. cUreFVIkarKNna spherical tank EdlRTedayTMr 
kMNl;ragrgVg; AA nigpÞúkeBjedayGgÁFatu rav Edlmanma:smaD 
γ . 
β β l 
R 
α0 
α 
A A 
Page 96
3. Miscellaneous 
3.1. dUcemþcEdlehAfa shallow shell ? etIkarKNna shallow shell RtUv)ansMrYlya:gdUc 
emþcxøH ? 
3.2. cUreGayniymn½y cylindrical nig conical shell ? etIlkçN³Biessrbs; shells TaMgenH 
ya:gdUcemþcxøJH ? 
3.3. etI shell RbePTNa GacTukCa zero moment )an ? 
3.4. cUrerobrab;KuNsm,tþirbs;eRKOgpÁMúsMNg; shell ? 
Page 97
Content 
1. Differential geometry of surface 
1.1. Equation of surface 
1.2. First and second quadratic forms, Gaussian and mean 
curvature 
2. Moment theory of shells 
2.1. Differential equations of equilibrium 
2.2. Internal forces, strains, change of curvatures, Hooke’s 
law and boundary conditions 
2.3. Analysis of cylindrical shells 
2.4. Analysis of shallow shells 
2.5. Shells of revolution 
3. Zero moment (membrane) theory of shells 
3.1. Equilibrium equations 
3.2. Shells of revolution 
3.3. Cylindrical and conical shells 
4. Examples of shell analysis 
Page 98
Reference: 
1. Krivoshapko C.N. Fundamentals of thin-walled structure 
design.- Moscow: PFU, 1986. 
2. Krivoshapko C.N. Textbook: differential geometry of surface. 
– Moscow: PFUR, 1992. 
3. Krivoshapko C.N. Textbook: analysis of shallow shells in 
rectangular coordinates using displacement method. – 
Moscow: PFU, 1987. 
4. Kashin P.A. Textbook: moment theory analysis of shells. – 
Moscow: PFU, 1987. 
5. Kashin P.A. Textbook: examples of shell analysis. – Moscow: 
PFU, 1986. 
6. Philin A.P. Shell theory. – Leningrad: Construction Publishing, 
1970. 
7. Alexandrov A.V., Potapov V.D. Fundamentals of theory of 
elasticity and plasticity. – Moscow: High School, 1990. 
8. Samul V.I. Fundamentals of theory of elasticity and plasticity. 
– Moscow: High School, 1970. 
9. Timoshenko S., Woinowsky-Krieger S. Theory of plates and 
shells. - New York: McGraw-Hill, 1959. 
10. Darkov A.V. Structural Mechanics. – Moscow: Mir Publishers, 
1986. 
Page 99
Summary 
1. Differential Geometry of Surface 
1.1. Equation of surface: 
r = r(α,β) = x(α,β)i + y(α,β)j+ z(α,β)k 
In vector x x 
or 
( ) 
( ) 
( ) ⎪⎭ 
⎫ 
⎪⎬ 
, , 
= α β 
, , 
y y 
= α β 
, . 
z z 
= α β 
In 
function 
z = z(x, y) or F(x, y, z) = 0 
1.2. First quadratic form: 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
r r 
A E x y z 
⎛ 
∂α 
⎞ 
⎟ ⎟⎠ 
r r 
F x x y y z z 
⎛ 
∂β 
⎜ ⎜⎝ 
∂ 
⎛ 
∂α 
∂ 
+ 
⎞ 
∂ 
⎞ 
+ ⎟ ⎟⎠ 
⎛ 
∂β 
⎜ ⎜⎝ 
∂ 
⎞ 
⎛ 
∂α 
∂ 
+ 
⎞ 
∂ 
+ ⎟ ⎟⎠ 
⎛ 
∂β 
⎜ ⎜⎝ 
∂ 
∂ 
= 
∂ 
∂ 
= 
r ∂ 
r 
∂β 
∂ 
∂ 
∂β 
∂ 
∂ 
= 
= = 
∂β 
∂α 
∂β 
∂α 
∂β 
∂α 
∂β 
∂α 
⎞ 
⎟⎠ 
⎜⎝ 
∂ 
+ ⎟⎠ 
⎜⎝ 
∂ 
+ ⎟⎠ 
⎜⎝ 
∂ 
= 
∂α 
∂α 
= = 
. 
; 
; 
2 2 2 
2 
2 2 2 
2 
B G x y z 
Principal curvatures: 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
L 
1 , 
= = − = 
= = − = 
N 
2 
2 
2 max 
2 
1 
1 min 
1 
B 
R 
k k 
A 
R 
k k 
1 Ld α 2 + Nd 
β 
2 
2 2 2 2 
α + β 
− = 
A d B d 
R 
2 
LN − 
M 
Gaussian curvature of the surface: 2 2 2 
1 2 
1 2 
1 
A B F 
R R 
k k k 
− 
= = = 
Page 100
1 2 H k k 
x y z 
αα αα αα 
+ 
1 , 
Mean curvature of the surface: 
Second quadratic form: 
r ⋅ r × 
r 
αα − 
2 2 2 
x y z 
α α α 
β β β 
αα α β 
α β 
= 
× 
= ⋅ = 
x y z 
A B F 
L 
r r 
r n 
x y z 
αβ αβ αβ 
1 , 
r ⋅ r × 
r 
αβ − 
2 2 2 
x y z 
α α α 
β β β 
αβ α β 
α β 
= 
× 
= ⋅ = 
x y z 
A B F 
M 
r r 
r n 
x y z 
ββ ββ ββ 
1 , 
r ⋅ r × 
r 
ββ − 
2 2 2 
x y z 
α α α 
β β β 
ββ α β 
α β 
= 
× 
= ⋅ = 
x y z 
A B F 
N 
r r 
r n 
2 
= 
2. Moment Theory of Shell 
2.1. Differential equations of equilibrium 
A S AB 
∂ 
∂ 
0 : 1 0, 
( ) ( ) 
( ) ( ) 
α β α 
B S AB 
0 : 1 0, 
∂ 
+ 
∂ 
β 
2 
( ) ( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎬ 
∂ 
∂ 
N AB 
Z AB 
0 : 0, 
α β β α 
( ) ( ) 
( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎭ 
1 2 
0 : 1 0, 
β α β 
+ = 
∂ 
∂ 
∂α 
+ 
∂ 
− 
∂ 
− 
∂α 
∂ 
∂ 
∂β 
= 
+ = 
∂β 
+ 
∂β 
∂α 
= 
− = 
∂α 
∂β 
∂ 
∂ 
= + + 
− + = 
∂α 
+ 
∂β 
− 
∂β 
= 
− + = 
∂β 
+ 
∂α 
− 
∂α 
= 
α β α 
β α 
Σ 
Σ 
Σ 
Σ 
Σ 
2 
0 : 1 2 
0, 
2 
1 
2 
A H BM M B ABQ 
A 
M 
B H AM M A ABQ 
B 
M 
N AQ BQ ABZ 
R 
R 
Q ABY 
R 
B 
Y AN N A 
Q ABX 
R 
A 
X BN N B 
x 
y 
Page 101
2.2. Internal forces: 
N C ( ) 
( ) 
( ) 
( ) ⎪⎭ 
⎫ 
⎪⎬ 
= ε + νε 
α α β 
N C 
= ε + νε 
β β α 
S 1 C 
1 , 
= − ν ε 
αβ 
, 
, 
2 
⎫ 
⎪⎬ 
M D 
= − κ + νκ 
α α β 
, 
( ) 
( ) ⎪⎭ 
M D 
= − κ + νκ 
β β α 
1 . 
= − − ν κ 
αβ 
, 
H D 
C = Eh ( 2 ) 
Strains: 
B u u 
D = Eh 
∂ 
1 1 . 
2 R 
β 
ε = α 
AB 
u 
B 
+ z 
∂ 
∂α 
+ 
∂β 
A u u 
∂ 
, β 1 1 
1 R 
ε = β 
AB 
u 
A 
+ z 
∂ 
∂β 
+ 
α 
∂α 
α 
⎞ 
⎟⎠ 
⎛ 
∂β 
A 
u 
B 
ε = β α 
αβ A 
⎜⎝ 
∂ 
⎞ 
+ ⎟ ⎟⎠ 
⎛ 
⎜ ⎜⎝ 
∂ 
∂α 
u 
B 
B 
A 
1− ν2 
3 
12 1− ν 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
⎞ 
⎟⎠ 
⎛ 
⎜⎝ 
1 1 , 
1 1 , 
∂ 
1 
∂α 
∂ 
⎞ 
∂ 
+ ⎟⎠ 
⎛ 
∂β 
⎜⎝ 
∂ 
α 
κ = 
∂α 
+ 
∂ 
∂ 
∂β 
κ = 
∂β 
+ 
∂α 
κ = 
αβ 
β 
V 
A 
V 
B 
2 2 1 
. 
2 
2 
1 
A 
B 
B 
A 
B V 
AB 
V 
B 
AV 
AB 
V 
A 
⎫ 
⎪ ⎪ 
⎬ 
⎪ ⎪ 
⎭ 
1 ∂ 
, 
∂ 
z 
∂β 
α 
V u 
u 
= − 
∂α 
= − 
β 
1 . 
2 
2 
1 
1 
z 
u 
R B 
V 
u 
R A 
Changes of curvatures: 
Hooke’s law: 
E z 
[ ( )] 
[ ( )] 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
α α β α β 
2 
E z 
β β α β α 
( )( ) ⎪ ⎪ ⎪ 
⎭ 
2 . 
ε + κ 
+ ν 
τ = τ = 
ε + νε + κ + νκ 
− ν 
σ = 
ε + νε + κ + νκ 
− ν 
σ = 
αβ βα αβ αβ 
2 1 
, 
1 
, 
1 
2 
E z 
Page 102
2.3. Cylindrical Shells 
Equations of cylindrical shell: x = α, y = y(β), z = z(β) 
A B F d dx d ds 
= ∞ = 
1, 0, , , cos 0, 
= = = α = β = χ = 
, ( ). 
1 2 R R R s 
Q M M 
s 
Q H 
∂ 
+ 
∂ 
= 
, . 
s 
x 
H 
s 
x 
s 
x 
∂ 
+ 
∂ 
x ∂ 
∂ 
∂ 
∂ 
Shears: = 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ 
⎭ 
Equations of equilibrium: 
0, 
M 
H 
1 1 0, 
− = 
∂ 
s x 
∂ 
+ 
M 
∂ 
∂ 
∂ 
H 
∂ ∂ 
+ 
S 
∂ 
+ 
N 
x 
∂ 
+ 
∂ 
+ 
M 
∂ 
+ = 
∂ 
− 
∂ 
− 
∂ 
N 
∂ 
S 
∂ 
∂ 
+ = 
∂ 
∂ 
2 0. 
2 
2 2 
2 
2 
Z 
s 
x s 
x 
N 
R 
Y 
s 
x R 
s R 
x 
X 
s 
x 
s x s 
Strain components: 
u 
u 
u 
u 
∂ 
+ 
∂ 
∂ 
, , , 
2 
u 
u 
u 
u 
, , 2 1 2 . 
u 
2 
2 
∂ 
x s 
x 
⎞ 
s R 
R 
∂ 
x s 
s 
x 
R 
s 
u 
x 
s z 
xs 
∂ 
− 
s z 
y 
z 
x 
s x 
xs 
s z 
y 
x 
x 
∂ ∂ 
− 
∂ 
∂ 
= κ ⎟⎠ 
⎛ 
⎜⎝ 
∂ 
∂ 
κ = 
∂ 
∂ 
∂ 
κ = − 
∂ 
∂ 
+ ε = 
∂ 
ε = 
∂ 
ε = 
Internal forces: 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
u 
⎛ + 
∂ 
u 
u 
∂ 
s z x 
⎞ 
⎟⎠ 
⎡ 
N C u 
N C ⎡ 
u 
∂ 
∂ 
u 
S − ν C ⎛ 
∂ 
u 
⎜⎝ 
u 
∂ 
+ 
∂ 
∂ 
= 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
+ + ν 
∂ 
= 
⎤ 
⎥⎦ 
⎢⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
∂ 
+ ν 
∂ 
= 
, 
2 
1 
, 
, 
s 
x 
x 
R 
s 
R 
s 
x 
s x 
s 
x s z 
x 
⎡ 
M D u 
⎡ 
u 
s 
∂ 
s z z 
1 1 
( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
u 
∂ 
− 
u 
⎞ 
⎟ ⎟⎠ 
∂ 
⎛ 
⎛ 
⎜ ⎜⎝ 
⎛ 
u 
∂ 
ν − ⎟⎠ 
∂ 
− 
u 
∂ ∂ 
u 
∂ 
− 
u 
∂ 
∂ 
= − − ν 
⎞ 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
⎞ 
⎜⎝ 
∂ 
∂ 
= − 
⎤ 
⎥⎦ 
⎢⎣ 
⎟⎠ 
⎜⎝ 
∂ 
∂ 
∂ 
+ ν 
∂ 
= − − 
. 
2 
, 
, 
2 
2 
2 
2 
2 
x s 
x 
R 
H D 
x 
s 
R 
M D 
s 
R 
x s 
s z 
s 
z s z 
x 
Page 103
X 
− ν ∂ 
0, 
Equilibrium equations in displacements: 
⎞ 
1 2 
u u 
2 
+ ν ∂ 
⎛ 
+ ν ∂ 
2 2 
2 
12 
1 
2 
⎡ 
u 
ν ∂ 
+ 
2 2 
2 12 
− ν ∂ 
1 
⎛ 
+ ν ∂ 
2 
1 
∂ 
2 
2 
2 
2 
2 
2 
2 
2 
∂ 
2 2 
2 
⎛ 
⎤ 
⎞ 
u Y 
= + ⎥⎦ 
⎡ 
⎢⎣ 
⎞ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
∂ 
∂ 
∂ 
∂ 
⎞ 
− ⎟⎠ 
∂ 
⎛ 
∂ 
⎜⎝ 
∂ 
+ 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
+ ⎟⎠ 
⎜⎝ 
∂ 
+ 
∂ 
+ 
∂ 
+ 
u 
∂ ∂ 
C 
R s x s 
h 
s R 
u 
R s R R x 
h 
x s s x 
z 
s 
x 
∂ 
+ ⎟⎠ 
4 
⎡ 
2 2 
∂ 
4 
2 
⎤ 
⎞ 
∂ 
+ 
∂ 
⎤ 
⎞ 
⎛ 
⎛ 
∂ 
u Z 
2 0. 
∂ 
⎛ 
2 4 
12 
1 
12 
1 
4 
2 2 
4 
2 
2 
2 
= − ⎥⎦ 
u 
ν ∂ 
⎡ 
⎢⎣ 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
∂ ∂ 
+ 
∂ 
∂ 
+ + 
+ 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
⎥⎦ 
⎢⎣ 
⎟⎠ 
⎜⎝ 
∂ 
⎞ 
⎜⎝ 
∂ 
∂ 
− 
∂ 
+ 
∂ 
C 
x x s s 
h 
R 
u 
s x R s R 
h 
x R s 
R 
z 
s 
x 
0, 
2 
1 
2 
2 
2 
+ = 
∂ 
∂ ∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
C 
x 
x s R 
x s 
s z 
x 
2.4. Shallow Shells 
z 
∂ 
z 
∂ 
20, 5. min min R h ≥ l f ≥ 0, ≈ 0 
∂ 
≈ 
∂ 
y 
x 
1 ∂ 
0, 
Equilibrium Equations: 
∂ 
( ) ( 2 
) 
( ) ( ) 
∂ 
+ 
∂ 
( ) ( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎬ 
∂ 
∂ 
α β 
N AB 
α β β α 
( ) ( ) 
( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 
⎭ 
AB 
1 2 
1 0, 
β α β 
+ = 
∂ 
∂ 
∂α 
+ 
∂ 
− 
∂ 
− 
∂α 
∂ 
∂ 
∂β 
+ = 
∂β 
+ 
∂β 
∂α 
− = 
∂α 
∂β 
+ + 
+ = 
∂α 
+ 
∂β 
− 
∂ 
∂ 
∂β 
+ = 
∂β 
+ 
∂α 
− 
∂α 
α β α 
β α 
2 
1 0, 
0, 
1 0, 
2 
2 
A H BM M B ABQ 
A 
B H AM M A ABQ 
B 
N AQ BQ ABZ 
R 
R 
B S ABY 
B 
AN N A 
A S ABX 
A 
BN N B 
Page 104
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
⎞ 
⎟ ⎟⎠ 
A u u 
1 1 , 
Strains: z 
B 
Changes of curvature: 
⎞ 
B u u 
⎛ 
∂β 
⎞ 
⎛ 
∂ 
∂ 
∂ 
∂ 
∂ 
1 
u 
A 
u 
1 ⎛ 
1 1 , 
⎛ 
z z 
2 
1 1 1 , 
⎛ 
⎜ ⎜⎝ 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
A ∂ 
u 
∂α 
∂ 
∂β 
∂ 
∂ 
z z 
− 
∂ 
∂ 
∂ 
∂α 
∂ 
2 
∂α 
⎞ 
⎞ 
− 
∂ 
∂ 
∂ 
2 
∂α∂β 
α 
β 
κ = − 
∂α 
∂α 
− ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂β 
∂ 
∂ 
∂β 
κ = − 
∂β 
∂β 
− ⎟⎠ 
⎜⎝ 
∂α 
∂α 
κ = − 
αβ 
1 1 1 z z z 
. 
A 
B u 
B 
u 
AB 
B u 
A B 
u 
B B 
A u 
AB 
u 
A A 
⎪ ⎪ ⎪ ⎪ 
⎭ 
⎟⎠ 
⎜⎝ 
∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂α 
ε = 
+ 
∂α 
+ 
∂β 
ε = 
+ 
∂β 
+ 
∂α 
ε = 
β α 
αβ 
α 
β 
β 
β 
α 
α 
, 
1 1 , 
2 
A 
B 
B 
A 
R 
AB 
u 
B 
R 
AB 
u 
A 
z 
D 
∂ 
∂ 
( ) ( ) 
( ) ( ) . 1 
α α β 
12 1 
1 , 
12 1 
2 
2 
3 
2 
2 
3 
z 
z 
u 
D 
A 
B 
Q Eh 
u 
A 
A 
Q Eh 
∂ 
∇ 
∂β 
κ + κ = 
∂ 
∂β 
− ν 
= − 
∇ 
∂α 
κ + κ = 
∂α 
− ν 
= − 
β α β 
Shears: 
Normal and tangential forces: 
⎞ 
1 1 1 , 
2 
∂ϕ 
∂ 
∂ϕ 
∂ 
1 1 1 , 
2 
2 
⎞ 
∂ 
⎛ 
∂ϕ 
∂ 
⎞ 
⎛ 
∂ϕ 
1 1 1 . 
⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ϕ 
∂α 
∂ 
∂β 
− 
∂ϕ 
∂β 
∂ 
∂α 
− 
∂ ϕ 
∂α∂β 
α 
= − 
∂β 
∂β 
+ ⎟⎠ 
⎜⎝ 
∂α 
∂α 
= 
∂α 
∂α 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ ⎛ 
∂β 
∂β 
= 
β 
A 
A 
B 
AB B 
S 
A 
A A AB 
N 
B 
B B A B 
N 
Page 105
Equation of shallow shell: 
1 ∇2∇2ϕ−∇2u = 0, ∇2ϕ+ D∇2∇2u − Z = 0. 
Eh k z k z 
∂ 
∂ 
Rectangular Shallow Shell 
Strain components: 
u y u 
x 
u 
u 
u 
∂ 
+ 
, , , 
y 
R 
x 
y 
1 2 u 
R 
x 
xy 
y z 
y 
x z 
∂ 
x ∂ 
∂ 
+ ε = 
∂ 
+ ε = 
∂ 
ε = 
2 2 
u ∂ 
u 
∂ 
u 
z z 
, , . 
κ = − αβ 
2 
2 
x y 
y 
x 
y 
z 
κ = − 
∂ 
x ∂ 
∂ ∂ 
κ = − 
∂ 
Internal forces: 
( ) 
( ) 
⎡ 
M D u 
⎡ 
∂ 
M D ∂ 
u 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎛ 
u 
u 
u 
∂ 
+ 
N C u 
u 
∂ 
S C u 
⎡ 
⎡ 
∂ 
∂ 
∂ 
∂ 
⎤ 
, 
1 2 
z z 
H D u 
( ) ( ) 
⎫ 
⎪ ⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
∂ 
∂ ∂ 
= − − ν 
⎤ 
, 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
∂ 
∂ 
+ ν 
∂ 
= − 
⎥⎦ 
⎢⎣ 
∂ 
+ ν 
∂ 
= − 
⎪ ⎪ ⎪ ⎪ 
⎭ 
⎟ ⎟⎠ ⎞ 
⎜ ⎜⎝ 
∂ 
∂ 
= − ν 
⎥⎦ ⎤ 
⎢⎣ 
+ + ν 
∂ 
+ ν 
∂ 
= 
⎥⎦ 
⎢⎣ 
+ + ν 
∂ 
+ ν 
∂ 
= 
1 . 
, 
1 , 
2 
, 
2 
u 
u 
2 
2 
2 
2 
2 
2 
2 
2 
2 1 
x y 
x 
y 
y 
x 
x 
y 
k k u 
x 
y 
N C 
k k u 
y 
x 
z 
y 
z z 
x 
x y 
z 
y x 
y 
z 
x y 
x 
∂ 
( ) 
( ) ⎪ ⎪⎭ 
⎫ 
⎪ ⎪⎬ 
x x y z 
∂ 
2 
∇ 
∂ 
κ + κ = 
∂ 
∂ 
∂ 
= − 
∇ 
∂ 
κ + κ = 
∂ 
= − 
, 
. 
2 
u 
y x y z 
y 
D 
y 
Q D 
u 
x 
D 
x 
Q D 
Page 106
Equilibrium equations: 
k k u 
( ) 
( ) 
+ ν ∂ 
2 
2 
− ν ∂ 
⎛ 
⎞ 
2 2 
2 
⎤ 
∂ 
u 
u k k ∂ 
u 
⎞ 
X 
Y 
⎡ 
+ ∇ + + ν + 
− ν ∂ 
u 
∂ 
u 
∂ 
k k u 
∂ 
∂ 
+ ν ∂ 
⎛ 
h k k k k u Z 
( ) ( ) ( 2 ) 0, 
12 
0, 
2 
1 
2 
1 
0, 
2 
1 
2 
1 
2 
1 2 2 
2 
1 
4 
2 
1 2 2 1 
2 2 1 
2 
1 2 
2 
2 
2 
= − ⎥⎦ 
⎢⎣ 
∂ 
+ + ν 
∂ 
+ ν 
+ = 
∂ 
ν + + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
+ 
∂ ∂ 
+ = 
∂ 
+ + ν 
∂ ∂ 
+ ⎟ ⎟⎠ 
⎜ ⎜⎝ 
∂ 
+ 
∂ 
C 
y 
k k 
x 
C 
y 
x y y x 
C 
x 
x y 
u 
x y 
z 
x y 
z 
y 
x 
y z 
x 
Stress function ϕ = ϕ(x, y): 
2 
∂ ϕ 
= 
∂ ϕ 
= 
N x y ∂ ∂ 
, , . 
2 
2 
2 
2 
x y 
S 
y 
N 
x 
∂ ϕ 
= − 
∂ 
∂ 
Mixed differential equations of shallow shells: 
⎪⎭ 
⎪⎬ ⎫ 
2 2 2 
D ∇ ∇ u +∇ ϕ = 
Z 
z k 
Eh u 
∇ ∇ ϕ− ∇ = 
, 
0, 
2 2 2 
k z 
2.5. Shells of revolution 
α, β = meridian and parallel. 
r(α) – meridian equation. 
( ), 1 A = R α 
= sin α 2 B R 
Case of Axis-Symmetrical Shell: Y = 0 
= = = 0, = ε = κ = 0 β β αβ αβ S Q H u 
= 0 
∂ 
k L 
∂β 
k 
Equilibrium equations: 
( ) 
R N R N R Q R R X 
sin α − cos α − sin α + sin α = 
0, 
2 α 1 β 2 α 
1 2 
( ) 
⎫ 
⎪ ⎪ ⎪ 
⎬ 
d 
R N R N d 
sin cos sin sin 0, 
2 α 1 β 2 α 
1 2 
( ) ⎪ ⎪ ⎪ 
⎭ 
R M R M R R Q 
sin α + cos α + sin α = 
0. 
d 
α 
− 
α − α = 
α 
α + α + 
α 
2 1 1 2 
α β α 
d 
R Q R R Z 
d 
d 
Page 107
Strains: 
du 
1 ⎛ + 
⎞ 
, 1 ( cotg ) 
, 
z β α 
z 
α 
1 2 
⎤ 
⎡ 
u du 
u du 
d 
1 1 ⎛ − 
⎞ 
, cotg . 
1 1 1 2 
⎞ 
⎟⎠ 
⎛ − 
⎜⎝ 
α 
= κ ⎥⎦ 
⎢⎣ 
⎟⎠ 
⎜⎝ 
α 
α 
κ = 
+ α = ε ⎟⎠ 
⎜⎝ 
α 
ε = 
α α β α 
dz 
dz R R 
d R 
R 
u u 
R 
u 
d 
R 
z z 
E.Meissner’s unknowns: 
⎞ 
duz 
1 , 
χ = − R Q 
α α = ψ ⎟⎠ 
⎛ + 
⎜⎝ 
α 
R 
u 
d 
2 
1 
Case h=const 
( ) ν 
ν 
χ = − 1 ψ , ( ψ ) + 
ψ = χ + 1 Φ ( α 
), 
1 1 1 
χ − 
R 
Eh 
R 
L 
R D 
L 
where 
d 
R 
R 
⎛ 
α 
d 
d 
L R 
⎤ 
⎡ 
⎞ 
1 cotg 
2 L cotg L 
2 
( L 
) (L) 
2 
2 
1 
2 
1 
1 
2 
2 
2 
1 
d R 
R 
R 
d 
d R 
R 
α 
− 
α ⎥⎦ 
⎢⎣ 
α + ⎟ ⎟⎠ 
⎜ ⎜⎝ 
+ 
α 
= 
3. Zero Moment (Membrane) Theory of Shell: 
= = = 0, = = 0 α β α β M M H Q Q 
Equilibrium equations: 
1 ∂ 
0, 
∂ 
( ) ( ) 
( ) ( ) 
⎫ 
⎪⎪ ⎪ ⎪ 
⎬ 
⎪ ⎪ ⎪ ⎪ 
⎭ 
∂ 
α β 
β α 
N 
+ − = 
+ = 
∂ 
∂α 
+ 
∂β 
− 
∂ 
∂ 
∂β 
+ = 
∂β 
+ 
∂α 
− 
∂α 
α β 
0. 
2 
1 0, 
1 2 
2 
Z 
R 
N 
R 
B S ABY 
B 
AN N A 
A S ABX 
A 
BN N B 
Page 108
Shell theory
Shell theory
Shell theory
Shell theory
Shell theory
Shell theory

More Related Content

What's hot

CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column Design
Fawad Najam
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II
 
15 poteau-2
15 poteau-215 poteau-2
15 poteau-2
Smee Kaem Chann
 
Malfaçons de la construction : les principaux défauts de la charpente d'une m...
Malfaçons de la construction : les principaux défauts de la charpente d'une m...Malfaçons de la construction : les principaux défauts de la charpente d'une m...
Malfaçons de la construction : les principaux défauts de la charpente d'une m...
LAMY Expertise
 
Bending stress and shear stress for Asymmetric I-Section.
Bending stress and shear stress for Asymmetric  I-Section.Bending stress and shear stress for Asymmetric  I-Section.
Bending stress and shear stress for Asymmetric I-Section.
Dr.Abhinav .
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
Marwan Sadek
 
Two way slab by Rashedul kabir
Two way slab by Rashedul kabirTwo way slab by Rashedul kabir
Two way slab by Rashedul kabirbadhanxy
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE
 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
Mohotasimur Anik
 
Doubly reinforced beam design
Doubly reinforced beam   designDoubly reinforced beam   design
Doubly reinforced beam design
Selvakumar Palanisamy
 
Shear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And FrameShear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And Framegueste4b1b7
 
Robot khmer engineer
Robot khmer engineerRobot khmer engineer
Robot khmer engineer
Smee Kaem Chann
 
Poly etsher assemblage construction mã©tallique callaud 2003
Poly etsher assemblage construction mã©tallique callaud 2003Poly etsher assemblage construction mã©tallique callaud 2003
Poly etsher assemblage construction mã©tallique callaud 2003
Mohamed Yassine Benfdil
 
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II
 
Strut and Tie Model for Pile Cap
Strut and Tie Model for Pile CapStrut and Tie Model for Pile Cap
Strut and Tie Model for Pile Cap
Islam Mohamed, P.E, P.Eng
 
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
PHAM Van Thuan
 
T-Beams...PRC_I
T-Beams...PRC_IT-Beams...PRC_I
T-Beams...PRC_I
Irfan Malik
 

What's hot (20)

CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column Design
 
Beamand slab design
Beamand slab design Beamand slab design
Beamand slab design
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
 
Wind_Load
Wind_LoadWind_Load
Wind_Load
 
15 poteau-2
15 poteau-215 poteau-2
15 poteau-2
 
Malfaçons de la construction : les principaux défauts de la charpente d'une m...
Malfaçons de la construction : les principaux défauts de la charpente d'une m...Malfaçons de la construction : les principaux défauts de la charpente d'une m...
Malfaçons de la construction : les principaux défauts de la charpente d'une m...
 
Bending stress and shear stress for Asymmetric I-Section.
Bending stress and shear stress for Asymmetric  I-Section.Bending stress and shear stress for Asymmetric  I-Section.
Bending stress and shear stress for Asymmetric I-Section.
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
 
Two way slab by Rashedul kabir
Two way slab by Rashedul kabirTwo way slab by Rashedul kabir
Two way slab by Rashedul kabir
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
 
Doubly reinforced beam design
Doubly reinforced beam   designDoubly reinforced beam   design
Doubly reinforced beam design
 
Shear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And FrameShear Force And Bending Moment Diagram For Beam And Frame
Shear Force And Bending Moment Diagram For Beam And Frame
 
Robot khmer engineer
Robot khmer engineerRobot khmer engineer
Robot khmer engineer
 
Poly etsher assemblage construction mã©tallique callaud 2003
Poly etsher assemblage construction mã©tallique callaud 2003Poly etsher assemblage construction mã©tallique callaud 2003
Poly etsher assemblage construction mã©tallique callaud 2003
 
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
 
Strut and Tie Model for Pile Cap
Strut and Tie Model for Pile CapStrut and Tie Model for Pile Cap
Strut and Tie Model for Pile Cap
 
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
 
T-Beams...PRC_I
T-Beams...PRC_IT-Beams...PRC_I
T-Beams...PRC_I
 

Viewers also liked

LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures
 LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures
LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures
Director-Navnirman Bahu-Uddeshiya Mahila Sanstha,Suvarna Lele Architects.
 
Stucture large span area
Stucture large span areaStucture large span area
Stucture large span area
Abhishek Mewada
 
Design 3 2011 - Design Lecture Structures
Design 3 2011 - Design Lecture  StructuresDesign 3 2011 - Design Lecture  Structures
Design 3 2011 - Design Lecture Structures
Galala University
 
The cable in building structures
The cable in building structuresThe cable in building structures
The cable in building structures
Wolfgang Schueller
 
Monolithic domes
Monolithic domesMonolithic domes
Monolithic domesRahul Bajaj
 
High-rise structural systems
High-rise structural systemsHigh-rise structural systems
High-rise structural systems
Akshay Revekar
 

Viewers also liked (6)

LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures
 LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures
LIGHTWEIGHT CONSTRUCTIONS-'MEMBRANES' in Light wight and Membrane structures
 
Stucture large span area
Stucture large span areaStucture large span area
Stucture large span area
 
Design 3 2011 - Design Lecture Structures
Design 3 2011 - Design Lecture  StructuresDesign 3 2011 - Design Lecture  Structures
Design 3 2011 - Design Lecture Structures
 
The cable in building structures
The cable in building structuresThe cable in building structures
The cable in building structures
 
Monolithic domes
Monolithic domesMonolithic domes
Monolithic domes
 
High-rise structural systems
High-rise structural systemsHigh-rise structural systems
High-rise structural systems
 

Similar to Shell theory

maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
GARRYB4
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
tejaspatel1997
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
2-VECTOR INTEGRATION of mathematics subject
2-VECTOR INTEGRATION of mathematics subject2-VECTOR INTEGRATION of mathematics subject
2-VECTOR INTEGRATION of mathematics subject
srinivaslakshmisetty2
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
VjekoslavKovac1
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :DQuimm Lee
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
TechnicalDepartment4
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
Sonendra Kumar Gupta
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
zoayzoay
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Another possibility
Another possibilityAnother possibility
Another possibility
Css Founder
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
Edhole.com
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
JAVIERTELLOCAMPOS
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
JAVIERTELLOCAMPOS
 

Similar to Shell theory (20)

maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Formular
FormularFormular
Formular
 
Maths04
Maths04Maths04
Maths04
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
G e hay's
G e hay'sG e hay's
G e hay's
 
2-VECTOR INTEGRATION of mathematics subject
2-VECTOR INTEGRATION of mathematics subject2-VECTOR INTEGRATION of mathematics subject
2-VECTOR INTEGRATION of mathematics subject
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
 
Ch02s
Ch02sCh02s
Ch02s
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Another possibility
Another possibilityAnother possibility
Another possibility
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 

Recently uploaded

6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
ssuser7dcef0
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
itech2017
 
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdfThe Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
Nettur Technical Training Foundation
 
Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
manasideore6
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
AkolbilaEmmanuel1
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 

Recently uploaded (20)

6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
 
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdfThe Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
 
Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 

Shell theory

  • 1. saklviTüal½y GnþrCati INTERNATIONAL UNIVERSITY Master of Civil Engineering (Structural Engineering) Shell Theory By Seun Sambath, Ph.D, Civil Eng. Phnom Penh 2003
  • 2. Shell Theory Shell = 3D thin walled structure. Thin shell KWCaGgÁFatu EdlekagtamTismYy b¤BIr edayKμanrbt; nigkMBUlRsYc nigmankMras;tUcCagTMhMBIreTot ya:geRcIn . RbsinebIeKykkMritlMeGogRtwm 5% enaH shell esþIg manlkçx½NÐ h R ≤1 20 Edl R CakaMkMeNagtUcCageK . plRbeyaCnsMxan;rbs; shell KW multiple function of internal large space. Modeling of shell: • Three-dimensional elastic body • Using static-geometric hypothesis of Kirchhoff-Love Æ approximate theory (thin shell theory) Shell Theory Mathematical theory Engineering theory CaRTwsþI sMrab;epÞógpÞat;PaBRtwmRtUv elIRTwsþIEdleRbIR)as;kñúgkarGnuvtþn_ Cak;Esþg sMrab;eRbIR)as;kñúgGnuvtþnCak;Esþg/ KuNvibtþi³ EdnkMNt;eRbIR)as;RTwsþIenH Page 1
  • 3. Elements of Differential Geometry of Surface Equation of surface in vector notation r = r(α,β) = x(α,β)i + y(α,β)j+ z(α,β)k In parametric form x = x(α,β); y = y(α,β); z = z(α,β) where α, β = independent parameters. Coordinate lines α, β = curvilinear coordinates. Equation of surface in Cartesian coordinates: z = z(x, y) or F(x, y, z) = 0 As a function z of coordinates x, y. Ellipsoid: 2 2 + + = 1 2 2 2 2 z c y b x a ⎫ sin sin , or x a = ϕ θ sin cos , y b = ϕ θ cos z c Hyperboloid of one sheet: 2 2 + − = 1 2 2 2 2 z c y b x a ⎪⎭ ⎪⎬ = ϕ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ or 2 x a u v sin 1 , = ⋅ + y = b u ⋅ + v z = cv 2 cos 1 , Page 2
  • 4. Hyperboloid of two sheets: 2 2 + − = − 1 2 2 2 2 z c y b x a ⎫ ⎪⎭ ⎪⎬ or x a u v sin , = ⋅ y b u v cos , = ⋅ = ± + 1 z c v2 Cone: 2 2 + − = 0 2 2 2 2 z c y b x a ⎫ ⎪⎭ ⎪⎬ or x = a sin u ⋅ v , y = b u ⋅ v z = cv cos , Elliptical paraboloid: 2 2 y q = + p z x 2 2 ⎫ ⎪ ⎪⎭ ⎪ ⎪⎬ or x = 2 p sin u ⋅ v , y = q u ⋅ v z = v 2 cos , Hyperbolic paraboloid: 2 2 y q = − p z x 2 2 Page 3
  • 5. Elliptical cylinder: 2 2 + = 1 2 2 y b x a ⎫ ⎪⎭ ⎪⎬ x a u or = sin , y = b u z = v sin , Hyperbolic cylinder: 2 2 − = 1 2 2 y b x a ⎫ ⎪ ⎪⎭ ⎪⎪⎬ or x = ± a 1 + u 2 , y = bu z = v , Parabolic cylinder: y2 = 2 px ( ) ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ = y u v u , = , z u v = v p x u v u , , 2 , 2 or Page 4
  • 6. z O r r+dr χ dr α β sMNaj;kUGredaen (coodinate network) manlkçN³dUcxageRkam ³ 1- kat;tamcMNucmYyénépÞ manExS α nig β EtmYyKt; . 2- ral;ExS α nig β nImYy² kat;ExS β nig α EtmYydgKt; . x y dr ∂ = r ∂ d r d ds = dr ; β; ∂β α + ∂α ds2 = dr ⋅ dr = A2dα2 + 2Fdαdβ + B2dβ2 , First Quadratic Form Where coefficients of first quadratic form are ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ r r A E x y z ⎛ ∂α ⎞ ⎟ ⎟⎠ r r F x x y y z z ⎛ ∂β ⎜ ⎜⎝ ∂ ⎛ ∂α ∂ + ⎞ ∂ + ⎟ ⎟⎠ ⎛ ∂β ⎜ ⎜⎝ ∂ ⎞ ⎛ ∂α ∂ + ⎞ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ⎛ ∂ ∂β ∂ = ∂ ∂ = r ∂ r ∂β ∂ ∂ ∂β ∂ ∂ = = = ∂β ∂α ∂β ∂α ∂β ∂α ∂β ∂α ⎞ ⎟⎠ ⎜⎝ ∂ + ⎟⎠⎞ ⎜⎝ ∂ + ⎟⎠ ⎜⎝ ∂ = ∂α ∂α = = . ; ; 2 2 2 2 2 2 2 2 B G x y z So, A E r B G ∂ ∂ ∂ = = r F = r ⋅ r ; ; ⋅ cosχ, ∂β ∂α ∂β = = ∂ ∂α χ = angle between coordinate lines α and β. For orthogonal network: χ = 90°, F = 0 ds2 = A2dα2 + B2dβ2 Page 5
  • 7. Area of surface: σ = ∫∫ × α β = ∫∫ − α β α β r r d d A2B2 F2 d d r r ∂ = α ∂α tangential to α-line, r r tangential to β−line Normal unit vector: r r r × r α β r r = α β A2B2 − F2 = × × α β n ∂ = β ∂β Normal section of the surface through a point C is its section by a plane containing the surface normal in this point. Curvature of normal section: 2 2 Ld Md d Nd 1 2 , 2 ds R k n n α + α β + β = − = Rn = radius of curve Second 2 dr dn d r n ϕ = − ⋅ = ⋅ 2 = α + α β + β Quadratic Form Ld 2 2 Md d Nd 2 , x y z αα αα αα 1 , r ⋅ r × r αα − 2 2 2 x y z α α α β β β αα α β α β = × = ⋅ = x y z A B F L r r r n x y z αβ αβ αβ 1 , r ⋅ r × r αβ − 2 2 2 x y z α α α β β β αβ α β α β = × = ⋅ = x y z A B F M r r r n x y z ββ ββ ββ 1 , r ⋅ r × r ββ − 2 2 2 x y z α α α β β β ββ α β α β = × = ⋅ = x y z A B F N r r r n Page 6
  • 8. 2 2 2 2 2 r r r r r r ∂ ∂ ∂ = , = , = ; αα ∂α αβ ∂α∂β ββ ∂β L, M, N = coefficients of second quadratic form rα dr rβ h z r r+dr x y n ds1 ds2 2h 2 ϕ = Principal curvatures: ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ L 1 , = = − = = = − = N 2 2 2 max 2 1 1 min 1 B R k k A R k k 1 Ld α 2 + Nd β 2 2 2 2 2 α + β − = A d B d R Gaussian curvature of the surface: 2 LN − M 2 2 2 1 2 1 2 1 A B F R R k k k − = = = Mean curvature of the surface: k + H k 1 2 2 = •Elliptical surface: k > 0 (surface of positive curvature) •Hyperbolic surface: k < 0 (surface of negative curvature) •Parabolic surface: k = 0 (surface of zero curvature) •Minimal surface: H = 0 Page 7
  • 9. Ellipsoid x2 a2 + z2 y2 b2 + = 1 c2 a b c ⎛⎜⎜⎝ ⎞⎟⎟⎠ 1 1.5 0.5 ⎛⎜⎜⎝ ⎞⎟⎟⎠ := N := 20 i := 0 .. N ϕi i π N := ⋅ j := 0 .. N θj j 2 ⋅ π N := ⋅ Xi, j a sin ϕ⋅ ( i) sin θ:= ⋅ ( j) Yi, j b sin ϕ⋅ ( i) cos θ:= ⋅ ( j) Zi, j c cos ϕ:= ⋅ ( i) Ellipsoid (X, Y, Z) Page 8
  • 10. Hyperpoloid x2 a2 + z2 y2 b2 − = 1 c2 a b c ⎛⎜⎜⎝ ⎞⎟⎟⎠ 1 1 1.5 ⎛⎜⎜⎝ ⎞⎟⎟⎠ := f (z) 1 z2 c2 := + F(ϕ, z) a ⋅ cos(ϕ) ⋅ f (z) b ⋅ sin(ϕ) ⋅ f (z) z ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Hyperboloid F a b c ⎛⎜⎜⎝ ⎞⎟⎟⎠ 1 1 1.5 ⎛⎜⎜⎝ ⎞⎟⎟⎠ := F1(u, v) a ⋅ cos(u) ⋅ v b ⋅ sin(u) ⋅ v c ⋅ v2 + 1 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ := F2(u, v) a ⋅ cos(u) ⋅ v b ⋅ sin(u) ⋅ v −c ⋅ v2 + 1 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ := Hyperboloid F1, F2 x2 a2 + z2 y2 b2 − = −1 c2 Page 9
  • 11. Cone x2 a2 + z2 y2 b2 − = 0 c2 a b c ⎛⎜⎜⎝ ⎞⎟⎟⎠ 1 1 1.5 ⎛⎜⎜⎝ ⎞⎟⎟⎠ := f (z) z c := F(ϕ, z) a ⋅ cos(ϕ) ⋅ f (z) b ⋅ sin(ϕ) ⋅ f (z) z ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Cone F Page 10
  • 12. Elliptical paraboloid p q ⎛⎜⎝ ⎞⎟⎠ 4 4 ⎛⎜⎝ ⎞⎟⎠ := z(x, y) x2 2 ⋅ p y2 2 ⋅ q := + Elliptical Paraboloid z w(z, ϕ) := z u(z, ϕ) := 2 ⋅ p ⋅ sin(ϕ) ⋅ z v(z, ϕ) := 2 ⋅ q ⋅ cos(ϕ) ⋅ z H := 6 mesh := 20 S := CreateMesh(u, v, w, 0, H, 0, 2 ⋅ π, mesh) Elliptical Paraboloid S Page 11
  • 13. Hyperboloic paraboloid p q ⎛⎜⎝ ⎞⎟⎠ 3 1 ⎛⎜⎝ ⎞⎟⎠ := z(x, y) x2 2 ⋅ p y2 2 ⋅ q := − Hyperbolic Paraboloid z a b ⎛⎜⎝ ⎞⎟⎠ 1 1 ⎛⎜⎝ ⎞⎟⎠ := α 1 5 := F(u, v) a 2 ⋅ (v + u) b ⋅ (v − u) 2 α 1 2 ⋅ ⋅ u ⋅ v ⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ := F Page 12
  • 14. Elliptical Cylinder x2 a2 y2 b2 + = 1 a b ⎛⎜⎝ ⎞⎟⎠ 5 6 ⎛⎜⎝ ⎞⎟⎠ := F(ϕ, z) a ⋅ sin(ϕ) b ⋅ cos(ϕ) z ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Elliptical Cylinder F Hypobolic Cylinder a b ⎛⎜⎝ ⎞⎟⎠ 0.8 1 ⎛⎜⎝ ⎞⎟⎠ := F1(y, z) a 1 y2 b2 ⋅ + y z ⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ := F2(y, z) −a 1 y2 b2 ⋅ + y z ⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ := Hyperbolic Cylinder F1, F2 Page 13
  • 15. Parabolic Cylinder y2 = 2 ⋅ p ⋅ x p := 2 F(y, z) y2 2 ⋅ p y z ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ := Parabolic Cylinder F R r ⎛⎜⎝ ⎞⎟⎠ 5 2 ⎛⎜⎝ ⎞⎟⎠ := F(ϕ, θ) (R + r ⋅ cos(ϕ)) ⋅ cos(θ) (R + r ⋅ cos(ϕ)) ⋅ sin(θ) r ⋅ sin(ϕ) ⎡⎢⎢⎣ ⎤⎥⎥⎦ := F Page 14
  • 16. Helicoid c := 1 f (u) := 0 F(u, v) u ⋅ cos(v) u ⋅ sin(v) c ⋅ v + f (u) ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Straight Helicoid F c := 1 f (u) := 1.5 ⋅ u x(u, v) := u ⋅ cos(v) y(u, v) := u ⋅ sin(v) z(u, v) := c ⋅ v + f (u) r := 2 R := 5 N := 4 H := N ⋅ π mesh := 20 S := CreateMesh(x, y, z, 2, 5, 0, 4 ⋅ π, mesh) Parabolic Helicoid S Page 15
  • 17. c := 1 f (u) 1 5 := ⋅ u2 x(u, v) := u ⋅ cos(v) y(u, v) := u ⋅ sin(v) z(u, v) := c ⋅ v + f (u) r := 2 R := 5 N := 4 H := N ⋅ π mesh := 20 S := CreateMesh(x, y, z, 2, 5, 0, 4 ⋅ π, mesh) Parabolic Helicoid S Page 16
  • 18. Torse a b ⎛⎜⎝ ⎞⎟⎠ 1 0.5 ⎛⎜⎝ ⎞⎟⎠ := x(u, v) a ⋅ cos(v) a ⋅ u ⋅ sin(v) a2 + b2 := − y(u, v) a ⋅ sin(v) a ⋅ u ⋅ cos(v) a2 + b2 := + z(u, v) b ⋅ v b ⋅ u a2 + b2 := + mesh := 20 S := CreateMesh(x, y, z, 1, 5, 0, 4 ⋅ π, mesh) Torse S Page 17
  • 19. Catenary surface x(u, v) := cosh(u) ⋅ cos(v) y(u, v) := cosh(u) ⋅ sin(v) z(u, v) := u mesh := 30 S := CreateMesh(x, y, z, −1, 1, 0, 2 ⋅ π, mesh) Caternary surface S Pseudosphere a := 1 x(u, v) := a ⋅ sin(u) ⋅ cos(v) y(u, v) := a ⋅ sin(u) ⋅ sin(v) z(u, v) a cos(u) ln tan u 2 ⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠ + ⎛⎜⎝ ⎞⎟⎠ := ⋅ + , 0 , 2 π ⋅ , mesh , ⎛⎜⎝ mesh := 30 S CreateMesh x, y, z π 2 2 ⋅ π 5 , − π 2 3 ⋅ π 7 ⎞⎟⎠ := Caternary surface S Page 18
  • 20. H := 3 R := 1 N := 20 i := 0 .. N ρi R N := ⋅ i j := 0 .. N ϕj 2 ⋅ π N := ⋅ j Xi, j ρi cos ϕ:= ⋅ ( j) Yi, j ρi sin ϕ:= ⋅ ( j) Z1i, j H R ρ( i):= + − 2 ρ:= ⋅ i Z2i, j H R2 X := stack(X, X) Y:= stack(Y, Y) Z := stack(Z1, Z2) (X, Y, Z) Page 19
  • 21. R := 1 N := 20 i := 0 .. N φi 2 ⋅ π N := ⋅ i j := 0 .. N ρj R N := ⋅ j Xi, j ρj cos φ:= ⋅ ( i) Yi, j ρj sin φ:= ⋅ ( i) Zi, j ρ( j):= 2 Page 20
  • 22. Moment Theory of Shells Symbols h thickness Nα, Nβ normal forces Sα, Sβ tangential shears Qα, Qβ shears Mα, Mβ bending moments Mαβ, Mβα torsion moments X, Y, Z external forces C Æ (α,β) D Æ (α+dα,β+dβ) C1 Æ (α+dα,β) D1 Æ (α,β +dβ) CD = ds CC1 = Adα CD1 = Bdβ ⎞ β ∂ ⎟⎠ ∂ C D = B + B d 1 ⎛ α ⎜⎝ ∂α ⎞ α ∂ ⎟ ⎟⎠ ⎛ D D = A+ A d 1 ⎜ ⎜⎝ β ∂ ∂β x y z C n Mα Mβ C1 D1 D Nα Qα Sα Mαβ Qβ Nβ Sβ Mβα Z X Y M α β Page 21
  • 23. z x X Z C1 Qα C Adα dϕα dϕα Nα α ∂ + α α N N d ∂α ∂ Q + Q α d α α R1 ∂α Q ∂ + β β d C dϕβ R2 Qβ Nβ z Y Z dϕβ Bdβ y N ∂ + β β d β ∂β N β ∂β Q D1 d A ϕ = α α d R 1 d B ϕ = β β d R 2 C C1 D1 D X Y y, β x, α Nβ Sα Nα Sβ Mβα Mβ Mα Mαβ dψα dψβ d D D CC 1 ψ = α A d d C D CD 1 ∂ ψ = B d β 1 1 α β ∂ ∂β = − CD B 1 ∂α = − 1 1 CC A 1 Page 22
  • 24. Equilibrium Equations ⎞ ⎛ S ∂ d d D D X S CC S 1 1 d sin d cos d D D N CD cos 1 1 N N N N d d d C D S S d ⎞ d C D ⎞ ∂ ∂ + + ⋅ ϕ ψ ⎟⎠ ⎛ α cos cos sin 1 1 d sin d sin d D D ⎞ Q cos sin 0 1 1 ∂ ⎞ = β α + ⋅ ϕ ψ ⎟⎠ ∂ ⎛ ∂ ⎛ ⎛ α Q ⎛ α ⎜⎝ ∂α − + − ⋅ ϕ ψ ⎟ ⎟⎠ ⎜ ⎜⎝ β ∂β + + + ⋅ ψ ⎟⎠ ⎜⎝ ∂α ⎞ ⎜⎝ ∂α + + + ⋅ − ⋅ ϕ ψ ⎟ ⎟⎠ ⎜ ⎜⎝ β ∂β − + + ⋅ ψ ⎟ ⎟⎠ ⎜ ⎜⎝ β ∂β = − ⋅ + + α α α α β β β β α α α α α α α β β α β β β β β β Σ Q Q d d d C D XABd d A S AB ∂ ∂ 0 : 1 0, ( ) ( ) ( ) ( ) α β α B S AB 0 : 1 0, ∂ + ∂ β 2 ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ∂ ∂ N AB Z AB 0 : 0, α β β α ( ) ( ) ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 1 2 0 : 1 0, β α β + = ∂ ∂ ∂α + ∂ − ∂ − ∂α ∂ ∂ ∂β = + = ∂β + ∂β ∂α = − = ∂α ∂β ∂ ∂ = + + − + = ∂α + ∂β − ∂β = − + = ∂β + ∂α − ∂α = α β α β α Σ Σ Σ Σ Σ 2 0 : 1 2 0, 2 1 2 A H BM M B ABQ A M B H AM M A ABQ B M N AQ BQ ABZ R R Q ABY R B Y AN N A Q ABX R A X BN N B x y M α β Σ R = − − βα + αβ ≡ 0 : 0 R 2 1 M M S S z S = S = S M = M = H α β αβ βα Because , N , N , S,Q ,Q ,M ,M ,H α β α β α β 8 unknowns and 5 equations. Page 23
  • 25. Internal Forces Αdα ⎛ + d A z dϕα α ⎞ α ⎟ ⎟⎠ ⎜ ⎜⎝ R 1 1 h 2 h 2 dz z z σβ τβα τβz ⎞ N z 1 , ⎞ S z 1 , ⎞ Q z 1 , h β β − h β βα 2 ⎛ ⎛ β β 2 1 ∫ 2 2 1 2 2 1 ∫ ∫ − − ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ = − τ + ⎟ ⎟⎠ ⎜ ⎜⎝ = τ + ⎟ ⎟⎠ ⎜ ⎜⎝ = σ + h h z h h dz R dz R dz R ⎛ + τ = ⎟ ⎟⎠ ⎛ zdz M z M z ∫ ∫ 1 , 1 β ⎟⎠ ⎟ β βα βα − − ⎞ ⎜ ⎜⎝ ⎞ ⎜ ⎜⎝ = − σ + 2 2 1 2 2 1 h h h h zdz R R R1 ⎛ + τ − = ⎟ ⎟⎠ ⎛ + τ = ⎟ ⎟⎠ ⎛ dz Q z dz S z N z ∫ ∫ ∫ 1 , 1 ⎟ ⎟⎠ , 1 α α α α − α αβ − − ⎞ ⎜ ⎜⎝ ⎞ ⎜ ⎜⎝ ⎞ ⎜ ⎜⎝ = σ + 2 2 2 2 2 2 2 2 2 h h z h h h h dz R R R ⎛ + τ = ⎟ ⎟⎠ ⎛ zdz M z M z ∫ ∫ 1 , 1 α ⎟⎠ ⎟ α αβ αβ − − ⎞ ⎜ ⎜⎝ ⎞ ⎜ ⎜⎝ = − σ + 2 2 2 2 2 2 h h h h zdz R R ⎛ + ≈ ⎟ ⎟⎠ ⎛ z z R z 1 ≈ ⎟ ⎟⎠ 1 1, 1 1 1 2 ⎞ ⎜ ⎜⎝ ⎞ ⎜ ⎜⎝ << → + R R So, S = S = S M = M = H α β αβ αβ , Page 24
  • 26. Strain Determination. Hooke’’s Law. Boundary Conditions n eβ M M’ u uz eα uβ uα eα, eβ, n = unit vectors e = r e r α A β B 1 , 1 ∂ , ∂β = ∂ ∂α r × r n = α β A2B2 − F2 α β u = resultant displacements; uα, uβ, uz = displacement components in α-, β- and z-direction Position of M: r, Position of M’: r r u r e e n z = + = + u + u + u α α β β ' For a point M’: ⎞ ⎛ ⎛ ∂ ∂ ′ ′ u u ⎟ e ⎟⎠ ′ = r e e α n ⎜ ⎜⎝ − ∂ ∂α + ⎟ ⎟⎠ ⎞ ⎜ ⎜⎝ ∂ ∂β − ∂α ≈ + ∂α α β β α α 1 1 1 1 1 R A A u AB u A A z ⎞ ⎛ ∂ ′ ′ u u ⎟ e ⎟⎠ ′ = r e e β n ⎜ ⎜⎝ − ∂ ∂β ⎞ + + ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ∂ ∂α − ∂ ∂β ≈ ∂β β α β α β 2 1 1 1 1 R B B u AB u B B z ⎞ ⎞ ⎟ ⎟⎠ A r A A u u z ′ = β ⎛ ∂ ∂ ∂ ′ B r B B u u z ′ = α ⎜ ⎜⎝ + ∂ ∂α + ∂ ∂β ≈ + ∂ ′ ∂β β 2 1 1 1 R AB u B ⎟ ⎟⎠ ⎜ ⎜⎝ ⎛ + ∂β + ∂α ≈ + ∂α α 1 1 1 1 R AB u A Normal strains: ds ds ′ − ds ds , 2 2 , 2 ′ − ε = 1 1 α β ds 1 ds ε = , , 1 2 ds = Adα ds = Bdβ , . 1 2 ds′ = A′dα ds′ = B′dβ Page 25
  • 27. B u u ∂ 1 1 . 2 R β ε = α AB u B + z ∂ ∂α + ∂β A u u ∂ β 1 1 , 1 R ε = β AB u A + z ∂ ∂β + α ∂α α Shear strain: ′ ′ = ′ ′ ⎛ π − ε ⎞ ⎛ − ε ⎞ sin α β α β αβ αβ αβ αβ ε ≈ ε = ⎟⎠ ⎜⎝ π = ⎟⎠ ⎜⎝ 2 cos 2 e e e e cos ⎞ ⎟⎠ ⎛ ∂β A u B ε = β α αβ A ⎜⎝ ∂ ⎞ + ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ∂ ∂α u B B A Kichhoff-Love’s Assumptions: 1. About normal to middle surface: ε = ε = ε = 0 βz zα z 2. About normal stress: σ = 0 z After deformation: ds ds ( ) ( ) ( )⎭ ⎬ ⎫ ′ = + ε 1 , α 1 1 ds ds ′ = + ε 1 , β 2 2 ′ = + ε 1 , A A ( )⎭ ⎬ ⎫ ′ = + ε α 1 . β B B ′ = ′ ′ π ⎞ 1 1 ( )( ) αβ α β αβ ε ε + ε + = ⎟⎠ ⎛ − ε F A B cos AB ⎜⎝ 2 Love’s formulas: M ′ ε ε 1 1 , 1 1 β , . A B 1 1 1 2 2 κ = αβ κ = − − + ′ κ = − + ′ R R R R R R ′ ′ 2 β α α κα, κβ = changes of bending curvatures ¬pldkkMeNagBt;¦, καβ = change of twisting curvatures ¬pldkkMeNagrmYr¦. Page 26
  • 28. In the distance z form midplane: ⎪⎬ ⎫ R = R + z , ( ) ( ) ⎪⎭ ds A d = α z ( ) ( ) 1 1 R = R + z , z 2 2 ⎪⎬ ⎫ , , z z 1 ds B d = β ( ) ( ) ⎪⎭ 2 z z A A z ( ) ⎫ ⎪ ⎪ ⎬ ⎞ 1 , ⎞ ⎛ ⎛ R 1 z B B z ( ) ⎪ ⎪ ⎭ ⎟ ⎟⎠ ⎜ ⎜⎝ = + ⎟ ⎟⎠ ⎜ ⎜⎝ = + 1 . R 2 z z ε = ε + κ ( ) ( ) ( ) ⎫ u u zV z ( ) ⎪⎭ ⎪⎬ α α α z ε = ε + κ z β β β , , z 2 . ε = ε + κ z αβ αβ αβ z α α u u zV ( ) ( ) ⎫ ⎪⎭ ⎪⎬ = + = + z β β u = u . , 1 , 2 z z z ( ) u 1 1 , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 u 1 1 , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) B ( ) ( ) ( ) ( ) ∂ ∂ A ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎭ ⎞ ⎟ ⎟ ⎠ ⎛ ∂β ⎜ ⎜ ⎝ ∂ ⎞ + ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ ∂ ∂α ε = + ∂α + ∂β ∂ ε = + ∂β + ∂α ∂ ε = z z u u β α αβ α β β β α α . 2 z z z z z z z z z z z z z z z z z z z z z z z z z A B B A R u B A B u B R u A A B u A ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ⎞ ⎟⎠ ⎛ ⎜⎝ 1 1 , 1 1 , ∂ 1 ∂α ∂ ⎞ ∂ + ⎟⎠ ⎛ ∂β ⎜⎝ ∂ α κ = ∂α + ∂ ∂ ∂β κ = ∂β + ∂α κ = αβ β V A V B 2 2 1 . 2 2 1 A B B A B V AB V B AV AB V A ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 1 ∂ , ∂ z ∂β α V u u = − ∂α = − β 1 . 2 2 1 1 z u R B V u R A Hooke’s law E E z ( ) ( ) ( ) [ ( )] z z α α β α β α β 2 2 E E z ( ) ( ) ( ) [ ( )] ⎫ ⎪ ⎪ ⎪ ⎬ z z β β α β α β α ( ) ( ) ( )( ) ⎪ ⎪ ⎪ ⎭ 2 . ε + κ + ν ε = + ν τ = τ = ε + νε + κ + νκ − ν ε + νε = − ν σ = ε + νε + κ + νκ − ν ε + νε = − ν σ = αβ βα αβ αβ αβ 2 1 2 1 , 1 1 , 1 1 2 2 E E z z Page 27
  • 29. Internal forces: N C ( ) ( ) ( ) ( ) ⎪⎭ ⎫ ⎪⎬ = ε + νε α α β N C = ε + νε β β α S 1 C 1 , = − ν ε αβ , , 2 ⎫ ⎪⎬ M D = − κ + νκ α α β , ( ) ( ) ⎪⎭ M D = − κ + νκ β β α 1 . = − − ν κ αβ , H D C = Eh shell stiffness (rigidity) for tension, 1− ν2 3 D = Eh shell stiffness (cylindrical rigidity) for bending, ( 2 ) 12 1− ν Boundary Conditions Equations (17) • 5 equations of statics, • 6 strain components, • 6 physical equations. Unknowns (17) • 8 internal forces: α β α β α β N , N , S,M ,M ,H,Q ,Q • 3 displacements: z u ,u ,u α β • 6 strains: α β αβ α β αβ ε ,ε , ε , κ , κ , κ Generalized shears and tangential shears (β=const): H S S H ~ 1 , ~ . 1 R ∂ Q Q = − A ∂α = + β β enAelIRCugnImYy² RtUvman 4 lkçx½NÐRBMEdn Page 28
  • 30. Rim β=const is free: H N S H 0, 1 0, 0, 0. = + β β β R = = − = 1 ∂ ∂α A M Q Rim β=const is built-in: ∂ 0, 1 = 0. 2 ∂β = = = = − α β z z u B u u u V Rim β=const is hinge supported: = 0, = = = 0. β α β z M u u u Rim β=const is simple supported with normal movement: = + β β α β H u u ∂ 0, 1 = 0, = = 0. ∂α A M Q Rim β=const is simple supported with tangential movement: M N S H = = − = = β β z u 0, 0, 0, 0. R 1 Page 29
  • 31. Analysis of Cylindrical Shells z y x f l β=s α=x dx ds a x=l x=0 C Z X Y z x,α y,β D C1 D1 Qx S Nx S H H Mx Qs Ns Ms Equations of cylindrical shell: x = α, y = y(β), z = z(β) Coordinate lines: α = x, β = s, s = arc length. A B F d dx d ds = ∞ = ϕ = ϕ = 1, 0, , ,cos 0, = = = α = β = χ = R R R s d d ds , ( ), 0, . 1 2 α β R Equilibrium equations: ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 0, − = Q s s Q ∂ + ∂ S ∂ + N x ∂ + Q ∂ + ∂ − + = ∂ N ∂ S ∂ ∂ + = ∂ ∂ 0, 0, N 2 2 Z x s R Y R s x X s x s s x ⎫ ⎪ ⎪⎭ ⎪ ⎪⎬ + = M ∂ − H ∂ − ∂ H ∂ − M ∂ − ∂ + = ∂ ∂ 0, 0, x x s s Q s x Q s x ⎫ ⎪ ⎪⎭ ⎪ ⎪⎬ H ∂ + M ∂ + ∂ ∂ Q = M Q ∂ = H ∂ ∂ ∂ , . s x s x s s x x Page 30
  • 32. CMnYs Qx nig Qs cUleTAkñúgsmIkarbIxagmux eyIgTTYl)an ³ ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 0, M H 1 1 0, − = ∂ s x ∂ + M ∂ ∂ ∂ H ∂ ∂ + S ∂ + N x ∂ + ∂ + M ∂ + = ∂ − ∂ − ∂ N ∂ S ∂ ∂ + = ∂ ∂ 2 0. 2 2 2 2 2 N 2 Z s x s x R Y s x R s R x X s x s x s Strain components: u u u u ∂ + ∂ ∂ , , , 2 u u u u , , 2 1 2 . u 2 2 ∂ x s x ⎞ s R R ∂ x s s x R s u x s z xs ∂ − s z y z x s x xs s z y x x ∂ ∂ − ∂ ∂ = κ ⎟⎠ ⎛ ⎜⎝ ∂ ∂ κ = ∂ ∂ ∂ κ = − ∂ ∂ + ε = ∂ ε = ∂ ε = Internal forces: ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ u ⎛ + ∂ u u ∂ s z x ⎞ ⎟⎠ ⎡ N C u N C ⎡ u ∂ ∂ u S − ν C ⎛ ∂ u ⎜⎝ u ∂ + ∂ ∂ = ⎤ ⎥⎦ ⎢⎣ ∂ + + ν ∂ = ⎤ ⎥⎦ ⎢⎣ ⎞ ⎟⎠ ⎜⎝ ∂ + ν ∂ = , 2 1 , , s x x R s R s x s x s x s z x M D u ⎡ u s ∂ s z z 1 1 ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ u ∂ − u ⎞ ⎟ ⎟⎠ ∂ ⎛ ⎛ ⎜ ⎜⎝ ⎛ u ∂ ν − ⎟⎠ ∂ − u ∂ ∂ u ∂ − u ∂ ∂ = − − ν ⎞ ⎤ ⎥⎦ ⎢⎣ ∂ ⎞ ⎜⎝ ∂ ∂ = − ⎤ ⎥⎦ ⎢⎣ ⎡ ⎟⎠ ⎜⎝ ∂ ∂ ∂ + ν ∂ = − − . 2 , , 2 2 2 2 2 x s x R H D x s R M D s R x s s z s z s z x CMnYstMélkMlaMgkñúgxagelIcUleTAkñúgsmIkarlMnwg eyIgnwg)an Page 31
  • 33. X − ν ∂ 0, ⎞ 1 2 u u 2 + ν ∂ ⎛ + ν ∂ 2 2 2 12 1 2 ⎡ u ν ∂ + 2 2 2 12 − ν ∂ 1 ⎛ + ν ∂ 2 1 ∂ 2 2 2 2 2 2 2 2 ∂ 2 2 2 ⎛ ⎤ ⎞ u Y = + ⎥⎦ ⎡ ⎢⎣ ⎞ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ ∂ ∂ ∂ ∂ ⎞ − ⎟⎠ ∂ ⎛ ∂ ⎜⎝ ∂ + ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎤ ⎥⎦ ⎢⎣ ∂ + ⎟⎠ ⎜⎝ ∂ + ∂ + ∂ + u ∂ ∂ C R s x s h s R u R s R R x h x s s x z s x ∂ + ⎟⎠ 4 ⎡ 2 2 ∂ 4 2 ⎤ ⎞ ∂ + ∂ ⎤ ⎞ ⎛ ⎛ ∂ u Z 2 0. ∂ ⎛ 2 4 12 1 12 1 4 2 2 4 2 2 2 = − ⎥⎦ u ν ∂ ⎡ ⎢⎣ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ ∂ ∂ + ∂ ∂ + + + ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎥⎦ ⎢⎣ ⎟⎠ ⎜⎝ ∂ ⎞ ⎜⎝ ∂ ∂ − ∂ + ∂ C x x s s h R u s x R s R h x R s R z s x 0, 2 1 2 2 2 + = ∂ ∂ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ C x x s R x s s z x For circular cylindrical shell: R = r = const ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ L u L u L u X + + + = x s z 11 12 13 C L u L u L u Y + + + = x s z 21 22 23 C L u L u L u Z + + − = 0, 0, 0. 31 32 33 C x s z Equilibrium equations , 1 + ν ∂ 2 12 21 x s 2 L L ∂ ∂ , = = − ν ∂ ∂ = 11 x s 2 1 2 2 2 2 L ∂ + ∂ , ∂ + + ν ∂ 22 x s 2 1 2 2 2 2 L ∂ ∂ = L L ν ∂ = = , 13 31 r ∂ x , ⎛ 2 3 ⎡ ⎞ ∂ + ∂ ∂ 23 32 12 ⎥⎦ 1 3 3 2 ⎤ ⎢⎣ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ ∂ ∂ − ∂ = = x s s h r s L L 4 4 ⎛ ∂ + ∂ ∂ 2 33 ⎟ ⎟⎠ 2 . 2 4 12 1 4 2 2 4 ⎞ ⎜ ⎜⎝ ∂ ∂ ∂ + ∂ = + x x s s h r L Page 32
  • 34. Case X=Y=0: u L u L s 1 4 L L 11 12 ∇ = , = , , x L L s x 2 21 22 − ν = = L L L L − L u − = . , L u L z 13 12 L u L 23 22 L z x − 11 13 22 23 z z L s L − L u = ⎞ , r u uz 1 z z z ⎛ 2 5 + ν h u 1 12 4 5 3 2 2 3 3 3 4 ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + u ∂ ∂ ∂ ∂ ∂ − ν − ∂ + u ∂ ∂ ∂ ∂ ∇ = −ν x s x s x s x x 5 ⎡ 2 5 3 r u ∂ uz ∂ − u h ∂ u ∂ u ∂ u z z z z ( ) ( ) 2 (3 ) (1 ) . 4 ⎥⎦ 2 5 s 12 1 12(1 ) 2 (3 ) (2 ) 1 4 , 5 2 3 4 3 3 2 ⎤ ⎢⎣ ∂ + − ν ∂ ∂ + − ν ∂ ∂ − ν + ∂ ∂ ∂ ∇ = − + ν s x s x s s x s 6 u ⎡ ∂ ∂ ∂ − ν ∂ ⎥⎦ u z z z z = ∇ z 4 2 6 u 2 4 u 6 6 u 4 2 4 2 2 2 8 Z x s D x s s x r r h ⎤ ⎢⎣ ∂ ∂ + + ν ∂ ∂ + + ν ∂ + ∂ ∇ + 4 4 4 ∂ + ∂ ∂ Where 4 2 , 4 2 2 4 x ∂ x ∂ s ∂s + ∂ ∇ = 8 8 8 ∂ 2 6 8 ∂ ∂ ∂ 8 4 4 4 6 4 4 4 8 6 2 8 8 ∂ + x x s x s ∂ x ∂ s ∂s + ∂ + ∂ ∂ + ∂ ∇ = ∇ ∇ = L.N.Donnel’s equations: u 1 , ν ∂ 3 u u ∇ = − 2 1 , u z z x ∂ ∂ 2 3 u 3 3 4 x s x r r ∂ + ∂ + ν ∂ u z z s ∂ 3 3 2 4 s x s r r ∂ − ∂ ∂ ∇ = − 12 ( 1 − ν ) ∂ u 1 4 . u z z = ∇ 4 4 2 2 2 8 Z x D r h ∂ ∇ + For closed shell: Σ Σ∞ ( )cos , ( )cos , z zm u u x m Z Z x m = ϕ = ϕ 0 = 0 ∞ = m m m Page 33
  • 35. ∫ π where ϕ = s , Z ( x ) = Z cos mϕdϕ . −π r m 2 m , 2 2 2 2 4 m m ∂ ∂ ∇ = 2 , 2 4 2 2 2 2 2 r ∂ = ∂ + ∂ x s x − ∂ ∂ ∂ 4 2 2 4 4 r r x x + ∂ − ∂ ∇ = 8 2 6 4 4 6 2 m m m m ∂ ∂ ∂ 4 6 4 , 2 6 4 4 6 2 8 8 8 8 r r x r x r x ∂ x + ∂ − ∂ + ∂ − ∂ ∇ = smIkar Donnel TI3 manragCa ( ) 4 2 ⎛ 4 − ν 6 2 ⎞ d m d m 4 6 121 4 4 2 d + + − Σ∞ = 2 4 2 6 ⎤ ⎡ d m Z x ms m d m d 1 2 ( ) cos 0 4 − − + 2 2 4 0 8 m 8 2 6 4 2 2 4 6 2 8 8 = ⎭ ⎬ ⎫ ⎥⎦ ⎢⎣ ⎪⎩ ⎪⎨ ⎧ ⎤ − ⎥⎦ ⎡ ⎢⎣ + − ⎟ ⎟⎠ ⎜ ⎜⎝ r r dx r dx D u x r dx r dx r r h dx r dx m m zm Tangential displacements: ( )cos , Σ∞ x xm u u x m = ϕ 0 = m ( )sin , Σ∞ s sm u u x m = ϕ 0 = m For open shell: u u s m x ⎫ ( ) ( ) ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎭ cos , l u u s m x sin , l u u s m π x x xm m s sm = π = π = ∞ Σ = ∞ 0 Σ = m ∞ 0 Σ z zm = sin , 0 m l ⎫ ⎪ ⎪ ⎪ X X s m x cos , Y Y s m x ( ) ( ) ⎪ ⎪ ⎪ ⎬ ⎭ sin , l π Z = Z s m x π = π = ∞ Σ = ∞ 0 Σ = 0 ∞ Σ = sin . 0 m m m m m m l l Z m x l Y m x l X m x l 2 cos , 2 sin , 2 sin . ∫ π ∫ π π = = ∫ 0 0 0 = l m l m l m dx l dx Z l dx Y l X Boundary conditions = 0 and = : = = = = 0. s z x x x x l u u N M where (Simple-supported on the rigid diaphragm) Page 34
  • 36. Example Axis-symmetrical Cylindrical Shell z x l 2R h x Z External forces: X = Y = 0, Z = q(l − x) Data: R = 1 m , h = 5 mm , l = 5 m = 0.001 3 q kgf cm Steel: 2 106 2 , E = ⋅ kgf cm 0.3 ν = In a case of axis symmetry (Y = 0): ∂ 0, = 0. ∂ = = = = s u Q S H s s L Internal forces: du N C u ⎞ ⎞ = ⎛ + ν ⎟⎠ , , D d u ⎟⎠ Q dM u ⎜⎝ M D d u = ⎛ + ν , , . 3 3 2 2 N C du ⎜⎝ M D d u 2 2 dx dx dx dx dx R R dx x z x z s z x z x s x z x = = ν = = Equilibrium equations: ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⎞ u ZR = − ⎟ ⎟⎠ x z ⎛ ⎜ ⎜⎝ d u du du ν + + X + = ν + 0. 2 4 Rh d 12 1 0, 4 2 2 C dx dx R C dx dx R z x Page 35
  • 37. sikSakrN I X=0: ecjBIsmIkarlMnwgTI 1 eyIg)an ∫ ν u C N x = = → = + − u dx ν + x x z x z R u C C x C du dx R 0 6 5 6 CMnYscUleTAkñúgsmIkarTI 2 eyIgTTYl)an ν ( )3 z + γ = − N 1 . d u x u Z 4 4 , 4 4 RD D dx z − ν 2 2 2 4 R h γ = Common solution: u 0 = e −γ x (C cos γ x + C sin γ x) + e γ x (C cos γ x + C sin γ x) z 1 2 3 4 ~ Particular solution: u (x) z sMrab;krNI]TahrNxagmux KWecjBIlkçx½NÐ)atxagelITMenr eyIgrkeXIj 0 0 6 N = → C = x ( ) ( ) u q l x D u q l x D d u dx z z z 4 4 4 4 4 4 ~ γ − → = − + γ = ( ) ( ) ( ) − u = e −γ x C cos γ x + C sin γ x + e γ x C cos γ x + C sin γ x + q l x z 1 2 3 4 4 γ 4 D Boundary conditions: x u u duz = 0 : = 0, = 0, = 0. dx x z 3 x l M D d u Q D d u z : 0, 0. 2 3 2 = = = = = d x dx x z x ∫ ν = − x x zu dx R u C 0 5 Page 36
  • 38. Circular Tank Radius R := 1 Heigth L := 3 Thickness h := 0.1 Fluid density q := 10 Modulus of elasticity E 2 10 4 ⋅ 10− 3 := ⋅ Poisson ratio ν := 0.2 10− 6 Cylindrical stiffness D E ⋅ h3 ⋅ ( − 2) 12 1 ν := γ4 ⋅ ( − 2) R2 ⋅ h2 3 1 ν := γ 4 := γ4 Particular solution u1z(x) q ⋅ (L − x) 4 ⋅ γ4 ⋅ D := u01z(x) q L ⋅ x x2 2 − ⎛⎜⎝ ⎞⎟⎠ ⋅ 4 ⋅ γ4 ⋅ D := F(x) e − γ⋅x ⋅ cos(γ ⋅ x) e − γ⋅x ⋅ sin(γ ⋅ x) eγ⋅x ⋅ cos(γ ⋅ x) eγx ⋅ ⋅ sin(γ ⋅ x) ⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ := K −γ γ 0 0 −γ −γ 0 0 0 0 γ γ 0 0 −γ γ ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ := K2 := K ⋅ K K3 := K2 ⋅ K K01 K− 1 := F1(x) := K ⋅ F(x) F2(x) := K2 ⋅ F(x) F3(x) := K3 ⋅ F(x) D1 −q := D2 := 0 D3 := 0 4 ⋅ γ4 ⋅ D Boundary conditions: A 0 〈 〉 := F(0) A 1 〈 〉 := F1(0) A 2 〈 〉 := F2(L) A 3 〈 〉 := F3(L) B0 := −u1z(0) B1 := −D1 B2 := −D2 B3 := −D3 Integration constants: C (AT) − 1 := ⋅ B Page 37
  • 39. Normal displacement uz(x) := C ⋅ F(x) + u1z(x) u1x(x) ν R K01T C ⋅ ( ) F x ( ) F 0 ( ) − ( ) ⋅ u01z x ( ) u01z 0 ( ) − ( ) + ⎡⎣ ⎤⎦ := ⋅ c5 := u1x(0) c5 = 0 Longitudinal displacement ux(x) := c5 − u1x(x) C0 E ⋅ h 1 ν − 2 := ⋅ ( − 2) uz(x) Normal force Ns(x) C0 1 ν R := ⋅ Bending moment Mx(x) := D ⋅ (C ⋅ F2(x) + D2) Ms(x) := ν ⋅ Mx(x) Shear Qx(x) := D ⋅ (C ⋅ F3(x) + D3) ξ := 0, 0.02 ⋅ L .. L 0 1 2 3 30 20 10 0 − 10 Normal forces Ns(x) Ns(ξ) x, ξ L1 := 0.2 ⋅ L ξ := 0, 0.02 ⋅ L1 .. L1 0 0.2 0.4 0.6 1 0.8 0.6 0.4 0.2 0 − 0.2 Bending moments Mx(x) Mx(ξ) x, ξ Page 38
  • 40. Analysis of Shallow Shells Shallow shell: 20, 5, min min R h ≥ l f ≥ where lmin = least dimension in plane, f = rise. x y z α ≡ x, β ≡ y cosϕ =1, sin ϕ = 0, ϕ− slope angle Tangential stresses = their projectives Assumptions: 1. In rectangular coordinate: z = z(x, y) 2 2 2 ds = dx + dy 2. Zero Gauss’s curvature k = k k = 0 1 2 3. Q Q α = 0, β = 0 R R 1 2 1 , 2 2 2 2 2 → = = ⎪⎭ ⎪⎬ ⎫ = α + β A B ds A d B d In polar coordinates (r, β): ds2 = dr2 + r2dβ2 → A =1, B = r(z) u 4. α = 0, β = 0. R R 1 2 u So, Page 39
  • 41. ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ A u u 1 1 , ⎞ ⎟⎠ B u u ⎛ ∂β ⎜⎝ ∂ ⎞ ∂ ∂ + ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ∂ ∂ ∂ ∂α ε = + ∂α + ∂β ε = + ∂β + ∂α ε = z 1 u A u β α αβ α β β β α α , 1 1 , 2 A B B B A R AB u B R AB u A z ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ⎞ ⎟ ⎟⎠ 1 ⎛ 1 1 , ⎛ z z 2 1 1 1 , ⎛ ⎜ ⎜⎝ A ∂ u ∂α ∂ ∂β ∂ ∂ z z − ∂ ∂ ∂ ∂α ∂ 2 ∂α ⎞ ⎞ − ∂ ∂ ∂ 2 ∂α∂β α β κ = − ∂α ∂α − ⎟ ⎟⎠ ⎜ ⎜⎝ ∂β ∂ ∂ ∂β κ = − ∂β ∂β − ⎟⎠ ⎜⎝ ∂α ∂α κ = − αβ 1 1 1 z z z . A B u B u AB B u A B u B B A u AB u A A 1 ∂ 0, Equilibrium Equations: ∂ ( ) ( 2 ) ( ) ( ) ∂ + ∂ ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ∂ ∂ α β N AB α β β α ( ) ( ) ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ AB 1 2 1 0, β α β + = ∂ ∂ ∂α + ∂ − ∂ − ∂α ∂ ∂ ∂β + = ∂β + ∂β ∂α − = ∂α ∂β + + + = ∂α + ∂β − ∂ ∂ ∂β + = ∂β + ∂α − ∂α α β α β α 2 1 0, 0, 1 0, 2 2 A H BM M B ABQ A B H AM M A ABQ B N AQ BQ ABZ R R B S ABY B AN N A A S ABX A BN N B Page 40
  • 42. Integration of equilibrium equations ecjBIsmIkarBIrxageRkay eyIgTTYl)an³ ⎤ ⎡ 1 1 ∂ , ( ) ( 2 ) ⎤ α α β ⎡ ∂ ∂ B H M A 1 ( ) 1 ( 2 ) . ⎥⎦ ⎢⎣ ∂ ∂β − ∂ ∂α − ∂ ∂β = ⎥⎦ ⎢⎣ ∂α − ∂β − ∂α = β β α B AM AB Q A H M B A BM AB Q edayeyageTAelIlkçx½NÐCab; (compatibility conditions) 1 ∂ 0, ∂ ( ) ( 2 ) α α αβ ( ) 1 ∂ ( 2 κ ) = 0, ∂α − ∂ ∂β κ − κ ∂ ∂ ∂β κ = ∂β − ∂α κ − κ ∂α B β β αβ B A A A A B B eyIgnwgTTYl)an ³ D ∂ ∂ ( ) ( ) ( ) ( ) . 1 α α β 12 1 1 , 12 1 2 2 3 2 2 3 z z u D A B Q Eh u A A Q Eh ∂ ∇ ∂β κ + κ = ∂ ∂β − ν = − ∇ ∂α κ + κ = ∂α − ν = − β α β CMnYstMélxagelI eTAkñúgsmIkarTIbI eyIgTTYl)an³ ⎡ 1 1 1 ∂ ( ) ( ) β α ⎤ ∂ ∂ ∂ ( ) 1 ( 2 ) 0 2 N 1 2 − = ⎭ ⎬ ⎫ ⎥⎦ ⎢⎣ ⎡ ∂ ∂α − ∂ ∂β − ∂ ∂α ∂ + ∂α + ⎩ ⎨ ⎧ ⎤ ⎥⎦ ⎢⎣ ∂β − ∂α − ∂β ∂β + + α β α β A H M B Z A BM B H M A B AM R AB B N R tagGnuKmnsMBaFkñúg (stress function) ϕ tamrUbmnþxageRkam ³ Page 41
  • 43. ⎞ ⎛ 1 1 1 , 2 ∂ϕ ∂ ∂ϕ ∂ 1 1 1 , 2 2 ⎞ ∂ ⎛ ∂ϕ ∂ ⎞ ⎛ ∂ϕ 1 1 1 . ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ϕ ∂α ∂ ∂β − ∂ϕ ∂β ∂ ∂α − ∂ ϕ ∂α∂β α = − ∂β ∂β + ⎟⎠ ⎜⎝ ∂α ∂α = ∂α ∂α + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂β ∂β = β A A B AB B S A A A AB N B B B A B N bnÞab;BICMnYscUleTAkñúgsmIkarlMnwgsþaTic eyIgsegáteXIjfa smIkarbYn RtUv)anepÞógpÞat; KWBIrxagmux cMeBaHkrNI X=Y=0 nigBIrxageRkay rIÉsmIkarTIbI nwgTTYl)anrag ³ N ⎛ − α + β Eh u Z ( ) 0 12 1 2 2 2 3 1 2 ∇ ∇ + = − ν ⎞ − ⎟ ⎟⎠ ⎜ ⎜⎝ R N R z eyIgman N + N = ∇2ϕ , k N + k N = ∇ 2 ϕ , α β 1 α 2 β k edayEp¥kelIsmIkar Kodazzi ∂ ∂ B ∂ ∂ k B k k A k A ( ) , ( ) = , 2 1 1 2 ∂β ∂β ∂α = ∂α Edl ⎤ ⎡ ⎞ ⎛ A B 1 , ⎤ ⎡ ⎞ ∂ ⎛ k A A ∂ + ⎟⎠ ∂ ∂ 1 . ∂ + ⎟⎠ ∂ 2 1 2 2 ⎥⎦ ⎢⎣ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ ∂β ∂β ⎞ ⎛ ⎜⎝ ∂α ∂ ∂α ∇ = ⎥⎦ ⎢⎣ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂β ∂β ⎞ ⎜⎝⎛ ∂α ∂α ∇ = L L L L L L k B B AB B A AB k dUecñH lkçx½NÐCab;TIbI nigsmIkarlMnwg manragdUcteTA ³ 1 ∇2∇2ϕ −∇2u = 0, ∇2ϕ + D∇2∇2u − Z = 0. Eh k z k z Page 42
  • 44. Analysis of Rectangular Shallow Shells ∂ ∂ Strain components: u y u x u u u ∂ + , , , y R x y 1 2 u R x xy y z y x z ∂ x ∂ ∂ + ε = ∂ + ε = ∂ ε = 2 2 u ∂ u ∂ u z z κ = − αβ , , . 2 2 x y y x y z κ = − ∂ x ∂ ∂ ∂ κ = − ∂ Internal forces: ( ) ( ) ⎡ M D u ⎡ ∂ M D ∂ u ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 1 2 ⎞ ⎛ u u u ∂ + N C u u ∂ S C u ⎤ , ⎤ ⎡ ⎡ ∂ ∂ ∂ ∂ z z H D u ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ∂ ∂ ∂ = − − ν ⎤ , ⎤ ⎥⎦ ⎢⎣ ∂ ∂ ∂ + ν ∂ = − ⎥⎦ ⎢⎣ ∂ + ν ∂ = − ⎪ ⎪ ⎪ ⎪ ⎭ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ ∂ = − ν ⎥⎦ ⎢⎣ + + ν ∂ + ν ∂ = ⎥⎦ ⎢⎣ + + ν ∂ + ν ∂ = 1 . , 1 , 2 , 2 u u 2 2 2 2 2 2 2 2 2 1 x y x y y x x y k k u x y N C k k u y x z y z z x x y z y x y z x y x 2 2 3 k z C Eh D Eh k z ∂ = ∂ = where = , = 1 − ν 2 12 ( 1 − ν 2 ), , . 1 ∂ x 2 2 ∂ y 2 Equilibrium equations: k k u ( ) ( ) + ν ∂ 2 2 − ν ∂ ⎛ ⎞ 2 2 2 ⎤ ∂ u u k k ∂ u ⎞ X Y ⎡ + ∇ + + ν + − ν ∂ u ∂ u k k ∂ u ∂ ∂ + ν ∂ ⎛ h k k k k u Z ( ) ( ) ( 2 ) 0, 12 0, 2 1 2 1 0, 2 1 2 1 2 1 2 2 2 1 4 2 1 2 2 1 2 2 1 2 1 2 2 2 2 = − ⎥⎦ ⎢⎣ ∂ + + ν ∂ + ν + = ∂ ν + + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ + ∂ ∂ + = ∂ + + ν ∂ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ C y k k x C y x y y x C x x y u x y z x y z y x y z x ∂ ( ) ( ) ⎪ ⎪⎭ ⎫ ⎪ ⎪⎬ x x y z ∂ 2 ∇ ∂ κ + κ = ∂ ∂ ∂ = − ∇ ∂ κ + κ = ∂ = − , . 2 u y x y z y D y Q D u x D x Q D Page 43
  • 45. Stress function ϕ = ϕ(x, y): 2 ∂ ϕ = ∂ ϕ = N x y ∂ ∂ , , . 2 2 2 2 x y S y N x ∂ ϕ = − ∂ ∂ Mixed differential equations of shallow shells: ⎪⎭ ⎪⎬ ⎫ 2 2 2 D ∇ ∇ u +∇ ϕ = Z z k Eh u ∇ ∇ ϕ− ∇ = , 0, 2 2 2 k z where ∂ ∂ , , 4 ∂ + ∂ 2 . 4 4 2 2 4 4 4 2 2 2 1 2 2 2 2 2 2 2 2 x x y y y k x k ∂ + x y k ∂ ∂ ∂ + ∂ ∂ ∇ = ∂ + ∂ ∇ = ∂ ∂ ∂ ∇ = L L L L L L L L L L Example 1. Mixed Method Equation of shallow shell: ( ) ( ) . ⎞ 2 4 z z x z y − − , ⎟⎠ = −⎛ − 2 4 , 2 2 2 2 2 2 2 2 2 1 2 = 2 −⎛ − 1 1 1 2 z R x a R a z R y b R b − − ⎟⎠ ⎜⎝ ⎞ ⎜⎝ = + 1 , 1 . k k x y Curvatures: ≈ = ≈ = Assume that all rims are simple supported: 1 R 2 2 1 k k R x x a u u M N 0, 0, = = → = = = = = = → = = = = z y x x y y b u u M N 0, 0. z x y y dUecH eyIgGaceRCIserIsykGnuKmnbMlas;TI nigGnuKmnsMBaFkñúg dUcmanrag Page 44
  • 46. ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ n y u C m x sin sin , n y D m x π π z mn ϕ = π π Σ Σ = Σ ∞ Σ m = n 1,3 1,3 ∞ = ∞ = ∞ = sin sin , 1,3 1,3 mn m n b a b a where Cmn, Dmn = const. Surface distributed forces in double Fourier’s series: n y Z q m x sin sin , Σ ∞ Σ ∞ = 1,3 = 1,3 π π = m n mn a b where n y Z m x 4 sin sin ∫ ∫ π π = a b mn dxdy b a ab q 0 0 2 n y dxdy q b m x Z q q q 4 sin sin 16 0 0 π = − π π = − → = − mn ∫ ∫ a mn a b mn smIkarDIepr:g;Esülrbs;sMbk nwgmanragCasmIkarBICKNit ³ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⎤ = − ⎤ ⎥ ⎥⎦ EhC k n ⎛ π ⎡ DC m ⎛ π ⎢ ⎢⎣ k m ⎛ π ⎞ ⎟⎠ n ⎛ π + ⎟⎠ ⎜⎝ ⎞ ⎜⎝ n D m mn mn − ⎤ ⎥ ⎥⎦ ⎡ ⎛ π ⎡ D k n ⎢ ⎢⎣ ⎞ ⎟⎠ ⎤ ⎞ ⎛ π + ⎟⎠ k m ⎛ π ⎜⎝ ⎞ + ⎟⎠ ⎛ π ⎜⎝ = ⎥ ⎥⎦ ⎡ ⎢ ⎢⎣ ⎞ ⎟⎠ ⎜⎝ + ⎟⎠⎞ ⎜⎝ + ⎥ ⎥⎦ ⎢ ⎢⎣ ⎟⎠ ⎜⎝ ⎞ ⎜⎝ . 0, 2 2 2 2 2 1 2 2 2 1 2 2 q mn mn mn b a a b a b b a edaHRsaysmIkarenH eyIgTTYl)an ³ D Ehl q , , 2 mn mn D ⎛ k + Eh ⎞ mn mn D k Eh 4 2 4 2 ⎞ ⎟⎠ ⎜⎝ = − ⎟⎠ ⎜⎝⎛ + = mn mn mn mn mn mn l D l D C k q 2 ⎞ k m ⎛ π ⎞ l k n ⎛ π k m mn mn , . 2 2 1 2 2 ⎟⎠ ⎜⎝ + ⎟⎠ ⎜⎝ ⎞ = ⎟⎠ n ⎛ π + ⎟⎠ ⎜⎝ ⎞ ⎛ π = ⎜⎝ a b b a Page 45
  • 47. Example 2. Method of Displacements For rectangular shallow shell of simple-supported rims: ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ n y u A m x cos sin , n y u B m x sin cos , n y u C m x π π x mn m n y mn = π π = π π = ΣΣ 0 1 ΣΣ m n ∞ 1 0 ΣΣ z mn m = n ∞ = ∞ = ∞ = ∞ = ∞ = sin sin . 1 1 b a b a b a External distributed forces: ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ n y X a m x cos sin , n y Y b m x sin cos , n y Z c m x π π = π π = π π = ΣΣ 0 1 ΣΣ 1 0 ∞ ΣΣ m = n ∞ = ∞ = ∞ = ∞ = ∞ = sin sin , 1 1 mn m n mn m n mn b a b a b a where n y X m x 4 cos sin , ∫ ∫ 0 0 n y Y m x 4 sin cos , ∫ ∫ 0 0 n y Z m x 4 sin sin . ∫ ∫ 0 0 π π = π π = π π = a b mn a b mn a b mn dxdy b a ab c dxdy b a ab b dxdy b a ab a a b c q mn mn mn If 16 X = Y = 0, Z = −q, then = = 0, = − . π2 mn dUecñH smIkarlMnwgsþaTic manragCasmIkarBICKNitdUcteTA ³ B k k m ( ) 0, A mn 2 1 n − ν ⎛ π 2 1 1 2 ⎤ 2 2 2 = π − + ν + ν π + ⎥ ⎥⎦ ⎡ m ⎛ π ⎢ ⎢⎣ ⎞ ⎟⎠ ⎜⎝ ⎞ + ⎟⎠ ⎜⎝ mn mn mn C a ab b a B k k n ( ) 0, m − ν ⎛ π 2 1 2 1 2 1 ⎡ 2 2 2 = π − + ν ⎤ ⎥ ⎥⎦ A n ⎛ π + ⎢ ⎢⎣ ⎞ ⎟⎠ ⎜⎝ ⎞ + ⎟⎠ ⎜⎝ + ν π mn mn mn C b a b mn ab Page 46
  • 48. A k k n a ( ) ( ) mn mn 1 2 2 1 ⎤ k k k k C c 2 . ⎛ 4 2 2 h m 12 2 1 2 2 2 1 2 2 2 2 C n b a B b k k m mn mn = − ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎣ ⎞ + ν + + ⎟ ⎟⎠ ⎜ ⎜⎝ + π − − π + + ν π + ν edaHRsaysmIkarxagelI eyIgTTYl)an ( ) ( ) ( ) ( ) m A k k k l 1 , mn mn n B k k k l 1 , mn mn , 1 2 2 1 2 2 2 mn mn D ⎛ k + Eh 4 2 ⎞ ⎟⎠ ⎜⎝ = − + + ν π = − + + ν π = mn mn mn mn mn mn mn mn mn l D C c k C b k C a k ⎫ ⎪ ⎪⎭ ⎪ ⎪⎬ 2 2 π n + 2 2 2 2 π where, k m mn l = k m 2 2 π + π = . , 2 k n 2 1 2 2 2 b a b a mn Page 47
  • 49. Analysis of Rectangular Shallow Shell (method of displacements) ORIGIN := 1 a b ⎛⎜⎝ ⎞⎟⎠ 8 6 ⎛⎜⎝ ⎞⎟⎠ := R1 R2 ⎛⎜⎝ ⎞⎟⎠ 20 2000 ⎛⎜⎝ ⎞⎟⎠ := E ν ⎛⎜⎝ ⎞⎟⎠ 2 10 8 ⋅ 0.2 ⎛⎜⎝ ⎞⎟⎠ := h := 0.15 n1 n2 ⎛⎜⎝ ⎞⎟⎠ 3 3 ⎛⎜⎝ ⎞⎟⎠ := q := 1.1 External force: Z(x, y) := −q Equation of shallow shell: − R12 a2 z1 x ( ) R1 2 x a 2 − ⎛⎜⎝ ⎞⎟⎠ 2 − R22 b2 − − := z2 y ( ) R2 2 y 4 b 2 − ⎛⎜⎝ ⎞⎟⎠ 2 4 := − − z(x, y) := z1(x) + z2(y) z a 2 b 2 , ⎛⎜⎝ ⎞⎟⎠ = 0.406 Axial stiffness C1 E ⋅ h 1 ν − 2 := Flexural stiffness D E ⋅ h3 ⋅ ( − 2) 12 1 ν := Curvatures k1 1 R1 := k2 1 R2 := m := 1 .. max(n1, n2) Im := 2 ⋅ m − 1 I 1 3 5 ⎛⎜⎜⎝ ⎞⎟⎟⎠ = m := 1 .. n1 αm Im ⋅ π a := n := 1 .. n2 βn In ⋅ π b := Coefficients of external forces: m := 1 .. n1 n := 1 .. n2 cm, n 4 a ⋅ b b 0 y a Z(x, y) sin α x ⋅ ( m ⋅ x) sin β⋅ ( n ⋅ y) ⌠⎮⌡ 0 d ⌠⎮⌡ := ⋅ d c ⎛⎜⎜⎝ ⎞⎟⎟⎠ −1.783 −0.594 −0.357 −0.594 −0.198 −0.119 −0.357 −0.119 −0.071 = Page 48
  • 50. i := 0 .. 10 j := 0 .. 10 z0i+1, j+1 z a i 10 ⋅ b j 10 ⋅ , ⎛⎜⎝ ⎞⎟⎠ := Rectangular Shallow Shell z0 ⋅ 10 Coefficients of system: A11(m, n) α( m)2 1 − ν β( n):= + ⋅ 2 A12(m, n) 2 1 + ν 2 αm ⋅ βn := ⋅ A13(m, n) −(k1 + ν ⋅ k2) αm := ⋅ A21(m, n) 1 + ν 2 αm ⋅ βn := ⋅ A22(m, n) β( n)2 1 − ν α( m):= + ⋅ 2 A23(m, n) k2 −( + ν ⋅ k1) βn := ⋅ 2 A31(m, n) (k1 + ν ⋅ k2) αm := ⋅ A32(m, n) (k2 + ν ⋅ k1) βn := ⋅ Page 49
  • 51. A33(m, n) h2 12 ⎡⎣ ( 2 αm)+ ( 2 βn)⎤⎦ 2 ⋅ + k12 + 2 ⋅ ν ⋅ k1 ⋅ k2 + k22 ⎡⎢⎣ ⎤⎥⎦ := − B1(m, n) 0 0 cm, n − C1 ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ := A1(m, n) A11(m, n) A21(m, n) A31(m, n) A12(m, n) A22(m, n) A32(m, n) A13(m, n) A23(m, n) A33(m, n) ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Coefficients of displacement: m := 1 .. n1 n := 1 .. n2 Am, n Bm, n Cm, n ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ A1(m, n)− 1 := ⋅ B1(m, n) A −3.445 10− 6 × −1.538 10− 7 × −9.168 10− 9 × −2.012 10− 8 × −5.915 10− 9 × −1.149 10− 9 × −7.331 10− 10 × −4.193 10− 10 × −1.707 10− 10 × ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ = B 5.673 10− 7 × 4.462 10− 8 × 2.034 10− 9 × −5.318 10− 9 × 9.742 10− 10 × 3.227 10− 10 × −4.153 10− 10 × −4.655 10− 12 × 2.811 10− 11 × ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ = C −4.264 10− 5 × −3.622 10− 6 × −3.568 10− 7 × −1.267 10− 6 × −2.197 10− 7 × −5.05 10− 8 × −1.209 10− 7 × −2.948 10− 8 × −1.057 10− 8 × ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ = Displacements ux(x, y) 1 n1 n2 Am, n cos α⋅ ( m ⋅ x) sin βn y ⋅ ( ) ⋅ ( ) Σ= m n 1 Σ= := uy(x, y) Bm, n sin α( m ⋅ x) cos βn y ⋅ ( ) ⋅ ( ) Σ=Σ= 1 n1 n2 m n 1 := uz(x, y) 1 n1 n2 Cm, n sin α⋅ ( m ⋅ x) sin βn y ⋅ ( ) ⋅ ( ) Σ= m n 1 Σ= := Page 50
  • 52. Internal forces: Nx(x, y) C1 1 n1 n2 m n 1 (k1 + ν ⋅ k2) ⋅ Cm, − α⋅ Am, − ν ⋅ β⋅ Bm, ⋅ n m n n n sin ( α⋅ m x) ⋅ sin ( β⋅ n y ⎡⎣ ⎡⎣ ) ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ Ny(x, y) C1 1 n1 n2 m n 1 (k2 + ν ⋅ k1) ⋅ Cm, − ⋅ n ν α⋅ m Am, − β⋅ Bm, ⋅ sin ( α⋅ n n n m x) ⋅ sin ( β⋅ n y ⎡⎣ ⎡⎣ ) ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ S(x, y) 1 − ν 2 ⋅ C1 1 n1 n2 m n 1 αm Am, n ⋅ βn Bm, n ( + ⋅ ) cos α⋅ ( m ⋅ x) cos βn y ⋅ ( ) ⋅ ⎡⎣ ⎤⎦ Σ= Σ= := ⋅ Mx(x, y) −D 1 n1 n2 m n 1 ⎡⎣ Cm, ⋅ ( 2 αm)+ 2 n ν ⋅ ( βn)⋅ sin ( α⋅ x) ⋅ sin ( β⋅ m n ⎡⎣ y) ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ My(x, y) −D 1 n1 n2 m n 1 ⎡⎣ Cm, ⋅ ( 2 βn)+ 2 n ν ⋅ ( αm)⋅ sin ( α⋅ x) ⋅ sin ( β⋅ m n ⎡⎣ y) ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ H(x, y) (1 − ν) ⋅ D 1 n1 n2 Cm, n αm ⋅ βn ⋅ cos α⋅ ( m ⋅ x) cos βn y ⋅ ( ) ⋅ ( ) Σ= m n 1 Σ= := ⋅ Qx(x, y) D 1 n1 n2 m n 1 ⎡⎣ Cm, ⋅ α⋅ ( 2 αm)+ n m ( βn)2 ⋅ cos ( α⋅ x) ⋅ m sin ( β⋅ n y) ⎡⎣ ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ Qy(x, y) D 1 n1 n2 m n 1 ⎡⎣ Cm, ⋅ β⋅ ( 2 αm)+ n n ( βn)2 ⋅ sin ( α⋅ x) ⋅ m cos ( β⋅ n y) ⎡⎣ ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ Rx(y) D 1 n1 n2 m n 1 ⎤⎦⋅ sin β⋅ ( n ⋅ y) ⎡⎣ Cm, n αm ⋅ α( m)2 (2 − ν) β( n)2 ⋅ + ⎡⎣ ⎤⎦ Σ= Σ= := ⋅ Ry(x) D 1 n1 n2 m n 1 Cm, ⋅ ⋅ n βn ⎡⎣ ( 2 βn)+ (2 − ν) ⋅ ( m)2 α⋅ sin ( α⋅ m x) ⎡⎣ ⎤⎦ ⎤⎦ Σ= Σ= := ⋅ R0 2 ⋅ (1 − ν) ⋅ D 1 n1 n2 Cm, n αm ⋅ βn ⋅ ( ) Σ= m n 1 Σ= := ⋅ Page 51
  • 53. At the section y b 2 := x := 0, 0.01 ⋅ a .. a 0 2 4 6 8 0 − 1 10− 5 × − 2 10− 5 × − 3 10− 5 × − 4 10− 5 × Deflection uz at section y=b/2 uz(x, y) x 0 2 4 6 8 0 − 10 − 20 − 30 Normal force diagrams at y=b/2 Nx(x, y) Ny(x, y) x 0 2 4 6 8 0 − 0.2 − 0.4 − 0.6 Bending moment diagrams at y=b/2 − Mx(x, y) − My(x, y) x 0 2 4 6 8 1 0.5 0 − 0.5 − 1 Shearing force diagrams at y=b/2 Qx(x, y) Qy(x, y) x Page 52
  • 54. At the section x a 2 := y := 0, 0.01 ⋅ b .. b 0 2 4 6 0 − 1 10− 5 × − 2 10− 5 × − 3 10− 5 × − 4 10− 5 × Deflection uz at section x=a/2 uz(x, y) y 0 2 4 6 0 − 10 − 20 − 30 Normal force diagrams at x=a/2 Nx(x, y) Ny(x, y) y 0 2 4 6 0 − 0.2 − 0.4 − 0.6 Bending moment diagrams at x=a/2 − Mx(x, y) − My(x, y) y 0 2 4 6 1 0.5 0 − 0.5 − 1 Shearing force diagrams at x=a/2 Qx(x, y) Qy(x, y) y Page 53
  • 55. m := 0 .. 20 x1m+1 a m 20 := ⋅ n := 0 .. 20 y1n+1 b n 20 := ⋅ uz1m+1, n+1 uz x1m+1 y1n+1 := ( , ) Mx1m+1, n+1 Mx x1m+1 y1n+1 := ( , ) My1m+1, n+1 My x1m+1 y1n+1 := ( , ) Deflection uz uz1 ⋅ 105 Page 54
  • 56. Bending moment Mx −Mx1 Bending moment My −My1 Page 55
  • 57. Shells of Revolution r O α dα α Nα r ds1 dr Nα+d Nα α z dz C C1 R2 R1 z = sin α 2 r R ds CC R d Ad = = α = α 1 1 1 A R ⇒ = (α) 1 ( α, β = meridian and parallel. r(α) – meridian equation. ds rd R sin d = β = α β 2 2 B R sin ⇒ = α 2 dr CC cos R cos d 1 1 B r R = α ∂ = ∂α ∂ ∂α ⇒ = α = α α cos 1 ( Case of Axis-Symmetrical Shell: Y = 0 = = = 0, = ε = κ = 0 β β αβ αβ S Q H u = 0 ∂ k L ∂β k Equilibrium equations: ( ) R N R N R Q R R X sin α − cos α − sin α + sin α = 0, 2 α 1 β 2 α 1 2 ( ) ⎫ ⎪ ⎪ ⎪ ⎬ d R N R N d sin cos sin sin 0, 2 α 1 β 2 α 1 2 ( ) ⎪ ⎪ ⎪ ⎭ R M R M R R Q sin α + cos α + sin α = 0. d α − α − α = α α + α + α 2 1 1 2 α β α d R Q R R Z d d Strains: du 1 ⎛ + ⎞ , 1 ( cotg ) , z β α z α 1 2 ⎤ ⎡ u du u du d 1 1 ⎛ − ⎞ , cotg . 1 1 1 2 ⎞ ⎟⎠ ⎛ − ⎜⎝ α = κ ⎥⎦ ⎢⎣ ⎟⎠ ⎜⎝ α α κ = + α = ε ⎟⎠ ⎜⎝ α ε = α α β α dz dz R R d R R u u R u d R z z Page 56
  • 58. E.Meissner’s unknowns: ⎞ duz 1 , χ = − R Q α α = ψ ⎟⎠ ⎛ + ⎜⎝ α R u d 2 1 ecjBIsmIkarbMErbMrYlragxagelI b¤ecjBIlkçx½NÐCab; edayeyagelIc,ab; Hooke eyIg)an ³ 1 ( cotg ) , 2 du 1 ⎛ + , N N N N α β α ( ) ( ) ⎞ M M 12 1 ⎡ 1 ⎛ , M M u du d cotg . 12 1 2 3 1 1 3 1 ⎞ ⎟⎠ ⎛ ⎜⎝ u du α − α = − ν − ⎤ ⎥⎦ ⎢⎣ ⎞ ⎟⎠ ⎜⎝ α − α = − ν − ⎟⎠ ⎜⎝ α = − ν = + α = ε − ν α β α α α β α β β α d Eh R R d d R Eh R u d Eh R u u Eh R z z z z ecjBIsmIkarBIrmun eyIgTTYl)an ³ [( R R ) N ( R R ) N ] α α β du α − α = + ν − + ν α Eh u d 1 2 2 1 cotg 1 eFVIDIepr:g;EsülelIsmIkarTImYy eyIgnwgman ³ ⎤ R u u d ⎡ − ν α ( ) ( ) cotg , ⎤ α β α R d ⎡ − ν α ( ) . u du sin cotg 2 2 2 ⎥⎦ ⎢⎣ = α + α α − d du α ⎥⎦ ⎢⎣ + α = α β α α α N N Eh d d d N N Eh d d z z ecjBIsmIkarBIrxagelIenH eyIgTTYl)an ³ 1 R R R N R R N d u duz cotg [( ) ( ) ] ( ) . 2 1 2 2 1 ⎤ ⎥⎦ ⎡ − ν α ⎢⎣ + ν − + ν − α = = χ = α − α β β α α N N Eh d Eh R d Page 57
  • 59. müa:geTot eyIgGacsresr)anfa d R cotg 0 , 1 , α α β β d R 1 χ , cotg , α β d R 1 2 0 1 ⎞ ⎛ ⎞ ψ d d R 1 χ cotg , cotg 1 , 1 2 2 1 2 ⎟ ⎟⎠ ⎜ ⎜⎝ χ α χ + ν α − = ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ χ α + ν α = − χ α κ = α κ = + α ψ + = − α = − α β d R R M D d R M D N d N N R N Edl 0 , 0 α β N N CakMlaMgEkg tamRTwsþIKμanm:Um:g; (zero moment theory of shells) Ed;lmanragdUcteTA ³ ⎤ sin ( cos sin ) , = ∫ α 1 α C R R Z X d sin ⎡ 2 1 2 1 2 0 ⎥ ⎥⎦ ⎢ ⎢⎣ + α α − α α α α R N ⎞ . 1 N R Z N 2 0 ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ = − α β R bnÞab;BICMnYstMélkMlaMgEkg cUleTAkñúgsmIkarlMnwgBIrdMbUg eyIgeXIjfa vaRtUv)anepÞógpÞat; . rIÉsmIkarTIbI rYmCamYynwglkçx½NÐCab; begáIt)anCa cotg 3 R 2 R 2 ⎤ ⎤ ⎡ ⎞ ⎛ α χ dh R R dh d R d 3 cotg cotg , cotg R 2 R 1 R 2 1 ⎤ χ d ψ ⎤ ⎡ ⎞ ⎛ α ψ dh dh d cotg cotg ( ), 1 2 d R d R R 1 2 1 2 1 2 2 2 ⎡ 2 1 2 1 2 1 2 1 1 2 2 1 α Φ + χ = ψ ⎥⎦ ⎡ ⎢⎣ α − ν α ν − α − − α ⎥⎦ ⎢⎣ α − α + ⎟ ⎟⎠ ⎜ ⎜⎝ + α ψ − = χ ⎥⎦ ⎢⎣ + α α ν α − ν − − α ⎥⎦ ⎢⎣ α + α + ⎟ ⎟⎠ ⎜ ⎜⎝ + α EhR d R h d d R h R R d d R D R d h d d R h R R d d R where ( ) h d R ( ) cotg [( ) ( ) 0 ]. Φ α = N N R R N R R N 2 1 0 1 2 ⎡ − ν α 2 0 0 ⎤ β α α β ν + − ν + α − ⎥⎦ ⎢⎣ h d Page 58
  • 60. Case h=const: ( ) ν ν χ = − 1 ψ , ( ψ ) + ψ = χ + 1 Φ ( α ). 1 1 1 χ − R Eh R L R D L where d R R ⎛ α d d L R ⎤ ⎡ ⎞ 1 cotg 2 L cotg L 2 ( L ) (L) 2 2 1 2 1 1 2 2 2 1 d R R R d d R R α − α ⎥⎦ ⎢⎣ α + ⎟ ⎟⎠ ⎜ ⎜⎝ + α = ecjBIsmIkarxagelI eyIgGacTaj)anfa ( ) ( ) ( ) ( ) ( ) ( )⎪ ⎪ ⎫ ⎪ ⎪ ⎬ ⎭ Φ α ⎞ ν − ⎟ ⎟⎠ Eh ⎛ ⎜ ⎜⎝ − ⎞ ν 2 ψ = ψ ⎞ ν − ⎟ ⎟⎠ ⎞ ⎛ χ ⎛ Φ ⎜ ⎜⎝ ψ − ν ψ − Φ α − χ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ − ν χ = ν + ⎟ ⎟⎠ ⎜ ⎜⎝ χ − ν , , 2 1 2 2 1 1 1 1 1 2 1 1 1 Eh D R R L R R R LL L D R D R L R R LL L ebI]bmafa L ( ) , 1 ϕ ϕ χ = − ν ψ = ϕ − R D 1 enaHsmIkarTI1 nwgepÞógpÞat; ehIysmIkarTI2 nwgTTYl)anragCa ( ) ⎞ ( ) ⎛ ν ⎞ ( ) ν + ⎟ ⎟⎠ ⎛ ϕ LL L Φ α 1 2 2 1 L Eh R R = ϕ ⎟ ⎟⎠ ⎜ ⎜⎝ ϕ + − 1 1 D R R ⎜ ⎜⎝ ϕ − ν For spherical, toroidal, conical, cylindrical shells: R1=const. So, ( ) ( ) LL Φ α 1 2 R ϕ + μ ϕ = where ( ) 2 2 ( ) μ = − 1 12 1 b , 12 1 1 . 2 1 2 Eh = 2 1 2 2 1 2 R h R D R R − ν ≈ ν − ν b R 2 2 1 2 2 h = Page 59
  • 61. smIkarcugeRkayenH Gacsresr)aneTACa [ ( ) ][ ( ) ] ( ), 1 R L i L i Φ α L + μ ϕ − μ = b¤k¾ [ ( ) ] [ ( ) ] ( ), 1 R L L i i L i Φ α ϕ + μ − μ ϕ + μ = dMeNaHRsayrYmrbs;smIkarTaMgenH GacTTYl)anCaragkMpøic . krNIEs‘Vr R1=R2=R smIkaredImrbs;smIkarDIepr:g;EsülxagelI manragCa ( ∇ 2 + μ ) ϕ = 0, ( ∇ + μ ) ϕ = 0, 1 2 2 22 1 1 where RL d d μ = 1 + bi = ζ ( ζ + 1), μ = 1 − bi = ζ ( ζ + 1), 1 1 1 2 2 2 ∇ = − = L L L ( )( ) , 1 cotg 2 2 sin 2 2 1 L L + α − α α α d d dMeNaHRsayBiessrbs;smIkarDIepr:g;EsülxagelI Gacrk)anecjBIsmIkar ( ) ( ). L i i Φ α b ϕ + μϕ = smIkaredImk¾Gacsresr)anCarag ⎫ ⎤ d cotg 1 1 ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎬ ⎭ ⎤ = ϕ ⎥⎦ d cotg ⎡ 1 1 ⎢⎣ α ϕ ϕ + ζ ζ + − α + α ϕ 1 ϕ α = ϕ ⎥⎦ ⎢⎣⎡ α + ζ ζ + − α + α α 0. sin 0, sin 2 2 2 2 2 2 2 2 1 1 2 1 1 2 2 d d d d d d smIkarDIepr:g;EsülxagelIenH GacGaMgetRkal)an edayeRbIGnuKmn_ Legendre . Page 60
  • 62. Example. Spherical Cupola , const 1 2 R = R = R h = Equations: ⎫ L R ( ) ( ) ( )⎪⎭ ⎪⎬ χ − νχ = − ψ 1 L EhR ψ + νψ = χ +Φ α , , 1 D d L RL d L L ( ) ( ) ( ) ( ) (1 ) . cotg cotg , = = L R dZ 2 2 2 2 2 1 R X d d d + + ν α Φ α = α − α α + α L L where Common solutions: C X C X C Y C Y ψ = + + + 0 1 1 2 2 3 1 4 2 1 , [ X ( C C ) X ( C C ) ( ) ( )] 1 1 3 2 2 4 χ = λ + ν + λ + ν + 0 1 3 1 2 4 2 EhR Y C C Y C C + − λ + ν + − λ + ν Legendre functions: , ⎛ π 2 8 sin ⎛ π 2 8 cos 1 3 2 cotg 8 λ 4 sin 2 ⎤ ⎡ ⎞ ⎞ ⎞ ⎛ 1 ⎥ ⎥⎦ ⎢ ⎢⎣ ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ − λ α − ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ − λ α ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ λ α − π α ≈ λ α X e , ⎛ π 2 8 sin 1 3 2 cotg 8 ⎛ π 2 8 cos λ 4 sin 2 ⎤ ⎡ ⎞ ⎞ ⎛ ⎞ 1 ⎥ ⎥⎦ ⎢ ⎢⎣ ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ − λ α ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ λ α − + ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ − λ α π α ≈ λ α Y e , ⎛ π 2 8 sin 1 3 2 cotg 8 ⎛ π 2 8 cos λ sin 2 ⎤ ⎡ ⎞ ⎞ ⎛ ⎞ 2 ⎥ ⎥⎦ ⎢ ⎢⎣ ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ + λ α ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ λ α + − ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ + λ α π α ≈ λ −α X e ⎤ . ⎛ π 2 8 sin ⎛ π 2 8 cos 1 3 2 cotg 8 λ sin 2 ⎡ ⎞ ⎞ ⎞ ⎛ 2 ⎥ ⎥⎦ ⎢ ⎢⎣ ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ + λ α + ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ + λ α ⎟ ⎟ ⎠ ⎜ ⎜ ⎝ λ α + π α ≈ λ −α Y e Solution of differential equations: ( ) ( ) ( ) ( ) ⎭ ⎬ ⎫ ψ = ψ α +ψ α 0 1 ψ (α) χ (α) 1 1 , = particular solutions χ = χ α + χ α . , 0 1 Page 61
  • 63. h X 45° 45° 20m α z R Z q p R = 14.4 m , h = 1 cm E kgf = ⋅ 6 ν = Self weight: Support 2 2 10 , 0.3 2 cm g = kgf 2 0.008 cm Live load: p = kgf 2 0.02 cm Support 1 2 2 R EhR λ2 = 2μ2 = − ν D enARtg;kMBUlEs‘Vr α=0 GnuKmn_ X2, Y2 mantMél infinity . RbkarenHxusBI karBitCak;Esþg dUecñHRtUvlubbM)at;va edaydak;eGay C2 = C2 = 0 . rIÉ )a:ra:Em:Rtefr C1, C3 kMNt;ecjBIlkçx½NÐRBMEdn . Vertical load on 1m2 of cupola surface: q = g + p cosα Components of the vertical load: X q g p sin sin sin cos , = α = α + α α Z = q α = g α + p 2 α cos cos cos . Load function: R dZ ( ) ( ) R 1 X 2 2 + + ν α Φ α = = 2 ( + ν) α α + 2 ( + ν) α pR gR 3 sin cos 2 sin d Page 62
  • 64. dMeNaHRsayBiess eKrkCarag A A sin sin cos , χ = α + α α 1 1 2 ψ = α + α α B B sin sin cos . 1 1 2 bnÞab;BICMnYstMélTaMgenH cUleTAkñúgsmIkarxagedIm eKrkeXIj A R g A + ν R D ( ) ( ) + ν (3 ). 25 2 , 5 + ν 1 1 , 25 2 , 3 1 1 p D 2 2 2 2 1 2 3 2 2 3 1 2 + ν λ + + ν = − λ + = − λ + + ν = − λ + = − B gR B pR dMeNaHRsaysrubrbs;smIkarDIepr:g;Esül Gacsresr)anfa ( ) ⎫ ⎪⎬ C X C Y ψ = + +ψ α , 1 1 3 1 1 1 . [ X ( ⎪⎭ C C ) Y ( C C ) ] ( )χ = λ + ν + − λ + ν + χ α 1 3 1 1 1 3 1 EhR )a:ra:Em:Rtefr C1, C3 kMNt;ecjBIlkçx½NÐRBMEdn α=45° dUcteTA X d cotg 0 ⎛ + νχ α α M D 45 = ⎟⎠ 45 ⎞ ⎜⎝ χ = − α= ° α= ° R d C C dY C C dX 1 ( ) ( ) cotg + ν d C C X C C Y R [( ) ( ) ]} ( ) + ν (cos 2 cos ) 0 25 g R 1 cos 3 1 2 45 2 2 3 2 3 3 1 1 1 3 1 1 1 3 1 3 1 α + ν α = λ + ⋅ + ν α − ⋅ λ + + λ + ν + − λ + ν − + ⎩ ⎨ ⎧ + ν α α + − λ + ν α λ + ν α= ° p D D d EhR Y Case of simple support α α= ° z α= ° β α= ° u u 0 0 45 45 45 = = → ε = Page 63
  • 65. ( ) ( ) ( ) 1 0 ZR F ⎡ α + +ψ + cotg sin 1 1 45 d ψ C dY 1 1 3 1 C dX R 1 2 1 1 3 1 1 ⎤ = ⎥⎦ ⎞ ⎟⎠ ⎛ ⎜⎝ α + α + α + ⎢⎣ ν + α α → − + ν α= ° d d d C X C Y R R Eh enARtg;enH = α α − α α = α ∫ α ( ) ( ) F R sin Z cos X sin d = − 2 2 α − 2 ( − α) sin 1 cos 1 2 0 2 pR gR Z Case of roller support sin cos 0, 0 45 45 α − α = = α α α= ° α α= ° Q N u Internal forces: ⎞ ⎛ d ν χ ⎞ χ d R 1 cotg ; cotg ; ⎛ α β ( ) N ZR F ( ) 1 ; sin cotg ; ; R N F sin 1 2 1 2 2 2 ψ = 2 2 1 2 2 1 ψ α − α α α = − ψ − α α = ⎟ ⎟⎠ ⎜ ⎜⎝ α χ + α − = ⎟ ⎟⎠ ⎜ ⎜⎝ χ ν α + α = − α α β d d R R R R Q d R R M D d R M D Strains: ( ) ⎤ ⎞ ⎛ ψ ⎞ ⎛ ν α d R ( ) 1 1 cotg . sin 1 1 cotg 1 ; sin 1 2 2 ⎞ ⎛ ν 2 1 2 α 2 2 2 2 1 2 2 ⎤ ⎥⎦ ⎡ ⎢⎣ α νψ ψ + + α − ⎟ ⎟⎠ ⎜ ⎜⎝ + α α ε = − ⎥⎦ ⎢⎣ ⎡ ⎟ ⎟⎠ ⎜ ⎜⎝ α α − ν − ψ − ⎟ ⎟⎠ ⎜ ⎜⎝ + α ε = β R ZR d d R R R F Eh d ZR R R R F Eh Page 64
  • 66. Displacements: edaHRsaysmIkar du 1 ⎞ , 1 ( u cotg u ), z z 1 2 ε = β α R u ⎛ + d R + α = ε ⎟⎠ ⎜⎝ α α α eyIgTTYl)an ( ) α ⎤ ( ) (1 ) . sin R F sin 1 1 sin 2 α ∫ d cotg 1 cotg , ⎡ − sin sin RZ F ⎡ + α 2 1 2 2 2 ⎤ ⎥⎦ ⎢⎣ α α ⎞ R − + ⎟⎠ ⎛ − νψ α α ⎜⎝ ψ = − α − α ⎥⎦ ⎢⎣ α α α + ν ψ + + ν = α + α α α R Eh d Eh u u RZ d R Eh Eh u A z Edl A2 Ca)a:ra:Em:Rtefr nigkMNt;)anecjBIlkçx½NÐRBMEdn . Page 65
  • 67. Zero Moment (Membrane) Theory of Shells = = = 0, = = 0 α β α β M M H Q Q Equilibrium equations: 1 ∂ 0, ∂ ( ) ( ) ( ) ( ) ⎫ ⎪⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ∂ α β β α N + − = + = ∂ ∂α + ∂β − ∂ ∂ ∂β + = ∂β + ∂α − ∂α α β 0. 2 1 0, 1 2 2 Z R N R B S ABY B AN N A A S ABX A BN N B The problem is statically determinate. eKaledAénkar KNnaKμanm:Um:g; KWkMNt;rksPaB sMBaFkñúgem (principal stress state) mYyEdledIr tYnaTIsMxan; . lkçx½NÐ zero-moment stress-strain state: X Shell RtUvEtmankMras;efr b¤ERbRbYledaysnSwm² ehIydUcKñaEdr cMeBaH kaMkMeNag minRtUvERbRbYlya:gxøaMgenaHeT . Y kMlaMgeRkA RtUvEtCab;Kña nigERbRbYledaysnSwm². Zero-moment shell minGaceFVIkarnwgkMlaMgeTal)aneT . Z Shell RtUvmanTMrya:gNa Edlpþl;lTæPaBeFVIclnatamTisEkg edayesrI KWenAelIEKmrbs; shelltamTisEkg minRtUvTb;sáat;mMurgVil nigbMlas;TIeT . edIm,IeGayeBjelj TMrkñúgbøg;b:H k¾minRtUvnaMeGaymankarBt;esaHeLIy . [ kMlaMg Edlsgát;elIEKmrbs; shell RtUvsßitenAkñúgbøg;b:Hnwg shell enaH. Page 66
  • 68. Analysis of Shells of Revolution r O α dα α Nα r ds1 dr Nα+d Nα α z dz C C1 R2 R1 z α, β = meridian and parallel. ( ) sin , , A R = α B r R = = α cos . B R 1 2 1 = α ∂ ∂α Equilibrium equations: ( ) sin cos sin 0, ( ) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ∂ β 1 + − = ∂ sin α + sin α = 0, ∂α α + ∂ ∂β + α = ∂β α − α + ∂ ∂α α β α β 0. sin 2 1 1 2 1 2 2 2 2 2 1 2 1 1 1 2 R N R N R R Z R S R R Y R N R R N N R R S R R X ∂ k Y L Case of axis symmetrical problem: 0, = 0 = k ∂β = = = 0 β H Q S ( ) ⎫ ⎪⎭ ⎪⎬ R N N R R R X sin α − cos α + sin α = 0, 2 1 1 2 d R N R N R R Z + − = α α β α β 0. 2 1 1 2 d Page 67
  • 69. ⎞ ⎛ ecjBIsmIkarTI 2 eyIgTTYl)an ³ ⎟ ⎟⎠ ⎜ ⎜⎝ = − α β 2 R 1 N R Z N CMnYscUleTAkñúgsmIkarTI 1 eyIgnwgman ³ d ( sin ) ( sin cos ) 0 1 α + α − α = α α rN rR X Z d ecjBIenH rN sin α = rR ( Z cos α − X sin α ) d α + C 1 ∫ α α α 1 ( ) ⎤ ⎥ ⎥⎦ ⎡ = ∫ α ⎢ ⎢⎣ + α α − α α α α α 1 sin cos sin 1 sin 2 1 2 2 C R R Z X d R N Edl C Ca)a:ra:Em:Rt nigrk)anecjBIlkçx½NÐRBMEdn . RbsinebI smIkaremrIdüanRtUv)aneKeGayCarag r = r(z) enaHsmIkarrbs; épÞrgVil KitenAkUGredaenEkg Gacsresr)anfa x = r sinβ, y = r cosβ, z = z r dr dUecñH eyIg)an ′ = = cotgα, dz ( ) ( ) ⎪⎭ ⎪⎬ ⎫ = + ′ A r = 1 2 , . 2 1 B r z ⎪⎭ ⎪⎬ ⎫ = = + ′ CC ds dz r 1 , . = = β 2 1 2 1 1 ( ds CD rd ( Curvatures: , 1 k r ′′ ( ) . 1 2 1 2 2 ( 1 2 ) 1 2 1 r r k r + ′ = + ′ = − Page 68
  • 70. Equilibrium equations: ( rN ) ∂ − r ′ N + + r ′ S r r X z 1 1 1 0, ( ) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ∂ α β β 2 2 2 + − + ′ = ′′ rr + ′ ∂ − + + ′ = ∂ + ∂ ∂β + ′ + + ′ = ∂β ∂ α β 1 0. 1 1 1 0, 2 2 2 2 N N r r Z r r S r r Y r z N r For homogeneous problem: X = Y = Z = 0 eKtag stress function: ⎞ ⎟⎠ ⎛ ϕ ∂ N A , N r , 2 = α β z r ⎜⎝ ∂ = − ′′ ∂ϕ ∂β = ∂ϕ ∂β S rA r enAkñúgkrNIenH smIkarTI 1 nigTI 3 epÞógpÞat; rIÉsmIkarTTYl)anrag ³ ⎞ ∂ ϕ 0 2 2 ∂ ϕ 2 2 = ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ∂β ϕ+ ′′ − ∂ r r z For axis symmetrical problem: Y = 0 ( ) ⎫ ⎪ ⎪⎭ ⎪ ⎪⎬ rN r N r r X α β + − + ′ = ′′ rr + ′ d − − ′ + + ′ = α β 1 0. 1 1 0, 2 2 2 N N r r Z r dz Equilibrium equations ( ) α ∫ 1 . N r N rr 1 ⎤ ⎡ 1 ; 2 2 2 0 N r r Z ′′ r C r r Z X dz r z z + + ′ + ′ = ⎥ ⎥⎦ ⎢ ⎢⎣ + ′ − + ′ = β α Solution Page 69
  • 71. z q Q q z α0 r0 R2 R1 α dα r k2 k1 X Nα Nαsinα Z rUbmnþ Nα Gacsresr)anfa³ N sin α ⋅ R sin α ⋅ 2 π = 2 π R R sin α ( Z cos α − X sin α ) d α + 2 π C ∫ α 2 1 2 α α 0 Integration Technique ( ) q r d R r X Z N r ⋅ π + α ⋅ π ⋅ α − α = α ⋅ π ∫ α α 1 0 2 sin cos sin 2 2 or α 0 tYeqVgénsmPaBxagelI KWCacMeNalelIG½kS z énpÁÜbrbs;kMlaMgEkg tamrgVg; EdlmankaM r . edayehtufa 2πrR1dα KWCaépÞénvgStUcminkMNt;mYy EdlRtUvnwgmMu dα/ rIÉ Zcosα nig Xsinα KWCacMeNalelIG½kS z énkMlaMgeRkA dUecñH ( Z cos α − X sin α ) ⋅ 2 π r ⋅ R d α = Q 1 z ∫ α α0 Edl Qz CacMeNalénpÁÜbrbs;kMlaMgeRkA EdleFVIGMeBIelIépÞrbs; shell enA EpñkxagelIénmuxkat; α . )a:ra:Em:Rtefr C GacsresrCarag C=r0q/ Edl q CaGaMgtg;suIeténkMlaMg tamTisG½kS z Edlsgát;tamrgVg;kaM r0 . sMrab;krNIGvtþmankMlaMgenH KW C=0 ehIy Page 70
  • 72. . N Qz = α r 2π sin α kñúgkarkMNt; Qz eKGaceRbIR)as;RTwsþIbT dUcxageRkam . RTwsþIbT 1> RbsinebI elIépÞNamYy eFVIGMeBIsMBaFBRgayesμI p enaHminGaRs½y nwgrUbragépÞ cMeNalénkMlaMgpÁÜbrbs;sMBaFelIG½kSNamYy esμIplKuNsMBaF p enaH nwgRkLaépÞrbs;cMeNalénépÞelIbøg; EdlEkgnwgG½kSenaH . RTwsþIbT 2> RbsinebI elIépÞNamYy eFVIGMeBIsMBaFGgÁFaturav enaHkMlaMgpÁMú bBaÄrrbs;sMBaFenaH esμITMgn;GgÁFaturavkñúgmaD EdlenAelIépÞ . Example 1. R α p dα α α p R Nq α Nq α q Spherical cupola: Thickness h, Self weight q, Vertical live load p, Simple support at α = 90° Page 71
  • 73. smIkarlMnwgsMrab;EpñkxagelIénBuH α manragdUcteTA ³ q z rNq Q − 2π sin α − = 0, α where r = Rsin α, Q q z = resultant of self weight, α α = ∫ 2 π α = 2 π ∫ sin α α = 2 π 2 ( 1 − cos α) Qq q rRd qR d qR z 0 2 0 So, . 1 cos = − − α N Q 2 sin sin 2 α 1 + cos α = − π α = − α qR qR r q q z eday Z = −q α R = R = R 1 2 cos , eyIgnwg)an ⎛ [ − α( + α)] ⎞ N R Z N + α ⎛ = ⎞ ⎟⎠ ⎜⎝ + α + α − = ⎟ ⎟⎠ ⎜ ⎜⎝ = − β α β 1 cos 1 cos 1 cos 1 cos cos 1 2 N qR R q q R q q q Analysis on vertical live load eyagtamRTwsþIbT 1 eyIgGacsresrsmIkarlMnwg)andUcteTA − 2π sin α − π 2 = 0, α rN p p r where r = Rsin α. N p = − pR α . 2 eday Z = − p cosα⋅cosα eyIgnwgrkeXIj ⎞ ⎟⎠ = ⎛− α + ⎟ ⎟⎠ ⎜⎝ ⎞ ⎛ N R Z N ⎜ ⎜⎝ = − α cos2 β 2 1 2 R p p R p p N p pR = − α β cos 2 2 Page 72
  • 74. Nq α Diagram Nq β Diagram N p α Diagram N p β Diagram Cylindrical and Conical Shells C x y z α β x y z C α β θ ⎫ ⎪⎬ = α ( ) ( ) ⎪⎭ x y y = β = β , . , z z ( ). = α θ cos , = α θ β sin sin , sin cos , θ = θ β ⎫ ⎪⎭ ⎪⎬ = α θ β x y z Page 73
  • 75. Cylindrical and conical shells are shells with zero Gaussian curvatures: 1 1 0 1 2 1 2 = = = R R k k k For cylindrical shells: A B y z ⎞ ⎛ ∂β ⎞ ⎛ ∂β 1, ; [( ′ ) 2 + ( 3 ′ ) 2 ] 2 , . R R y z 1 2 2 2 ′ ′′ − ′ ′′ y z z y = ∞ = ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ = = For conical shells: ⎞ ⎛ ∂β A B 1, sin ; [ ( ) ] 2 2 3 2 α θ + θ′ ( ) . , sin 2 2 cos sin 2 cos sin 1 2 2 2 θ θ + θ′ θ − θ′′ θ = ∞ = − ⎟ ⎟⎠ ⎜ ⎜⎝ ∂θ = = α θ + R R edayyk A=1 nig R1=∞ smIkarlMnwgsþaTic TTYl)anragdUcteTA ³ ( ) ∂ 1 0, ( ) ⎫ ⎪⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ − = ∂ + + = ∂ ∂α + ∂ ∂ ∂β + = ∂β ∂α − ∂α β β α β 0. 0, N 2 2 Z R B S BY B N BN N B S BX edaHRsaysmIkarenH eyIgTTYl)an ³ ; 2 N = R Z = RZ β ( ) ( ) ∫ α 1 1 B RZ B Y d α ⎤ α ⎥⎦ ⎡ ⎢⎣ + ∂ ∂β = β − 0 2 2 1 2 B f B S Page 74
  • 76. ( ) ( ) 1 ⎤ 1 ⎡ β ∂ ∫ 1 2 ∫ 0 0 α ⎡ ∂ ∂ 1 ∂ 1 ∫ ∫ ( ) α α α α α α α α α ⎛ − ∂α ⎪⎭ ⎪⎬ ⎫ ⎪⎩ ⎪⎨ ⎧ ⎤ α ⎥⎦ ⎢⎣ + ∂β ∂β ∂β + ⎞ + α ⎟⎠ ⎜⎝ ∂ + β + α ⎥⎦ ⎢⎣ ∂β = − 0 0 2 2 B RZ B Y d d B B B RZ BX d B B d f B f B N enARtg;enH f1(β), f2(β) CaGnuKmnGaRs½ynwgGefr β . Example 2. Horizontal Pipeline of Circular Section α (x) y y Y R β Z O z l q Rims are rigidly in plane and free out plane. For cylindrical shell: R = R, B = R 2 Analysis on Self Weight Components of self weight: X = 0, Y = qsinβ, Z = q cosβ Normal forces: = = − β β N RZ qRcos Page 75
  • 77. ( ) ( ) ( β ) − α β S f Tangential force = ⎤ ⎥⎦ ⎡ ⎢⎣ α α − β α + β α ∂ ∂β − β 2 R = ∫ ∫ 2 sin cos sin 2 f 1 0 0 2 2 1 q R q d q d R R Normal force [ ( )] ( ) ∂ ( ) [ ( )] ( ) 1 1 2 sin R − = ∫ α q R f f R q d R R f f R N 2 α β − β β α + ∂ ∂ ∂β = − − α β α ∂β + β β α + ∂β α 1 cos 2 2 1 0 2 2 1 Boundary conditions: 0, 0 ( ) 0; 2 α = = → β = α N f , 0 ( ) 2 sin . 1 α = l N = → f β = qR l β +C α )a:ra:Em:Rtefr C/R2 KWCakMlaMgkat;BRgayesμI elIEKmrbs;bMBg; . dUecñH RbsinebI bMBg;minrgkarrmYreT KWmann½yfa )a:ra:Em:RtefrenHesμIsUnü ³ 0, ( ) 2 sin . 1 C = f β = R ql β srubmk eyIgTTYl)an ( ) cos , N q l α −α R cos , = N qR = − β β (2 )sin . α β S q l = − α − β Page 76
  • 78. α β=0 N α=0 S - + - ql ql ql2 4R + ql + - β N qR qR π 2 β= S Diagrams Analysis on Fluid Weight Components of fluid weight: 0, cos . 0 X = Y = Z = p − γR β dUecñH eyIgrkeXIj ( cos ), 0 = = − γ β β N RZ R p R ( ) 1 R ∂ ( p R cos ) f ( ) d sin , = ∫ α S f 1 − γ α β 2 1 0 0 2 2 2 β − γ β α = ∂β − β R R R R [ ( )] ( ) ( ) [ ( )] ( ) β − = ∫ α 1 1 sin γα + β β α + ∂ ∂ ∂β = − γ α β α ∂ ∂β + β β α + ∂β α cos 2 1 2 2 3 1 0 2 3 1 R f f R R d R R f f R N p0 = fluid pressure in a plane zOx. Page 77
  • 79. edayeRbIR)as;lkçx½NÐRBMEdn dUcbgðajxagmux eyIgGackMNt;)an ³ f f R γ β = β = l ( ) ( ) sin . srubmk eyIgnwgmanlTæpl ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ cos , N l N R p R = − γ β ⎞ β ⎟⎠ α = γ ⎛ −α ⎜⎝ α −α β γ = − β sin . 2 cos , 2 0 S R l 2 0, 2 2 1 β α β=π N α=0 S - + γRl 2 + γRl 2 + - β N R(p + γR) 0 γl2 8 π 2 β= S Diagrams + γRl 2 R(p − γR) 0 Page 78
  • 80. Example 3. Analysis of Cylindrical Tank on Wind Load y x α l p Wind direction β R Components of wind load: X Y = = 0, = ( − β − β) 0.7 0.5cos 1.2cos 2 Z p where p = max. wind pressure. ]bmafa sMBaFxül;minERbRbUltamkMBs; suILaMg KWminGaRs½ynwgkUGredaen x=α . kMlaMgxül;elIsuILaMg dUecñH eyIg)an = = (0.7 − 0.5cosβ −1.2cos 2β), β N RZ pR ( ) ( ) ( β ) − α( β + β) R RZ d f S f 1 α = p ∂ ∂β ∫ α β = − 1 0.5sin 2.4sin 2 2 1 0 2 2 R B R ( ) ⎤ ∂ α α 1 1 = ∫ ∫ 0 0 ( ) ( β ) α β + + ( β + β) ∂ ∂ ∂β = α ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎥⎦ ⎢⎣ ⎡ α ∂β ∂β α 0.5cos 4.8cos 2 2 1 2 2 3 1 2 R p R f f R B RZ d d B B N ecjBIlkçx½NÐRBMEdn α = 0, = = 0 α S N eyIgkMNt;)an ( ) ( ) 0 1 2 f β = f β = Page 79
  • 81. srubmk eyIgnwgman (0.5cos 4.8cos 2 ), N p α = α R 2 2 β + β = (0.7 − 0.5cosβ −1.2cos 2β), β N pR S = − pα(0.5sinβ + 2.4sin 2β). Diagrams l N α α= l S β α= N Page 80
  • 82. Zero-Moment Spherical Cupola Radius R := 10 Self weight q := 0.100 ⋅ 25.00 ⋅ 1.1 q = 2.75 Vertical live load p := 0.50 ⋅ 1.3 p = 0.65 Normal forces: Nαq(α) q ⋅ R 1 + cos(α) := − Nβq(α) q ⋅ R 1 + cos(α) := ⋅ [1 − cos(α) ⋅ (1 + cos(α))] Nαp(α) p ⋅ R 2 := − Nβp(α) p ⋅ R 2 := − ⋅ cos(2 ⋅ α) Equations of section: x(α) := R ⋅ sin(α) y(α) := R ⋅ cos(α) α1 π := − α2 π 2 2 := n := 50 Δα α2 − α1 n := i := 0 .. n αi := α1 + i ⋅ Δα ⎯→⎯ ⎯→⎯ X := x(α) Y := y(α) Diagrams: Nx(α, N, scale) := x(α) + scale ⋅ N ⋅ sin(α) Ny(α, N, scale) := y(α) + scale ⋅ N ⋅ cos(α) ⎯⎯⎯⎯⎯⎯⎯→⎯ Nαqx Nx(α, Nαq(α) , 0.1) ⎯⎯⎯⎯⎯⎯⎯→⎯ := Nαqy := Ny(α, Nαq(α) , 0.1) ⎯⎯⎯⎯⎯⎯⎯→⎯ Nβqx Nx(α, Nβq(α) , 0.1) ⎯⎯⎯⎯⎯⎯⎯→⎯ := Nβqy := Ny(α, Nβq(α) , 0.1) ⎯⎯⎯⎯⎯⎯⎯→⎯ Nαpx Nx(α, Nαp(α) , 0.5) ⎯⎯⎯⎯⎯⎯⎯→⎯ := Nαpy := Ny(α, Nαp(α) , 0.5) ⎯⎯⎯⎯⎯⎯⎯→⎯ Nβpx Nx(α, Nβp(α) , 0.5) ⎯⎯⎯⎯⎯⎯⎯→⎯ := Nβpy := Ny(α, Nβp(α) , 0.5) Page 81
  • 83. i := 0 .. n X1 i 〈 〉 Xi := Y1 i 〈 〉 Yi Nαqxi ⎛⎜⎜⎝ ⎞⎟⎟⎠ Nαqyi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := X2 i 〈 〉 Xi := Y2 i 〈 〉 Yi Nβqxi ⎛⎜⎜⎝ ⎞⎟⎟⎠ Nβqyi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := X3 i 〈 〉 Xi := Y3 i 〈 〉 Yi Nαpxi ⎛⎜⎜⎝ ⎞⎟⎟⎠ Nαpyi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := X4 i 〈 〉 Xi := Y4 i 〈 〉 Yi Nβpxi ⎛⎜⎜⎝ ⎞⎟⎟⎠ Nβpyi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Diagram N1q Diagram N2q Page 82
  • 84. Diagram N1p Diagram N2p Page 83
  • 85. Analysis of Horizontal Pipeline Radius: R := 10 Length: L := 1 Self weight: q := 1 Components of self weight: X(β) := 0 Y(β) := q ⋅ sin(β) Z(β) := −q ⋅ cos(β) Coefficients of first quadratic form: A := 1 B := R Range: α0 := 0 α1 := L Normal forces: Nβ(β) := −q ⋅ R ⋅ cos(β) S(α, β) := −q ⋅ (2 ⋅ α − L) ⋅ sin(β) Nα(α, β) q ⋅ α ⋅ (α − L) := ⋅ cos(β) R N := 50 Δα α1 − α0 N := α := α0, α0 + Δα .. α1 0 0.2 0.4 0.6 0.8 0.03 0.02 0.01 0 Diagram Nx Nα(α, π) Nα(α, π) α Page 84
  • 86. 0 0.2 0.4 0.6 0.8 1 0.5 0 − 0.5 − 1 Diagram S S α π 2 , ⎛⎜⎝ ⎞⎟⎠ S α π 2 , ⎛⎜⎝ ⎞⎟⎠ α N := 50 Δβ π N := i := 0 .. N βi := i ⋅ Δβ := Sy i 〈 〉 βi S1i S 0 βi := ( , ) Sx i 〈 〉 0 S1i ⎛⎜⎝ ⎞⎟⎠ βi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := := Ny i 〈 〉 βi N2i Nβ β:= ( i) Nx 〈i〉 0 N2i ⎛⎜⎝ ⎞⎟⎠ βi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Diagram S 3 2 1 − 0.5 0 0.5 1 β Sy S1, Sx Diagram N2 3 2 1 − 10 − 5 0 5 10 β Ny N2, Nx Page 85
  • 87. Fluid density γ := 1 Fluid pressure p := 0.5 ⋅ γ ⋅ R Normal and tangential forces: Να(α, β) γ := − ⋅ α ⋅ (L − α) ⋅ cos(β) 2 Nβ(β) := R ⋅ (p − γ ⋅ R ⋅ cos(β)) S(α, β) γ ⋅ R L − α 2 ⎛⎜⎝ ⎞⎟⎠ := ⋅ ⋅ sin(β) N := 50 Δα α1 − α0 N := α := α0, α0 + Δα .. α1 0 0.2 0.4 0.6 0.8 0.03 0.02 0.01 0 Diagram Nx Nα(α, π) Nα(α, π) α 0 0.2 0.4 0.6 0.8 6 4 2 0 − 2 − 4 − 6 Diagram S S α π 2 , ⎛⎜⎝ ⎞⎟⎠ S α π 2 , ⎛⎜⎝ ⎞⎟⎠ α Page 86
  • 88. N := 50 Δβ π N := i := 0 .. N βi := i ⋅ Δβ := Sy i 〈 〉 βi S1i S 0 π βi := ( , − ) Sx i 〈 〉 0 S1i ⎛⎜⎝ ⎞⎟⎠ βi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := := Ny i 〈 〉 βi := ( − ) Nx i 〈 〉 0 N2i Nβ π βi N2i ⎛⎜⎝ ⎞⎟⎠ βi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := 3 2 1 Diagram S − 2 0 2 4 6 β Sy S1, Sx 3 2 1 Diagram N2 − 50 0 50 100 150 β Ny N2, Nx Page 87
  • 89. Analysis of Cylindrical Tank on Wind Load Radius R := 1 Heigth L := 3 ⋅ R Wind load p := 0.50 Z(β) := p ⋅ (0.7 − 0.5 ⋅ cos(β) − 1.2 ⋅ cos(2 ⋅ β)) Section: y(β) := R ⋅ cos(β) z(β) := R ⋅ sin(β) Diagram of wind load: Sz := 0.5 Zx(β) := −(y(β) − Z(β) ⋅ cos(β) ⋅ Sz) Zy(β) := z(β) − Z(β) ⋅ sin(β) ⋅ Sz N := 50 i := 0 .. N βi i 2 ⋅ π N := ⋅ vxi y β:= − ( i) vyi z β:= ( i) Z1i Zx β:= ( i) Z2i Zy β:= ( i) L1 i 〈 〉 vxi Z1i ⎛⎜⎜⎝ ⎞⎟⎟⎠ ⎞⎟⎟⎠:= := L2 i 〈 〉 vyi Z2i ⎛⎜⎜⎝ vy Z2 L2 vx, Z1, L1 Page 88
  • 90. Normal and tangential forces: Nα(α, β) ⋅ 2 2 ⋅ R p α := ⋅ (0.5 ⋅ cos(β) + 4.8 ⋅ cos(2 ⋅ β)) Nβ(β) := p ⋅ R ⋅ (0.7 − 0.5 ⋅ cos(β) − 1.2 ⋅ cos(2 ⋅ β)) S(α, β) := −p ⋅ α ⋅ (0.5 ⋅ sin(β) + 2.4 ⋅ sin(2 ⋅ β)) Diagram scales: s1 1 25 := s2 1 2 := s3 1 20 := Nαx(α, β) := −(y(β) + Nα(α, β) ⋅ cos(β) ⋅ s1) Nαy(α, β) := z(β) + Nα(α, β) ⋅ sin(β) ⋅ s1 Nβx(β) := −(y(β) + Nβ(β) ⋅ cos(β) ⋅ s2) Nβy(β) := z(β) + Nβ(β) ⋅ sin(β) ⋅ s2 Sx(α, β) := −(y(β) + S(α, β) ⋅ cos(β) ⋅ s3) Sy(α, β) := z(β) + S(α, β) ⋅ sin(β) ⋅ s3 i := 0 .. N N1xi Nαx L βi := ( , ) N1yi Nαy L βi := ( , ) L1x i 〈 〉 vxi := L1y i 〈 〉 vyi N1xi ⎛⎜⎜⎝ ⎞⎟⎟⎠ N1yi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := N2xi Nβx β:= ( i) N2yi Nβy β:= ( i) L2x i 〈 〉 vxi := L2y i 〈 〉 vyi N2xi ⎛⎜⎜⎝ ⎞⎟⎟⎠ N2yi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Diagram N1 vy N1y L1y vx, N1x, L1x Page 89
  • 91. Sxi := Sx(L, βi) Syi Sy L β:= ( , i) L3x i 〈 〉 vxi Sxi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := L3y i 〈 〉 vyi Syi ⎛⎜⎜⎝ ⎞⎟⎟⎠ := Diagram N2 vy N2y L2y vx, N2x, L2x Diagram S vy Sy L3y vx, Sx, L3x Page 90
  • 92. Example 4. Spherical Tank under Fluid R α0 α A A r z Nα Nα 2α p TMrragrgVg; AA CaRbePT simple kaMmuxkat; ³ r = Rsin α sMBaFGgÁFaturav ³ p = γR(1− cosα) ecjBIlkçx½NÐlMnwgtamG½kS bBaÄr eKrkeXIj ³ N Qz z = α 2 sin 2 Rsin2 π α = π α Q r r z dQz ( ) ϕ dϕ R α dP dP p r Rd R rRd 2 1 cos 2 3 = ⋅ π ⋅ ϕ = γ − ϕ π ϕ = π γ ϕ( − ϕ) ϕ R d 2 sin 1 cos dQ dP z cos 3 = ϕ = π γ ϕ ϕ( − ϕ) ϕ R d 2 sin cos 1 cos ( ) = ∫ = ∫ π γ ϕ ϕ − ϕ ϕ Q dQ R d z z ⎤ ⎥⎦ ⎡ 3 cos 1 2 2 0 2 1 = π γ − α⎛ − α ⎢⎣ ⎞ ⎟⎠ ⎜⎝ α α cos 3 1 6 2 sin cos 1 cos 3 2 0 R ⎞ ⎛ [ ( )] ⎟ ⎟⎠ ⎜ ⎜⎝ α 1 2cos + α − N R2 γ − α − α = R α γ = α 6 1 cos 1 cos 3 2cos 6sin 2 2 2 2 Page 91
  • 93. ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ α 5 6cos 2cos + α − α + Normal component of external force: ⎞ γ = − = ⎟ ⎟⎠ ⎛ N R Z N ⎜ ⎜⎝ = − α α β 6 1 cos 2 2 1 2 RZ N R R rUbmnþ Nα nig Nβ xagelIenH eRbI)ansMrab;EtkrNI . 0 0 ≤ α ≤ α edIm,IkMNt;kMlaMgpÁÜb Qα sMrab;EpñkxageRkamTMr eRkABIsMBaFkñúg eKRtUv KitRbtikmμbBaÄrrbs;TMrcUlbEnßmeTot EdlesμITMgn;GgÁFaturavTaMgmUl ³ R 4 R A = π 3γ 3 dUecñH ⎤ ⎥⎦ ⎡ Q 4 R3 R3 2 z cos 1 2 2 2 1 = π γ + π γ − α⎛ − cosα ⎢⎣ ⎞ ⎟⎠ ⎜⎝ 3 1 6 3 Z = p = γR(1− cosα) ecjBIenH eyIgnwgTTYl)an ⎞ . ⎛ 2 2 5 2cos ⎞ α N R 6 2 2 1 6cos 2cos 1 cos N R 6 , 1 cos ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ α − α − α − γ = ⎟ ⎟⎠ ⎜ ⎜⎝ − α + γ = α β enARtg;cMNuc α=α0 tMélkMlaMg Nα nig Nβ minCab;Kña . enHmann½yfa RTwsþIKμan m:Um:g; minGacbMeBjlkçx½NÐCab;enARtg;TMrxagelI)aneT . ehtudUecñH enAEk,rTMr nwgekItman local bending Edl stresses rbs;va GackMNt;)antamRTwsþIm:Um:g;. Page 92
  • 94. Example 5. Ellipsoid of Revolution r z p a b α α r z Nα Nα p α α r p CasMBaFBRgayesμIelI shell. kMlaMgpÁÜbbBaÄr ³ = π = π 2 sin α Q r2 p R z 2 R1 ecjBIsmIkarlMnwgtamG½kSbBaÄr eyIg)an ³ N Qz = 2 pr pR r 2 sin 2sin α 2 = π α = α Equation of ellipse: 2 2 + = 1 2 2 z b r a ⎞ ⎟ ⎟⎠ ⎛ − = ⎟ ⎟⎠ pR R ⎜ ⎜⎝ ⎞ ⎛ N R Z N ⎜ ⎜⎝ = − α β 2 1 1 2 2 1 R R , 1 1 ′′ Curvatures: . 1 1 R r 1 r 1 2 2 2 2 1 k r r R k + ′ = = + ′ = = − Radius of curvature: 2 R a r b z = R R 3 b , . 4 4 2 4 2 2 b 2 1 2 a + = 2 3 b R = R = a . enARtg;kMBUl r = 0, z = b : , 1 2 b N = N = pa α β 2 2 R = a R = a , enAeGkVaT½r r = a, z = 0 : , , 2 2 b N = pa α 2 ⎞ , N pa a 1 2 2 2 ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ = − β b Page 93
  • 95. Example 6. Conical Shell under Fluid z β β l z Qz V2 Nα Nα V1 β β z l R2 2α r γ r = z tgβ N Qz z ecjBIlkçx½NÐlMnwgtamG½kSbBaÄr eyIg)an π β = = α 2 π cos β 2 z sin Q r kMlaMgpÁÜbbBaÄr ³ ⎞ 1 2 2 2 Q = γ V +V = γ⎡ πr z + πr l − z r l z z 3 = γπ ⎛ − ⎥⎦ ( ) ( ) ⎟⎠ ⎜⎝ ⎤ ⎢⎣ 2 3 1 2 ⎞ β ⎟⎠ 2 2 z l z z β 2 γπ ⎛ − γ ⎛ − = = α 2cos ⎜⎝ r l z 3 π β ⎞ ⎟⎠ ⎜⎝ tg 3 2 sin N N N l z l ( ) tg 3 2 γ β β = = α max α = 3 4 16 cos Radius: β β R r z = β = tg cos cos 2 Normal component of force: Z = γ(l − z) ( ) N R Z l z z γ − β β = = β cos tg 2 N l γ β = β 4cos ( ) β 2 tg max z α N β N + l 2 + 3l 4 Page 94
  • 96. PROBLEMS OF SHELL THEORY 1. Differential Geometry Of Surface 1.1. eKeGayépÞmYyCarag z = z(x, y) . cUrrk first nig second quadratic forms RBmTaMg Gaussian nig mean curvatures . 1.2. eKeGayépÞrgVilmYyCarag r(u,ϕ) = x(u) i + ρ(u)cosϕ j+ ρ(u)sin ϕ k, ρ(u) > 0 cUrkMNt; first nig second quadratic forms . 1.3. Translation surface KWCaépÞ EdlekIteLIgedayclnarMkilExSekagmYy z f (x) 1 1 = tambeNþayExSekagmYyeTot z f (y) 2 2 = . ExSekagrag nigExSekagTis GacepSg²Kña b:uEnþCaTUeTA eK eRCIserIsykragEtmYy dUcCa )ara:bUl/ FñÚrgVg; .l. smIkarrbs;épÞrMkil manrag z f (x) f (y) 1 2 = + ]TahrN_ ³ 2 2 z f x R x a − R − a ⎟⎠ = = − ⎛ − ( ) , 2 1 2 4 2 1 1 1 ⎞ ⎜⎝ 2 2 z f y R y b − R − b ⎟⎠ = = − ⎛ − ( ) . 2 2 2 4 2 2 2 2 ⎞ ⎜⎝ sMrab;épÞxagelIenH cUrrk first nig second quadratic forms RBmTaMg curvatures . 1.4. ]bmafa mankUGredaensuILaMg (z = α,β) Edl β KWCamMucab;BIG½kS Ox dl;cMeNalénvicT½rkaM r . dUecñH épÞrgVilGacmansmIkardUcxageRkam r(z,β) = r(z)cosβ i + r(z)sinβ j + z k cUrrk first nig second quadratic forms RBmTaMg curvatures rbs;épÞxagelIenH . 1.5. cUrkMNt; first nig second quadratic forms RBmTaMg curvatures rbs;épÞCak;EsþgmYy cMnYnxageRkam ³ a) Ellipsoid x = a cosu cos v, y = a cosu sin v, z = c sin v b) Sphere x = Rcosαcosβ, y = Rcosαsinβ, z = Rsinα c) Cylinder of revolution x = α, y = Rcosβ, z = Rsinβ Page 95
  • 97. d) Shallow shell z ∂ = z z x y ∂ z ( , ), ≈ 0 ∂ ∂ = y x e) Conical surface of revolution x = α, y = Rcosβ⋅α, z = Rsinβ ⋅α 2. Shell Analysis 2.1. eFVIkarKNna circular cylindrical shallow shell nwgbnÞúkeRkAbBaÄrBRgayesμI q sMrab; krNIEdlTMrTaMgbYnRCugrbs;va CaRbePTsnøak; (simple supports) . a b h . 8m, 6m, 0 2m = = = R R f 40m, 1.2m = = = 2 = ⋅ ν = , 0.25 2 10 kg m 2 9 E y z f b a 2.2. eFVIkarKNnaEkvragekan EdlmanmMukMBUlesμI 2β nigpÞúk x edayGgÁFaturav Edlmanma:smaD γ . 2.3. cUreFVIkarKNna spherical tank EdlRTedayTMr kMNl;ragrgVg; AA nigpÞúkeBjedayGgÁFatu rav Edlmanma:smaD γ . β β l R α0 α A A Page 96
  • 98. 3. Miscellaneous 3.1. dUcemþcEdlehAfa shallow shell ? etIkarKNna shallow shell RtUv)ansMrYlya:gdUc emþcxøH ? 3.2. cUreGayniymn½y cylindrical nig conical shell ? etIlkçN³Biessrbs; shells TaMgenH ya:gdUcemþcxøJH ? 3.3. etI shell RbePTNa GacTukCa zero moment )an ? 3.4. cUrerobrab;KuNsm,tþirbs;eRKOgpÁMúsMNg; shell ? Page 97
  • 99. Content 1. Differential geometry of surface 1.1. Equation of surface 1.2. First and second quadratic forms, Gaussian and mean curvature 2. Moment theory of shells 2.1. Differential equations of equilibrium 2.2. Internal forces, strains, change of curvatures, Hooke’s law and boundary conditions 2.3. Analysis of cylindrical shells 2.4. Analysis of shallow shells 2.5. Shells of revolution 3. Zero moment (membrane) theory of shells 3.1. Equilibrium equations 3.2. Shells of revolution 3.3. Cylindrical and conical shells 4. Examples of shell analysis Page 98
  • 100. Reference: 1. Krivoshapko C.N. Fundamentals of thin-walled structure design.- Moscow: PFU, 1986. 2. Krivoshapko C.N. Textbook: differential geometry of surface. – Moscow: PFUR, 1992. 3. Krivoshapko C.N. Textbook: analysis of shallow shells in rectangular coordinates using displacement method. – Moscow: PFU, 1987. 4. Kashin P.A. Textbook: moment theory analysis of shells. – Moscow: PFU, 1987. 5. Kashin P.A. Textbook: examples of shell analysis. – Moscow: PFU, 1986. 6. Philin A.P. Shell theory. – Leningrad: Construction Publishing, 1970. 7. Alexandrov A.V., Potapov V.D. Fundamentals of theory of elasticity and plasticity. – Moscow: High School, 1990. 8. Samul V.I. Fundamentals of theory of elasticity and plasticity. – Moscow: High School, 1970. 9. Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. - New York: McGraw-Hill, 1959. 10. Darkov A.V. Structural Mechanics. – Moscow: Mir Publishers, 1986. Page 99
  • 101. Summary 1. Differential Geometry of Surface 1.1. Equation of surface: r = r(α,β) = x(α,β)i + y(α,β)j+ z(α,β)k In vector x x or ( ) ( ) ( ) ⎪⎭ ⎫ ⎪⎬ , , = α β , , y y = α β , . z z = α β In function z = z(x, y) or F(x, y, z) = 0 1.2. First quadratic form: ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ r r A E x y z ⎛ ∂α ⎞ ⎟ ⎟⎠ r r F x x y y z z ⎛ ∂β ⎜ ⎜⎝ ∂ ⎛ ∂α ∂ + ⎞ ∂ ⎞ + ⎟ ⎟⎠ ⎛ ∂β ⎜ ⎜⎝ ∂ ⎞ ⎛ ∂α ∂ + ⎞ ∂ + ⎟ ⎟⎠ ⎛ ∂β ⎜ ⎜⎝ ∂ ∂ = ∂ ∂ = r ∂ r ∂β ∂ ∂ ∂β ∂ ∂ = = = ∂β ∂α ∂β ∂α ∂β ∂α ∂β ∂α ⎞ ⎟⎠ ⎜⎝ ∂ + ⎟⎠ ⎜⎝ ∂ + ⎟⎠ ⎜⎝ ∂ = ∂α ∂α = = . ; ; 2 2 2 2 2 2 2 2 B G x y z Principal curvatures: ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ L 1 , = = − = = = − = N 2 2 2 max 2 1 1 min 1 B R k k A R k k 1 Ld α 2 + Nd β 2 2 2 2 2 α + β − = A d B d R 2 LN − M Gaussian curvature of the surface: 2 2 2 1 2 1 2 1 A B F R R k k k − = = = Page 100
  • 102. 1 2 H k k x y z αα αα αα + 1 , Mean curvature of the surface: Second quadratic form: r ⋅ r × r αα − 2 2 2 x y z α α α β β β αα α β α β = × = ⋅ = x y z A B F L r r r n x y z αβ αβ αβ 1 , r ⋅ r × r αβ − 2 2 2 x y z α α α β β β αβ α β α β = × = ⋅ = x y z A B F M r r r n x y z ββ ββ ββ 1 , r ⋅ r × r ββ − 2 2 2 x y z α α α β β β ββ α β α β = × = ⋅ = x y z A B F N r r r n 2 = 2. Moment Theory of Shell 2.1. Differential equations of equilibrium A S AB ∂ ∂ 0 : 1 0, ( ) ( ) ( ) ( ) α β α B S AB 0 : 1 0, ∂ + ∂ β 2 ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ∂ ∂ N AB Z AB 0 : 0, α β β α ( ) ( ) ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 1 2 0 : 1 0, β α β + = ∂ ∂ ∂α + ∂ − ∂ − ∂α ∂ ∂ ∂β = + = ∂β + ∂β ∂α = − = ∂α ∂β ∂ ∂ = + + − + = ∂α + ∂β − ∂β = − + = ∂β + ∂α − ∂α = α β α β α Σ Σ Σ Σ Σ 2 0 : 1 2 0, 2 1 2 A H BM M B ABQ A M B H AM M A ABQ B M N AQ BQ ABZ R R Q ABY R B Y AN N A Q ABX R A X BN N B x y Page 101
  • 103. 2.2. Internal forces: N C ( ) ( ) ( ) ( ) ⎪⎭ ⎫ ⎪⎬ = ε + νε α α β N C = ε + νε β β α S 1 C 1 , = − ν ε αβ , , 2 ⎫ ⎪⎬ M D = − κ + νκ α α β , ( ) ( ) ⎪⎭ M D = − κ + νκ β β α 1 . = − − ν κ αβ , H D C = Eh ( 2 ) Strains: B u u D = Eh ∂ 1 1 . 2 R β ε = α AB u B + z ∂ ∂α + ∂β A u u ∂ , β 1 1 1 R ε = β AB u A + z ∂ ∂β + α ∂α α ⎞ ⎟⎠ ⎛ ∂β A u B ε = β α αβ A ⎜⎝ ∂ ⎞ + ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ∂ ∂α u B B A 1− ν2 3 12 1− ν ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ⎞ ⎟⎠ ⎛ ⎜⎝ 1 1 , 1 1 , ∂ 1 ∂α ∂ ⎞ ∂ + ⎟⎠ ⎛ ∂β ⎜⎝ ∂ α κ = ∂α + ∂ ∂ ∂β κ = ∂β + ∂α κ = αβ β V A V B 2 2 1 . 2 2 1 A B B A B V AB V B AV AB V A ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 1 ∂ , ∂ z ∂β α V u u = − ∂α = − β 1 . 2 2 1 1 z u R B V u R A Changes of curvatures: Hooke’s law: E z [ ( )] [ ( )] ⎫ ⎪ ⎪ ⎪ ⎬ α α β α β 2 E z β β α β α ( )( ) ⎪ ⎪ ⎪ ⎭ 2 . ε + κ + ν τ = τ = ε + νε + κ + νκ − ν σ = ε + νε + κ + νκ − ν σ = αβ βα αβ αβ 2 1 , 1 , 1 2 E z Page 102
  • 104. 2.3. Cylindrical Shells Equations of cylindrical shell: x = α, y = y(β), z = z(β) A B F d dx d ds = ∞ = 1, 0, , , cos 0, = = = α = β = χ = , ( ). 1 2 R R R s Q M M s Q H ∂ + ∂ = , . s x H s x s x ∂ + ∂ x ∂ ∂ ∂ ∂ Shears: = ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ Equations of equilibrium: 0, M H 1 1 0, − = ∂ s x ∂ + M ∂ ∂ ∂ H ∂ ∂ + S ∂ + N x ∂ + ∂ + M ∂ + = ∂ − ∂ − ∂ N ∂ S ∂ ∂ + = ∂ ∂ 2 0. 2 2 2 2 2 Z s x s x N R Y s x R s R x X s x s x s Strain components: u u u u ∂ + ∂ ∂ , , , 2 u u u u , , 2 1 2 . u 2 2 ∂ x s x ⎞ s R R ∂ x s s x R s u x s z xs ∂ − s z y z x s x xs s z y x x ∂ ∂ − ∂ ∂ = κ ⎟⎠ ⎛ ⎜⎝ ∂ ∂ κ = ∂ ∂ ∂ κ = − ∂ ∂ + ε = ∂ ε = ∂ ε = Internal forces: ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ u ⎛ + ∂ u u ∂ s z x ⎞ ⎟⎠ ⎡ N C u N C ⎡ u ∂ ∂ u S − ν C ⎛ ∂ u ⎜⎝ u ∂ + ∂ ∂ = ⎤ ⎥⎦ ⎢⎣ ∂ + + ν ∂ = ⎤ ⎥⎦ ⎢⎣ ⎞ ⎟⎠ ⎜⎝ ∂ + ν ∂ = , 2 1 , , s x x R s R s x s x s x s z x ⎡ M D u ⎡ u s ∂ s z z 1 1 ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ u ∂ − u ⎞ ⎟ ⎟⎠ ∂ ⎛ ⎛ ⎜ ⎜⎝ ⎛ u ∂ ν − ⎟⎠ ∂ − u ∂ ∂ u ∂ − u ∂ ∂ = − − ν ⎞ ⎤ ⎥⎦ ⎢⎣ ∂ ⎞ ⎜⎝ ∂ ∂ = − ⎤ ⎥⎦ ⎢⎣ ⎟⎠ ⎜⎝ ∂ ∂ ∂ + ν ∂ = − − . 2 , , 2 2 2 2 2 x s x R H D x s R M D s R x s s z s z s z x Page 103
  • 105. X − ν ∂ 0, Equilibrium equations in displacements: ⎞ 1 2 u u 2 + ν ∂ ⎛ + ν ∂ 2 2 2 12 1 2 ⎡ u ν ∂ + 2 2 2 12 − ν ∂ 1 ⎛ + ν ∂ 2 1 ∂ 2 2 2 2 2 2 2 2 ∂ 2 2 2 ⎛ ⎤ ⎞ u Y = + ⎥⎦ ⎡ ⎢⎣ ⎞ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ ∂ ∂ ∂ ∂ ⎞ − ⎟⎠ ∂ ⎛ ∂ ⎜⎝ ∂ + ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎤ ⎥⎦ ⎢⎣ ∂ + ⎟⎠ ⎜⎝ ∂ + ∂ + ∂ + u ∂ ∂ C R s x s h s R u R s R R x h x s s x z s x ∂ + ⎟⎠ 4 ⎡ 2 2 ∂ 4 2 ⎤ ⎞ ∂ + ∂ ⎤ ⎞ ⎛ ⎛ ∂ u Z 2 0. ∂ ⎛ 2 4 12 1 12 1 4 2 2 4 2 2 2 = − ⎥⎦ u ν ∂ ⎡ ⎢⎣ ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ ∂ ∂ + ∂ ∂ + + + ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎥⎦ ⎢⎣ ⎟⎠ ⎜⎝ ∂ ⎞ ⎜⎝ ∂ ∂ − ∂ + ∂ C x x s s h R u s x R s R h x R s R z s x 0, 2 1 2 2 2 + = ∂ ∂ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ C x x s R x s s z x 2.4. Shallow Shells z ∂ z ∂ 20, 5. min min R h ≥ l f ≥ 0, ≈ 0 ∂ ≈ ∂ y x 1 ∂ 0, Equilibrium Equations: ∂ ( ) ( 2 ) ( ) ( ) ∂ + ∂ ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ∂ ∂ α β N AB α β β α ( ) ( ) ( ) ( ) ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ AB 1 2 1 0, β α β + = ∂ ∂ ∂α + ∂ − ∂ − ∂α ∂ ∂ ∂β + = ∂β + ∂β ∂α − = ∂α ∂β + + + = ∂α + ∂β − ∂ ∂ ∂β + = ∂β + ∂α − ∂α α β α β α 2 1 0, 0, 1 0, 2 2 A H BM M B ABQ A B H AM M A ABQ B N AQ BQ ABZ R R B S ABY B AN N A A S ABX A BN N B Page 104
  • 106. ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ⎞ ⎟ ⎟⎠ A u u 1 1 , Strains: z B Changes of curvature: ⎞ B u u ⎛ ∂β ⎞ ⎛ ∂ ∂ ∂ ∂ ∂ 1 u A u 1 ⎛ 1 1 , ⎛ z z 2 1 1 1 , ⎛ ⎜ ⎜⎝ ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ A ∂ u ∂α ∂ ∂β ∂ ∂ z z − ∂ ∂ ∂ ∂α ∂ 2 ∂α ⎞ ⎞ − ∂ ∂ ∂ 2 ∂α∂β α β κ = − ∂α ∂α − ⎟ ⎟⎠ ⎜ ⎜⎝ ∂β ∂ ∂ ∂β κ = − ∂β ∂β − ⎟⎠ ⎜⎝ ∂α ∂α κ = − αβ 1 1 1 z z z . A B u B u AB B u A B u B B A u AB u A A ⎪ ⎪ ⎪ ⎪ ⎭ ⎟⎠ ⎜⎝ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂α ε = + ∂α + ∂β ε = + ∂β + ∂α ε = β α αβ α β β β α α , 1 1 , 2 A B B A R AB u B R AB u A z D ∂ ∂ ( ) ( ) ( ) ( ) . 1 α α β 12 1 1 , 12 1 2 2 3 2 2 3 z z u D A B Q Eh u A A Q Eh ∂ ∇ ∂β κ + κ = ∂ ∂β − ν = − ∇ ∂α κ + κ = ∂α − ν = − β α β Shears: Normal and tangential forces: ⎞ 1 1 1 , 2 ∂ϕ ∂ ∂ϕ ∂ 1 1 1 , 2 2 ⎞ ∂ ⎛ ∂ϕ ∂ ⎞ ⎛ ∂ϕ 1 1 1 . ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ϕ ∂α ∂ ∂β − ∂ϕ ∂β ∂ ∂α − ∂ ϕ ∂α∂β α = − ∂β ∂β + ⎟⎠ ⎜⎝ ∂α ∂α = ∂α ∂α + ⎟ ⎟⎠ ⎜ ⎜⎝ ⎛ ∂β ∂β = β A A B AB B S A A A AB N B B B A B N Page 105
  • 107. Equation of shallow shell: 1 ∇2∇2ϕ−∇2u = 0, ∇2ϕ+ D∇2∇2u − Z = 0. Eh k z k z ∂ ∂ Rectangular Shallow Shell Strain components: u y u x u u u ∂ + , , , y R x y 1 2 u R x xy y z y x z ∂ x ∂ ∂ + ε = ∂ + ε = ∂ ε = 2 2 u ∂ u ∂ u z z , , . κ = − αβ 2 2 x y y x y z κ = − ∂ x ∂ ∂ ∂ κ = − ∂ Internal forces: ( ) ( ) ⎡ M D u ⎡ ∂ M D ∂ u ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎛ u u u ∂ + N C u u ∂ S C u ⎡ ⎡ ∂ ∂ ∂ ∂ ⎤ , 1 2 z z H D u ( ) ( ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ∂ ∂ ∂ = − − ν ⎤ , ⎤ ⎥⎦ ⎢⎣ ∂ ∂ ∂ + ν ∂ = − ⎥⎦ ⎢⎣ ∂ + ν ∂ = − ⎪ ⎪ ⎪ ⎪ ⎭ ⎟ ⎟⎠ ⎞ ⎜ ⎜⎝ ∂ ∂ = − ν ⎥⎦ ⎤ ⎢⎣ + + ν ∂ + ν ∂ = ⎥⎦ ⎢⎣ + + ν ∂ + ν ∂ = 1 . , 1 , 2 , 2 u u 2 2 2 2 2 2 2 2 2 1 x y x y y x x y k k u x y N C k k u y x z y z z x x y z y x y z x y x ∂ ( ) ( ) ⎪ ⎪⎭ ⎫ ⎪ ⎪⎬ x x y z ∂ 2 ∇ ∂ κ + κ = ∂ ∂ ∂ = − ∇ ∂ κ + κ = ∂ = − , . 2 u y x y z y D y Q D u x D x Q D Page 106
  • 108. Equilibrium equations: k k u ( ) ( ) + ν ∂ 2 2 − ν ∂ ⎛ ⎞ 2 2 2 ⎤ ∂ u u k k ∂ u ⎞ X Y ⎡ + ∇ + + ν + − ν ∂ u ∂ u ∂ k k u ∂ ∂ + ν ∂ ⎛ h k k k k u Z ( ) ( ) ( 2 ) 0, 12 0, 2 1 2 1 0, 2 1 2 1 2 1 2 2 2 1 4 2 1 2 2 1 2 2 1 2 1 2 2 2 2 = − ⎥⎦ ⎢⎣ ∂ + + ν ∂ + ν + = ∂ ν + + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ + ∂ ∂ + = ∂ + + ν ∂ ∂ + ⎟ ⎟⎠ ⎜ ⎜⎝ ∂ + ∂ C y k k x C y x y y x C x x y u x y z x y z y x y z x Stress function ϕ = ϕ(x, y): 2 ∂ ϕ = ∂ ϕ = N x y ∂ ∂ , , . 2 2 2 2 x y S y N x ∂ ϕ = − ∂ ∂ Mixed differential equations of shallow shells: ⎪⎭ ⎪⎬ ⎫ 2 2 2 D ∇ ∇ u +∇ ϕ = Z z k Eh u ∇ ∇ ϕ− ∇ = , 0, 2 2 2 k z 2.5. Shells of revolution α, β = meridian and parallel. r(α) – meridian equation. ( ), 1 A = R α = sin α 2 B R Case of Axis-Symmetrical Shell: Y = 0 = = = 0, = ε = κ = 0 β β αβ αβ S Q H u = 0 ∂ k L ∂β k Equilibrium equations: ( ) R N R N R Q R R X sin α − cos α − sin α + sin α = 0, 2 α 1 β 2 α 1 2 ( ) ⎫ ⎪ ⎪ ⎪ ⎬ d R N R N d sin cos sin sin 0, 2 α 1 β 2 α 1 2 ( ) ⎪ ⎪ ⎪ ⎭ R M R M R R Q sin α + cos α + sin α = 0. d α − α − α = α α + α + α 2 1 1 2 α β α d R Q R R Z d d Page 107
  • 109. Strains: du 1 ⎛ + ⎞ , 1 ( cotg ) , z β α z α 1 2 ⎤ ⎡ u du u du d 1 1 ⎛ − ⎞ , cotg . 1 1 1 2 ⎞ ⎟⎠ ⎛ − ⎜⎝ α = κ ⎥⎦ ⎢⎣ ⎟⎠ ⎜⎝ α α κ = + α = ε ⎟⎠ ⎜⎝ α ε = α α β α dz dz R R d R R u u R u d R z z E.Meissner’s unknowns: ⎞ duz 1 , χ = − R Q α α = ψ ⎟⎠ ⎛ + ⎜⎝ α R u d 2 1 Case h=const ( ) ν ν χ = − 1 ψ , ( ψ ) + ψ = χ + 1 Φ ( α ), 1 1 1 χ − R Eh R L R D L where d R R ⎛ α d d L R ⎤ ⎡ ⎞ 1 cotg 2 L cotg L 2 ( L ) (L) 2 2 1 2 1 1 2 2 2 1 d R R R d d R R α − α ⎥⎦ ⎢⎣ α + ⎟ ⎟⎠ ⎜ ⎜⎝ + α = 3. Zero Moment (Membrane) Theory of Shell: = = = 0, = = 0 α β α β M M H Q Q Equilibrium equations: 1 ∂ 0, ∂ ( ) ( ) ( ) ( ) ⎫ ⎪⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ∂ α β β α N + − = + = ∂ ∂α + ∂β − ∂ ∂ ∂β + = ∂β + ∂α − ∂α α β 0. 2 1 0, 1 2 2 Z R N R B S ABY B AN N A A S ABX A BN N B Page 108