SlideShare a Scribd company logo
ATOMIC
SPECROSCOPY (AS)
Atomic Absorption Spectroscopy
Flame Atomic Emission Spectroscopy
ICP Atomic Emission Spectroscopy
1
BASIC PRINCIPLE
ATOMIC ABSORPTION SPECTROSCOPY
(AAS)
is an analytical technique that measures the
concentrations of elements. It makes use of the
absorption of light by these elements in order to
measure their concentration .
- Atomic-absorption spectroscopy quantifies the
absorption of ground state atoms in the gaseous
state .
- The atoms absorb ultraviolet or visible light and
make transitions to higher electronic energy levels
. The analyte concentration is determined from
the amount of absorption.
- Concentration measurements are usually determined
from a working curve after calibrating the instrument
with standards of known concentration.
- Atomic absorption is a very common technique for
detecting metals and metalloids in environmental
samples.
Elements detectable by atomic absorption are highlighted in pink in this periodic table
The Atomic Absorption Spectrometer
• Atomic absorption spectrometers have 4
principal components
1 - A light source ( usually a hollow cathode
lamp )
2 – An atom cell ( atomizer )
3 - A monochromator
4 - A detector , and read out device .
Atomic Absorption Spectrophotometer
1 – Light Source
• The light source is usually a hollow cathode lamp of the
element that is being measured . It contains a tungsten anode
and a hollow cylindrical cathode made of the element to be
determined. These are sealed in a glass tube filled with an inert
gas (neon or argon ) . Each element has its own unique lamp
which must be used for that analysis .
Hollow cathode lamp (HCL)
How it works
Applying a potential difference between the anode
and the cathode leads to the ionization of some gas
atoms .
These gaseous ions bombard the cathode and eject
metal atoms from the cathode in a process called
sputtering. Some sputtered atoms are in excited states
and emit radiation characteristic of the metal as they
fall back to the ground state .
Scheme of a hollow cathode lamp
The shape of the cathode which is hollow cylindrical
concentrates the emitted radiation into a beam which
passes through a quartz window all the way to the
vaporized sample.
Since atoms of different elements absorb
characteristic wavelengths of light. Analyzing a
sample to see if it contains a particular element means
using light from that element .
For example with lead, a lamp containing lead emits
light from excited lead atoms that produce the right
mix of wavelengths to be absorbed by any lead atoms
from the sample.
A beam of the electromagnetic radiation emitted from
excited lead atoms is passed through the vaporized
sample. Some of the radiation is absorbed by the lead
atoms in the sample. The greater the number of atoms
there is in the vapor , the more radiation is absorbed .
2 – Atomizer
Elements to be analyzed needs to be in atomic sate
Atomization is separation of particles into individual
molecules and breaking molecules into atoms .This is
done by exposing the analyte to high temperatures in a
flame or graphite furnace .
The role of the atom cell is to primarily dissolvate a
liquid sample and then the solid particles are
vaporized into their free gaseous ground state form .
In this form atoms will be available to absorb
radiation emitted from the light source and thus
generate a measurable signal proportional to
concentration .
There are two types of atomization : Flame and
Graphite furnace atomization .
•
Flame
• Flame AA can only analyze solutions , where it uses a
slot type burner to increase the path length, and therefore
to increase the total absorbance .
Sample solutions are usually introduced into a nebuliser by
being sucked up by a capillary tube .In the nebuliser the
sample is dispersed into tiny droplets , which can be
readily broken down in the flame.
Various flame atomization techniques
Types of Flames Used in Atomic
Spectroscopy
Processes that take place in flame
The Atomic Absorption Spectrometer
Sample Introduction System
Nebuliser
Capillary
Solution
• The fine mist of droplets is mixed with fuel
(acetylene ) , and oxidant ( nitrous oxide) and
burned.
The flame temperature is important because it
influences the distribution of atoms. It can be
manipulated by oxidant and fuel ratio.
3- Monochromators
This is a very important part in an AA spectrometer. It
is used to separate out all of the thousands of lines.
Without a good monochromator, detection limits are
severely compromised.
A monochromator is used to select the specific
wavelength of light which is absorbed by the sample,
and to exclude other wavelengths. The selection of
the specific light allows the determination of the
selected element in the presence of others.
4 - Detector and
Read out Device
The light selected by the monochromator is directed
onto a detector that is typically a photomultiplier tube
, whose function is to convert the light signal into an
electrical signal proportional to the light intensity.
The processing of electrical signal is fulfilled by a
signal amplifier . The signal could be displayed for
readout , or further fed into a data station for printout
by the requested format.
Calibration Curve
A calibration curve is used to determine the unknown
concentration of an element in a solution. The instrument is
calibrated using several solutions of known concentrations.
The absorbance of each known solution is measured and then a
calibration curve of concentration vs absorbance is plotted.
The sample solution is fed into the instrument, and the
absorbance of the element in this solution is measured .The
unknown concentration of the element is then calculated from
the calibration curve
Calibration Curve
A 1.0 -
b 0.9 -
S 0.8 - .
o 0.7 - .
r 0.6 - .
b 0.5 - . .
a 0.4 - .
n 0.3 - .
c 0.2 -
e 0.1 -
10 20 30 40 50 60 70 80 90 100
Concentration ( g/ml )
Determining concentration from
Calibration Curve
A 1.0 - absorbance measured
b 0.9 -
S 0.8 - .
o 0.7 - .
r 0.6 - .
b 0.5 - . .
a 0.4 - .
n 0.3 - . concentration calculated
c 0.2 -
e 0.1 -
10 20 30 40 50 60 70 80 90 100
Concentration ( mg/l )
A life-saving technique
• Japan: From 1932 to 1968, AAS was used to
identify the reason why over 3,000 residents
who lives near the Minimata Bay started
showing neurogical problems and pregnant
women starts giving birth to impaired children.
Scientist starts taking samples and performing
AAS process; AAS results shows a very high
concentration of mercury in their blood. This
result on stopping the company, Chisso
corporation who dumped approximately 27
tones of mercury in the bay.
Interferences
The concentration of the analyte element is
considered to be proportional to the ground
state atom population in the flame ,any factor
that affects the ground state atom population
can be classified as an interference .
Factors that may affect the ability of the
instrument to read this parameter can also be
classified as an interference .
The different interferences that are encountered in atomic
absorption spectroscopy are :
- Absorption of Source Radiation : Element other than the one
of interest may absorb the wavelength being used.
- Ionization Interference : the formation of ions rather than
atoms causes lower absorption of radiation .This problem is
overcome by adding ionization suppressors.
- Self Absorption : the atoms of the same kind that are
absorbing radiation will absorb more at the center of the line
than at the wings and thus resulting in the change of shape of
the line as well as its intensity .
- Back ground Absorption of Source Radiation :
This is caused by the presence of a particle from
incomplete atomization .This problem is overcome by
increasing the flame temperature .
- Transport Interference :
Rate of aspiration, nebulization, or transport of the
sample ( e g viscosity, surface tension, vapor
pressure , and density ) .
2
Atomic Emission
Spectroscopy
Atomic emission spectroscopy is also an analytical
technique that is used to measure the concentrations
of elements in samples .
It uses quantitative measurement of the emission from
excited atoms to determine analyte concentration .
The analyte atoms are promoted to a higher energy level by the
sufficient energy that is provided by the high temperature of
the atomization sources .
The excited atoms decay back to lower levels by emitting light
. Emissions are passed through monochromators or filters
prior to detection by photomultiplier tubes.
The instrumentation of atomic emission
spectroscopy is the same as that of atomic
absorption ,but without the presence of a
radiation source .
In atomic Emission the sample is atomized and
the analyte atoms are excited to higher energy
levels all in the atomizer .
Schematic Diagram of an Atomic
Emission spectrometer
The source of energy in Atomic Emission could be a
flame like the one used in atomic absorption ,or an
inductively coupled plasma ( ICP ) .
- The flame ( 1700 – 3150 oC ) is most useful for
elements with relatively low excitation energies like
sodium potassium and calcium .
- The ICP ( 6000 – 8000 oC) has a very high
temperature and is useful for elements of high
excitation energies .
INSTRUMENTATION
Similar to an atomic absorption spectrometer ,the
monochromator is simply a wavelength
selector that separates all different wave
lengths and select the desired one .
The selected wave length is passed on to a
detector that converts the light signal into an
electrical signal .
Comparison Between Atomic Absorption
and Emission Spectroscopy
Absorption
- Measure trace metal
concentrations in
complex matrices .
- Atomic absorption
depends upon the
number of ground state
atoms .
Emission
- Measure trace metal
concentrations in
complex matrices .
- Atomic emission
depends upon the
number of excited
atoms .
3
AAS APPLICATIONS
The are many applications for atomic
absorption:
- Clinical analysis : Analyzing metals in
biological fluids such as blood and urine.
- Environmental analysis : Monitoring
our environment – e g finding out the
levels of various elements in rivers,
seawater, drinking water, air, and petrol.
- Pharmaceuticals.
- In some pharmaceutical manufacturing
processes, minute quantities of a catalyst
used in the process (usually a metal) are
sometimes present in the final product.
By using AAS the amount of catalyst
present can be determined.
- Industry : Many raw materials are
examined and
AAS is widely used to check that the
major elements
are present and that toxic impurities are
lower than
specified – e g in concrete, where calcium
is a major
constituent, the lead level should be low
because it is toxic.
- Mining: By using AAS the amount of
metals such as gold in rocks can be
determined to see whether it is worth
mining the rocks to extract the gold .
- Trace elements in food analysis
- Trace element analysis of cosmetics
- Trace element analysis of hair
Advantages of AAS
• very sensitive:
can detect concentrations as small as a few parts to
g / Litre (parts per million)
• generally very specific:
set wavelength is strongly absorbed by the
particular metal ion being analysed (and not by
other components)

More Related Content

What's hot

Atomic emission spectroscopy PPT
Atomic emission spectroscopy PPTAtomic emission spectroscopy PPT
Atomic emission spectroscopy PPT
HumnaMehmood
 
Flame and atomic abosrption spectrophometry
Flame and atomic abosrption spectrophometry  Flame and atomic abosrption spectrophometry
Flame and atomic abosrption spectrophometry
Sailee Gurav
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
Anshul2593
 
Nephelometry and turbidimetry
Nephelometry and turbidimetryNephelometry and turbidimetry
Nephelometry and turbidimetry
Muhammad Asif Shaheeen
 
Atomic absorption spectrophotometry
Atomic absorption spectrophotometryAtomic absorption spectrophotometry
Atomic absorption spectrophotometry
Basil "Lexi" Bruno
 
Atomic Absorption Spectroscopy (AAS)
Atomic Absorption Spectroscopy (AAS)Atomic Absorption Spectroscopy (AAS)
Atomic Absorption Spectroscopy (AAS)
Sajjad Ullah
 
Mass Spectroscopy and its applications
Mass Spectroscopy and its applicationsMass Spectroscopy and its applications
Mass Spectroscopy and its applications
Achyut Adhikari
 
FLAME PHOTOMETRY.pptx
FLAME PHOTOMETRY.pptxFLAME PHOTOMETRY.pptx
FLAME PHOTOMETRY.pptx
SATISH KOLA
 
Atomic emission spectroscopy In Pharmacy Education ppt
Atomic emission spectroscopy In Pharmacy Education ppt Atomic emission spectroscopy In Pharmacy Education ppt
Atomic emission spectroscopy In Pharmacy Education ppt
Dr Duggirala Mahendra
 
Flame Atomic Absorption Spectroscopy
Flame Atomic Absorption SpectroscopyFlame Atomic Absorption Spectroscopy
Flame Atomic Absorption Spectroscopy
Haydar Mohammad Salim
 
atomic absorption spectroscopy
atomic absorption spectroscopyatomic absorption spectroscopy
atomic absorption spectroscopy
JyotiMhoprekar
 
Flame Photometry
Flame PhotometryFlame Photometry
Flame Photometry
Damodar Koirala
 
ATOMIC ABSORPTION SPECTROSCOPY
ATOMIC ABSORPTION SPECTROSCOPYATOMIC ABSORPTION SPECTROSCOPY
ATOMIC ABSORPTION SPECTROSCOPYnadeem akhter
 
Atomic absorption spectroscopy (aas)
Atomic absorption spectroscopy (aas)Atomic absorption spectroscopy (aas)
Atomic absorption spectroscopy (aas)
Abdullah Al Noman
 
ATOMIC ABSORPTION SPECTROPHOTOMETRY
ATOMIC ABSORPTION SPECTROPHOTOMETRYATOMIC ABSORPTION SPECTROPHOTOMETRY
ATOMIC ABSORPTION SPECTROPHOTOMETRY
Raju Sanghvi
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
SreePrakashPandey
 
Aas
AasAas
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopy
Shabnamkhan113
 
Flame emission spectroscopy
Flame emission spectroscopy Flame emission spectroscopy
Flame emission spectroscopy
ROHIT
 

What's hot (20)

Atomic emission spectroscopy PPT
Atomic emission spectroscopy PPTAtomic emission spectroscopy PPT
Atomic emission spectroscopy PPT
 
Flame and atomic abosrption spectrophometry
Flame and atomic abosrption spectrophometry  Flame and atomic abosrption spectrophometry
Flame and atomic abosrption spectrophometry
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Nephelometry and turbidimetry
Nephelometry and turbidimetryNephelometry and turbidimetry
Nephelometry and turbidimetry
 
Atomic absorption spectrophotometry
Atomic absorption spectrophotometryAtomic absorption spectrophotometry
Atomic absorption spectrophotometry
 
Atomic Absorption Spectroscopy (AAS)
Atomic Absorption Spectroscopy (AAS)Atomic Absorption Spectroscopy (AAS)
Atomic Absorption Spectroscopy (AAS)
 
Mass Spectroscopy and its applications
Mass Spectroscopy and its applicationsMass Spectroscopy and its applications
Mass Spectroscopy and its applications
 
FLAME PHOTOMETRY.pptx
FLAME PHOTOMETRY.pptxFLAME PHOTOMETRY.pptx
FLAME PHOTOMETRY.pptx
 
Atomic emission spectroscopy In Pharmacy Education ppt
Atomic emission spectroscopy In Pharmacy Education ppt Atomic emission spectroscopy In Pharmacy Education ppt
Atomic emission spectroscopy In Pharmacy Education ppt
 
Flame Atomic Absorption Spectroscopy
Flame Atomic Absorption SpectroscopyFlame Atomic Absorption Spectroscopy
Flame Atomic Absorption Spectroscopy
 
atomic absorption spectroscopy
atomic absorption spectroscopyatomic absorption spectroscopy
atomic absorption spectroscopy
 
Flame Photometry
Flame PhotometryFlame Photometry
Flame Photometry
 
ATOMIC ABSORPTION SPECTROSCOPY
ATOMIC ABSORPTION SPECTROSCOPYATOMIC ABSORPTION SPECTROSCOPY
ATOMIC ABSORPTION SPECTROSCOPY
 
Atomic absorption spectroscopy (aas)
Atomic absorption spectroscopy (aas)Atomic absorption spectroscopy (aas)
Atomic absorption spectroscopy (aas)
 
ATOMIC ABSORPTION SPECTROPHOTOMETRY
ATOMIC ABSORPTION SPECTROPHOTOMETRYATOMIC ABSORPTION SPECTROPHOTOMETRY
ATOMIC ABSORPTION SPECTROPHOTOMETRY
 
Atomic absorption spectrometry (aas)
Atomic absorption spectrometry (aas)Atomic absorption spectrometry (aas)
Atomic absorption spectrometry (aas)
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Aas
AasAas
Aas
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopy
 
Flame emission spectroscopy
Flame emission spectroscopy Flame emission spectroscopy
Flame emission spectroscopy
 

Similar to Atomic_Absorption_Emission.ppt

1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt
RanaNoman21
 
1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt
MuhammadJavedIqbal40
 
1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt
RezaJoia
 
Instru booklet
Instru bookletInstru booklet
Instru booklet
Zainab&Sons
 
Atomic absorption & flame emissionn.pptx
Atomic absorption & flame emissionn.pptxAtomic absorption & flame emissionn.pptx
Atomic absorption & flame emissionn.pptx
Dr. Vijaya Barge
 
Atomic absorption & flame emission spectrophotometry by Dr. Anurag Yadav
Atomic absorption & flame emission spectrophotometry by Dr. Anurag YadavAtomic absorption & flame emission spectrophotometry by Dr. Anurag Yadav
Atomic absorption & flame emission spectrophotometry by Dr. Anurag Yadav
Dr Anurag Yadav
 
AAS.pptx
AAS.pptxAAS.pptx
AAS.pptx
InnaSriUtami
 
Atomic absorption spectroscopy (AAS).pptx
Atomic absorption spectroscopy (AAS).pptxAtomic absorption spectroscopy (AAS).pptx
Atomic absorption spectroscopy (AAS).pptx
Priyankashah645680
 
Mridu- AAS.pptx
Mridu- AAS.pptxMridu- AAS.pptx
Mridu- AAS.pptx
SweetuCutie
 
Instru booklet (1)
Instru booklet (1)Instru booklet (1)
Instru booklet (1)
Zainab&Sons
 
Atomic absorption spectroscopy
Atomic absorption spectroscopy Atomic absorption spectroscopy
Atomic absorption spectroscopy
Mayur Bodhankar
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
Salah Ud Din Shabab
 
Atomic spectroscopy
Atomic spectroscopy Atomic spectroscopy
Atomic spectroscopy
Preeti Choudhary
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
SwatiChoudhary51
 
Atomic absorption spectroscopy lec
Atomic absorption spectroscopy lecAtomic absorption spectroscopy lec
Atomic absorption spectroscopy lec
Zainab&Sons
 
A presentation ,analytical methods-for-determination-of-metals-in-environment...
A presentation ,analytical methods-for-determination-of-metals-in-environment...A presentation ,analytical methods-for-determination-of-metals-in-environment...
A presentation ,analytical methods-for-determination-of-metals-in-environment...
Adnan Sohail
 
Atomic absorption spectroscopy.pptx
Atomic absorption spectroscopy.pptxAtomic absorption spectroscopy.pptx
Atomic absorption spectroscopy.pptx
Vandana Devesh Sharma
 
Atomic Absorption Spectroscopy, Principles and Applications.pptx
Atomic Absorption Spectroscopy, Principles and Applications.pptxAtomic Absorption Spectroscopy, Principles and Applications.pptx
Atomic Absorption Spectroscopy, Principles and Applications.pptx
Ahnaf maznun
 
flame photometry (1).pptx
flame photometry (1).pptxflame photometry (1).pptx
flame photometry (1).pptx
KadDhanashree
 

Similar to Atomic_Absorption_Emission.ppt (20)

1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt
 
1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt
 
1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt1606732404-atomic-absorption-emission-2.ppt
1606732404-atomic-absorption-emission-2.ppt
 
Instru booklet
Instru bookletInstru booklet
Instru booklet
 
Atomic absorption & flame emissionn.pptx
Atomic absorption & flame emissionn.pptxAtomic absorption & flame emissionn.pptx
Atomic absorption & flame emissionn.pptx
 
Atomic absorption & flame emission spectrophotometry by Dr. Anurag Yadav
Atomic absorption & flame emission spectrophotometry by Dr. Anurag YadavAtomic absorption & flame emission spectrophotometry by Dr. Anurag Yadav
Atomic absorption & flame emission spectrophotometry by Dr. Anurag Yadav
 
AAS.pptx
AAS.pptxAAS.pptx
AAS.pptx
 
Atomic absorption spectroscopy (AAS).pptx
Atomic absorption spectroscopy (AAS).pptxAtomic absorption spectroscopy (AAS).pptx
Atomic absorption spectroscopy (AAS).pptx
 
Mridu- AAS.pptx
Mridu- AAS.pptxMridu- AAS.pptx
Mridu- AAS.pptx
 
APA seminar
APA seminarAPA seminar
APA seminar
 
Instru booklet (1)
Instru booklet (1)Instru booklet (1)
Instru booklet (1)
 
Atomic absorption spectroscopy
Atomic absorption spectroscopy Atomic absorption spectroscopy
Atomic absorption spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Atomic spectroscopy
Atomic spectroscopy Atomic spectroscopy
Atomic spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Atomic absorption spectroscopy lec
Atomic absorption spectroscopy lecAtomic absorption spectroscopy lec
Atomic absorption spectroscopy lec
 
A presentation ,analytical methods-for-determination-of-metals-in-environment...
A presentation ,analytical methods-for-determination-of-metals-in-environment...A presentation ,analytical methods-for-determination-of-metals-in-environment...
A presentation ,analytical methods-for-determination-of-metals-in-environment...
 
Atomic absorption spectroscopy.pptx
Atomic absorption spectroscopy.pptxAtomic absorption spectroscopy.pptx
Atomic absorption spectroscopy.pptx
 
Atomic Absorption Spectroscopy, Principles and Applications.pptx
Atomic Absorption Spectroscopy, Principles and Applications.pptxAtomic Absorption Spectroscopy, Principles and Applications.pptx
Atomic Absorption Spectroscopy, Principles and Applications.pptx
 
flame photometry (1).pptx
flame photometry (1).pptxflame photometry (1).pptx
flame photometry (1).pptx
 

More from ZORAIZ HAIDER

Excel_2007_Final.pptx
Excel_2007_Final.pptxExcel_2007_Final.pptx
Excel_2007_Final.pptx
ZORAIZ HAIDER
 
Health-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptxHealth-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptx
ZORAIZ HAIDER
 
Fundamentals of Computer.pptx
Fundamentals of Computer.pptxFundamentals of Computer.pptx
Fundamentals of Computer.pptx
ZORAIZ HAIDER
 
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
ZORAIZ HAIDER
 
nmr2_pl.ppt
nmr2_pl.pptnmr2_pl.ppt
nmr2_pl.ppt
ZORAIZ HAIDER
 
tlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppttlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppt
ZORAIZ HAIDER
 
Mass Spectrometer.pptx
Mass Spectrometer.pptxMass Spectrometer.pptx
Mass Spectrometer.pptx
ZORAIZ HAIDER
 
hplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppthplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppt
ZORAIZ HAIDER
 
Differential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.pptDifferential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.ppt
ZORAIZ HAIDER
 
3rd.prof mam abida.pptx
3rd.prof mam abida.pptx3rd.prof mam abida.pptx
3rd.prof mam abida.pptx
ZORAIZ HAIDER
 
gass chromatography(dr.islam).docx
gass chromatography(dr.islam).docxgass chromatography(dr.islam).docx
gass chromatography(dr.islam).docx
ZORAIZ HAIDER
 
GC Power Point.pptx
GC Power Point.pptxGC Power Point.pptx
GC Power Point.pptx
ZORAIZ HAIDER
 
Drug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptxDrug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptx
ZORAIZ HAIDER
 
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptxEpidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
ZORAIZ HAIDER
 
Acupuncture.pptx
Acupuncture.pptxAcupuncture.pptx
Acupuncture.pptx
ZORAIZ HAIDER
 
20160_powders.ppt
20160_powders.ppt20160_powders.ppt
20160_powders.ppt
ZORAIZ HAIDER
 
Dispensing.pdf
Dispensing.pdfDispensing.pdf
Dispensing.pdf
ZORAIZ HAIDER
 
Various Methods of Preparation of Dispersed system (1).docx
Various Methods of Preparation of  Dispersed system (1).docxVarious Methods of Preparation of  Dispersed system (1).docx
Various Methods of Preparation of Dispersed system (1).docx
ZORAIZ HAIDER
 
Stability of dispersed systems.pptx
Stability of dispersed  systems.pptxStability of dispersed  systems.pptx
Stability of dispersed systems.pptx
ZORAIZ HAIDER
 
Dispersed System Classification.docx
Dispersed System  Classification.docxDispersed System  Classification.docx
Dispersed System Classification.docx
ZORAIZ HAIDER
 

More from ZORAIZ HAIDER (20)

Excel_2007_Final.pptx
Excel_2007_Final.pptxExcel_2007_Final.pptx
Excel_2007_Final.pptx
 
Health-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptxHealth-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptx
 
Fundamentals of Computer.pptx
Fundamentals of Computer.pptxFundamentals of Computer.pptx
Fundamentals of Computer.pptx
 
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
 
nmr2_pl.ppt
nmr2_pl.pptnmr2_pl.ppt
nmr2_pl.ppt
 
tlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppttlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppt
 
Mass Spectrometer.pptx
Mass Spectrometer.pptxMass Spectrometer.pptx
Mass Spectrometer.pptx
 
hplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppthplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppt
 
Differential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.pptDifferential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.ppt
 
3rd.prof mam abida.pptx
3rd.prof mam abida.pptx3rd.prof mam abida.pptx
3rd.prof mam abida.pptx
 
gass chromatography(dr.islam).docx
gass chromatography(dr.islam).docxgass chromatography(dr.islam).docx
gass chromatography(dr.islam).docx
 
GC Power Point.pptx
GC Power Point.pptxGC Power Point.pptx
GC Power Point.pptx
 
Drug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptxDrug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptx
 
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptxEpidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
 
Acupuncture.pptx
Acupuncture.pptxAcupuncture.pptx
Acupuncture.pptx
 
20160_powders.ppt
20160_powders.ppt20160_powders.ppt
20160_powders.ppt
 
Dispensing.pdf
Dispensing.pdfDispensing.pdf
Dispensing.pdf
 
Various Methods of Preparation of Dispersed system (1).docx
Various Methods of Preparation of  Dispersed system (1).docxVarious Methods of Preparation of  Dispersed system (1).docx
Various Methods of Preparation of Dispersed system (1).docx
 
Stability of dispersed systems.pptx
Stability of dispersed  systems.pptxStability of dispersed  systems.pptx
Stability of dispersed systems.pptx
 
Dispersed System Classification.docx
Dispersed System  Classification.docxDispersed System  Classification.docx
Dispersed System Classification.docx
 

Recently uploaded

ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
Swetaba Besh
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
vimalpl1234
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
Sapna Thakur
 
Gram Stain introduction, principle, Procedure
Gram Stain introduction, principle, ProcedureGram Stain introduction, principle, Procedure
Gram Stain introduction, principle, Procedure
Suraj Goswami
 
Pictures of Superficial & Deep Fascia.ppt.pdf
Pictures of Superficial & Deep Fascia.ppt.pdfPictures of Superficial & Deep Fascia.ppt.pdf
Pictures of Superficial & Deep Fascia.ppt.pdf
Dr. Rabia Inam Gandapore
 
Flu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore KarnatakaFlu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore Karnataka
addon Scans
 
New Drug Discovery and Development .....
New Drug Discovery and Development .....New Drug Discovery and Development .....
New Drug Discovery and Development .....
NEHA GUPTA
 
CDSCO and Phamacovigilance {Regulatory body in India}
CDSCO and Phamacovigilance {Regulatory body in India}CDSCO and Phamacovigilance {Regulatory body in India}
CDSCO and Phamacovigilance {Regulatory body in India}
NEHA GUPTA
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
Dr. Rabia Inam Gandapore
 
Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
KafrELShiekh University
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
Light House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat EuropeLight House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat Europe
Lighthouse Retreat
 
A Classical Text Review on Basavarajeeyam
A Classical Text Review on BasavarajeeyamA Classical Text Review on Basavarajeeyam
A Classical Text Review on Basavarajeeyam
Dr. Jyothirmai Paindla
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
د.محمود نجيب
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptxTriangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Hemodialysis: Chapter 4, Dialysate Circuit - Dr.Gawad
Hemodialysis: Chapter 4, Dialysate Circuit - Dr.GawadHemodialysis: Chapter 4, Dialysate Circuit - Dr.Gawad
Hemodialysis: Chapter 4, Dialysate Circuit - Dr.Gawad
NephroTube - Dr.Gawad
 
Best Ayurvedic medicine for Gas and Indigestion
Best Ayurvedic medicine for Gas and IndigestionBest Ayurvedic medicine for Gas and Indigestion
Best Ayurvedic medicine for Gas and Indigestion
SwastikAyurveda
 
Sex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skullSex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skull
ShashankRoodkee
 

Recently uploaded (20)

ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
 
Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
 
Gram Stain introduction, principle, Procedure
Gram Stain introduction, principle, ProcedureGram Stain introduction, principle, Procedure
Gram Stain introduction, principle, Procedure
 
Pictures of Superficial & Deep Fascia.ppt.pdf
Pictures of Superficial & Deep Fascia.ppt.pdfPictures of Superficial & Deep Fascia.ppt.pdf
Pictures of Superficial & Deep Fascia.ppt.pdf
 
Flu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore KarnatakaFlu Vaccine Alert in Bangalore Karnataka
Flu Vaccine Alert in Bangalore Karnataka
 
New Drug Discovery and Development .....
New Drug Discovery and Development .....New Drug Discovery and Development .....
New Drug Discovery and Development .....
 
CDSCO and Phamacovigilance {Regulatory body in India}
CDSCO and Phamacovigilance {Regulatory body in India}CDSCO and Phamacovigilance {Regulatory body in India}
CDSCO and Phamacovigilance {Regulatory body in India}
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
 
Ophthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE examOphthalmology Clinical Tests for OSCE exam
Ophthalmology Clinical Tests for OSCE exam
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
Light House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat EuropeLight House Retreats: Plant Medicine Retreat Europe
Light House Retreats: Plant Medicine Retreat Europe
 
A Classical Text Review on Basavarajeeyam
A Classical Text Review on BasavarajeeyamA Classical Text Review on Basavarajeeyam
A Classical Text Review on Basavarajeeyam
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptxTriangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
 
Hemodialysis: Chapter 4, Dialysate Circuit - Dr.Gawad
Hemodialysis: Chapter 4, Dialysate Circuit - Dr.GawadHemodialysis: Chapter 4, Dialysate Circuit - Dr.Gawad
Hemodialysis: Chapter 4, Dialysate Circuit - Dr.Gawad
 
Best Ayurvedic medicine for Gas and Indigestion
Best Ayurvedic medicine for Gas and IndigestionBest Ayurvedic medicine for Gas and Indigestion
Best Ayurvedic medicine for Gas and Indigestion
 
Sex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skullSex determination from mandible pelvis and skull
Sex determination from mandible pelvis and skull
 

Atomic_Absorption_Emission.ppt

  • 1. ATOMIC SPECROSCOPY (AS) Atomic Absorption Spectroscopy Flame Atomic Emission Spectroscopy ICP Atomic Emission Spectroscopy
  • 2. 1 BASIC PRINCIPLE ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light by these elements in order to measure their concentration .
  • 3. - Atomic-absorption spectroscopy quantifies the absorption of ground state atoms in the gaseous state . - The atoms absorb ultraviolet or visible light and make transitions to higher electronic energy levels . The analyte concentration is determined from the amount of absorption.
  • 4. - Concentration measurements are usually determined from a working curve after calibrating the instrument with standards of known concentration. - Atomic absorption is a very common technique for detecting metals and metalloids in environmental samples.
  • 5. Elements detectable by atomic absorption are highlighted in pink in this periodic table
  • 6. The Atomic Absorption Spectrometer • Atomic absorption spectrometers have 4 principal components 1 - A light source ( usually a hollow cathode lamp ) 2 – An atom cell ( atomizer ) 3 - A monochromator 4 - A detector , and read out device .
  • 8.
  • 9. 1 – Light Source • The light source is usually a hollow cathode lamp of the element that is being measured . It contains a tungsten anode and a hollow cylindrical cathode made of the element to be determined. These are sealed in a glass tube filled with an inert gas (neon or argon ) . Each element has its own unique lamp which must be used for that analysis .
  • 11. How it works Applying a potential difference between the anode and the cathode leads to the ionization of some gas atoms . These gaseous ions bombard the cathode and eject metal atoms from the cathode in a process called sputtering. Some sputtered atoms are in excited states and emit radiation characteristic of the metal as they fall back to the ground state .
  • 12. Scheme of a hollow cathode lamp
  • 13. The shape of the cathode which is hollow cylindrical concentrates the emitted radiation into a beam which passes through a quartz window all the way to the vaporized sample. Since atoms of different elements absorb characteristic wavelengths of light. Analyzing a sample to see if it contains a particular element means using light from that element .
  • 14. For example with lead, a lamp containing lead emits light from excited lead atoms that produce the right mix of wavelengths to be absorbed by any lead atoms from the sample. A beam of the electromagnetic radiation emitted from excited lead atoms is passed through the vaporized sample. Some of the radiation is absorbed by the lead atoms in the sample. The greater the number of atoms there is in the vapor , the more radiation is absorbed .
  • 15. 2 – Atomizer Elements to be analyzed needs to be in atomic sate Atomization is separation of particles into individual molecules and breaking molecules into atoms .This is done by exposing the analyte to high temperatures in a flame or graphite furnace .
  • 16. The role of the atom cell is to primarily dissolvate a liquid sample and then the solid particles are vaporized into their free gaseous ground state form . In this form atoms will be available to absorb radiation emitted from the light source and thus generate a measurable signal proportional to concentration . There are two types of atomization : Flame and Graphite furnace atomization .
  • 17.
  • 18. Flame • Flame AA can only analyze solutions , where it uses a slot type burner to increase the path length, and therefore to increase the total absorbance . Sample solutions are usually introduced into a nebuliser by being sucked up by a capillary tube .In the nebuliser the sample is dispersed into tiny droplets , which can be readily broken down in the flame.
  • 20. Types of Flames Used in Atomic Spectroscopy
  • 21. Processes that take place in flame
  • 22. The Atomic Absorption Spectrometer Sample Introduction System Nebuliser Capillary Solution
  • 23. • The fine mist of droplets is mixed with fuel (acetylene ) , and oxidant ( nitrous oxide) and burned. The flame temperature is important because it influences the distribution of atoms. It can be manipulated by oxidant and fuel ratio.
  • 24. 3- Monochromators This is a very important part in an AA spectrometer. It is used to separate out all of the thousands of lines. Without a good monochromator, detection limits are severely compromised. A monochromator is used to select the specific wavelength of light which is absorbed by the sample, and to exclude other wavelengths. The selection of the specific light allows the determination of the selected element in the presence of others.
  • 25. 4 - Detector and Read out Device The light selected by the monochromator is directed onto a detector that is typically a photomultiplier tube , whose function is to convert the light signal into an electrical signal proportional to the light intensity. The processing of electrical signal is fulfilled by a signal amplifier . The signal could be displayed for readout , or further fed into a data station for printout by the requested format.
  • 26. Calibration Curve A calibration curve is used to determine the unknown concentration of an element in a solution. The instrument is calibrated using several solutions of known concentrations. The absorbance of each known solution is measured and then a calibration curve of concentration vs absorbance is plotted. The sample solution is fed into the instrument, and the absorbance of the element in this solution is measured .The unknown concentration of the element is then calculated from the calibration curve
  • 27. Calibration Curve A 1.0 - b 0.9 - S 0.8 - . o 0.7 - . r 0.6 - . b 0.5 - . . a 0.4 - . n 0.3 - . c 0.2 - e 0.1 - 10 20 30 40 50 60 70 80 90 100 Concentration ( g/ml )
  • 28. Determining concentration from Calibration Curve A 1.0 - absorbance measured b 0.9 - S 0.8 - . o 0.7 - . r 0.6 - . b 0.5 - . . a 0.4 - . n 0.3 - . concentration calculated c 0.2 - e 0.1 - 10 20 30 40 50 60 70 80 90 100 Concentration ( mg/l )
  • 29. A life-saving technique • Japan: From 1932 to 1968, AAS was used to identify the reason why over 3,000 residents who lives near the Minimata Bay started showing neurogical problems and pregnant women starts giving birth to impaired children. Scientist starts taking samples and performing AAS process; AAS results shows a very high concentration of mercury in their blood. This result on stopping the company, Chisso corporation who dumped approximately 27 tones of mercury in the bay.
  • 30. Interferences The concentration of the analyte element is considered to be proportional to the ground state atom population in the flame ,any factor that affects the ground state atom population can be classified as an interference . Factors that may affect the ability of the instrument to read this parameter can also be classified as an interference .
  • 31. The different interferences that are encountered in atomic absorption spectroscopy are : - Absorption of Source Radiation : Element other than the one of interest may absorb the wavelength being used. - Ionization Interference : the formation of ions rather than atoms causes lower absorption of radiation .This problem is overcome by adding ionization suppressors. - Self Absorption : the atoms of the same kind that are absorbing radiation will absorb more at the center of the line than at the wings and thus resulting in the change of shape of the line as well as its intensity .
  • 32. - Back ground Absorption of Source Radiation : This is caused by the presence of a particle from incomplete atomization .This problem is overcome by increasing the flame temperature . - Transport Interference : Rate of aspiration, nebulization, or transport of the sample ( e g viscosity, surface tension, vapor pressure , and density ) .
  • 33. 2 Atomic Emission Spectroscopy Atomic emission spectroscopy is also an analytical technique that is used to measure the concentrations of elements in samples . It uses quantitative measurement of the emission from excited atoms to determine analyte concentration .
  • 34. The analyte atoms are promoted to a higher energy level by the sufficient energy that is provided by the high temperature of the atomization sources . The excited atoms decay back to lower levels by emitting light . Emissions are passed through monochromators or filters prior to detection by photomultiplier tubes.
  • 35. The instrumentation of atomic emission spectroscopy is the same as that of atomic absorption ,but without the presence of a radiation source . In atomic Emission the sample is atomized and the analyte atoms are excited to higher energy levels all in the atomizer .
  • 36. Schematic Diagram of an Atomic Emission spectrometer
  • 37. The source of energy in Atomic Emission could be a flame like the one used in atomic absorption ,or an inductively coupled plasma ( ICP ) . - The flame ( 1700 – 3150 oC ) is most useful for elements with relatively low excitation energies like sodium potassium and calcium . - The ICP ( 6000 – 8000 oC) has a very high temperature and is useful for elements of high excitation energies .
  • 39. Similar to an atomic absorption spectrometer ,the monochromator is simply a wavelength selector that separates all different wave lengths and select the desired one . The selected wave length is passed on to a detector that converts the light signal into an electrical signal .
  • 40. Comparison Between Atomic Absorption and Emission Spectroscopy Absorption - Measure trace metal concentrations in complex matrices . - Atomic absorption depends upon the number of ground state atoms . Emission - Measure trace metal concentrations in complex matrices . - Atomic emission depends upon the number of excited atoms .
  • 41. 3 AAS APPLICATIONS The are many applications for atomic absorption: - Clinical analysis : Analyzing metals in biological fluids such as blood and urine. - Environmental analysis : Monitoring our environment – e g finding out the levels of various elements in rivers, seawater, drinking water, air, and petrol.
  • 42. - Pharmaceuticals. - In some pharmaceutical manufacturing processes, minute quantities of a catalyst used in the process (usually a metal) are sometimes present in the final product. By using AAS the amount of catalyst present can be determined.
  • 43. - Industry : Many raw materials are examined and AAS is widely used to check that the major elements are present and that toxic impurities are lower than specified – e g in concrete, where calcium is a major constituent, the lead level should be low because it is toxic.
  • 44. - Mining: By using AAS the amount of metals such as gold in rocks can be determined to see whether it is worth mining the rocks to extract the gold . - Trace elements in food analysis - Trace element analysis of cosmetics - Trace element analysis of hair
  • 45. Advantages of AAS • very sensitive: can detect concentrations as small as a few parts to g / Litre (parts per million) • generally very specific: set wavelength is strongly absorbed by the particular metal ion being analysed (and not by other components)