SlideShare a Scribd company logo
1
Nuclear Magnetic Resonance Spectroscopy II
Structure Determination:
Spin of Nuclei
• Fermions : Odd mass nuclei with an odd number of nucleons have
• fractional spins.
• I = 1/2 ( 1H, 13C, 19F, 31P ), I = 3/2 ( 11B, 33S ) & I = 5/2 ( 17O ).
• Bosons : Even mass nuclei with odd numbers of protons and
• neutrons have integral spins.
•
• I = 1 ( 2H, 14N )
• Even mass nuclei composed of even numbers of protons
• and neutrons have zero spin
• I = 0 (12C, and 16O, 32S)
2
3
• Nuclear magnetic resonance spectroscopy is a powerful
analytical technique used to characterize organic
molecules by identifying carbon-hydrogen frameworks
within molecules.
• Two common types of NMR spectroscopy are used to
characterize organic structure: 1H NMR is used to
determine the type and number of H atoms in a
molecule; 13C NMR is used to determine the type of
carbon atoms in the molecule.
• The source of energy in NMR is radio waves which
have long wavelengths, and thus low energy and
frequency.
• When low-energy radio waves interact with a molecule,
they can change the nuclear spins of some elements,
including 1H and 13C.
Introduction to NMR Spectroscopy
4
• When a charged particle such as a proton spins on its axis, it
creates a magnetic field. Thus, the nucleus can be considered
to be a tiny bar magnet.
• Normally, these tiny bar magnets are randomly oriented in
space. However, in the presence of a magnetic field B0, they
are oriented with or against this applied field. More nuclei are
oriented with the applied field because this arrangement is
lower in energy.
• The energy difference between these two states is very small
(<0.1 cal).
Introduction to NMR Spectroscopy
5
Nuclear Magnetic Resonance Spectroscopy
• In a magnetic field, there are now two energy states
for a proton: a lower energy state with the nucleus
aligned in the same direction as B0, and a higher
energy state in which the nucleus aligned against B0.
• When an external energy source (hn) that matches the
energy difference (DE) between these two states is
applied, energy is absorbed, causing the nucleus to
“spin flip” from one orientation to another.
• The energy difference between these two nuclear spin
states corresponds to the low frequency RF region of
the electromagnetic spectrum.
Introduction to NMR Spectroscopy
LARMOR PRECESSION
7
• Thus, two variables characterize NMR: an applied
magnetic field B0, the strength of which is measured
in tesla (T), and the frequency n of radiation used for
resonance, measured in hertz (Hz), or megahertz
(MHz)—(1 MHz = 106 Hz).
Introduction to NMR Spectroscopy
8
Nuclear Magnetic Resonance Spectroscopy
• The frequency needed for resonance and the applied
magnetic field strength are proportionally related:
• NMR spectrometers are referred to as 300 MHz
instruments, 500 MHz instruments, and so forth,
depending on the frequency of the RF radiation used
for resonance.
• These spectrometers use very powerful magnets to
create a small but measurable energy difference
between two possible spin states.
Introduction to NMR Spectroscopy
9
Nuclear Magnetic Resonance Spectroscopy
NMR INSTRUMENT
10
11
Nuclear Magnetic Resonance Spectroscopy
• Protons in different environments absorb at slightly
different frequencies, so they are distinguishable by
NMR.
• The frequency at which a particular proton absorbs is
determined by its electronic environment.
• The size of the magnetic field generated by the
electrons around a proton determines where it absorbs.
• Modern NMR spectrometers use a constant magnetic
field strength B0, and then a narrow range of
frequencies is applied to achieve the resonance of all
protons.
• Only nuclei that contain odd mass numbers (such as 1H,
13C, 19F and 31P) or odd atomic numbers (such as 2H and
14N) give rise to NMR signals.
Introduction to NMR Spectroscopy
12
Nuclear Magnetic Resonance Spectroscopy
• An NMR spectrum is a plot of the intensity of a peak against its
chemical shift, measured in parts per million (ppm).
1H NMR—The Spectrum
13
Nuclear Magnetic Resonance Spectroscopy
• NMR absorptions generally appear as sharp peaks.
• Increasing chemical shift is plotted from left to right.
• Most protons absorb between 0-10 ppm.
• The terms “upfield” and “downfield” describe the
relative location of peaks. Upfield means to the right.
Downfield means to the left.
• NMR absorptions are measured relative to the position
of a reference peak at 0 ppm on the d scale due to
tetramethylsilane (TMS). TMS is a volatile inert
compound that gives a single peak upfield from typical
NMR absorptions.
1H NMR—The Spectrum
14
Nuclear Magnetic Resonance Spectroscopy
• The chemical shift of the x axis gives the position of an NMR
signal, measured in ppm, according to the following equation:
1H NMR—The Spectrum
• By reporting the NMR absorption as a fraction of the NMR
operating frequency, we get units, ppm, that are
independent of the spectrometer.
• Four different features of a 1H NMR spectrum provide
information about a compound’s structure:
a. Number of signals
b. Position of signals
c. Intensity of signals.
d. Spin-spin splitting of signals.
15
Nuclear Magnetic Resonance Spectroscopy
• The number of NMR signals equals the number of different
types of protons in a compound.
• Protons in different environments give different NMR signals.
• Equivalent protons give the same NMR signal.
1H NMR—Number of Signals
• To determine equivalent protons in cycloalkanes and alkenes,
always draw all bonds to hydrogen.
16
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Number of Signals
17
Nuclear Magnetic Resonance Spectroscopy
• In comparing two H atoms on a ring or double bond, two
protons are equivalent only if they are cis (or trans) to
the same groups.
1H NMR—Number of Signals
18
Nuclear Magnetic Resonance Spectroscopy
• Proton equivalency in cycloalkanes can be determined
similarly.
1H NMR—Number of Signals
19
Nuclear Magnetic Resonance Spectroscopy
• In the vicinity of the nucleus, the magnetic field generated by
the circulating electron decreases the external magnetic field
that the proton “feels”.
• Since the electron experiences a lower magnetic field
strength, it needs a lower frequency to achieve resonance.
Lower frequency is to the right in an NMR spectrum, toward a
lower chemical shift, so shielding shifts the absorption upfield.
1H NMR—Position of Signals
20
Nuclear Magnetic Resonance Spectroscopy
• The less shielded the nucleus becomes, the more of
the applied magnetic field (B0) it feels.
• This deshielded nucleus experiences a higher magnetic
field strength, to it needs a higher frequency to
achieve resonance.
• Higher frequency is to the left in an NMR spectrum,
toward higher chemical shift—so deshielding shifts an
absorption downfield.
• Protons near electronegative atoms are deshielded, so
they absorb downfield.
1H NMR—Position of Signals
21
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Position of Signals
22
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Position of Signals
23
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Position of Signals
24
Nuclear Magnetic Resonance Spectroscopy
• Protons in a given environment absorb in a predictable region in
an NMR spectrum.
1H NMR—Chemical Shift Values
25
Nuclear Magnetic Resonance Spectroscopy
• The chemical shift of a C—H bond increases with
increasing alkyl substitution.
1H NMR—Chemical Shift Values
26
Nuclear Magnetic Resonance Spectroscopy
• The chemical shift of a C—H can be calculated with a
high degree of precision if a chemical shift additivity table is
used.
• The additivity tables starts with a base chemical shift value
depending on the structural type of hydrogen under consideration:
Calculating 1H NMR—Chemical Shift Values
CH3 C
H2
C
H
Methylene Methine
0.87 ppm 1.20 ppm 1.20 ppm
Base Chemical Shift
27
Nuclear Magnetic Resonance Spectroscopy
• The presence of nearby atoms or groups will effect the base
chemical shift by a specific amount:
• The carbon atom bonded to the hydrogen(s) under consideration
are described as alpha () carbons.
• Atoms or groups bonded to the same carbon as the hydrogen(s)
under consideration are described as alpha () substituents.
• Atoms or groups on carbons one bond removed from the a carbon
are called beta () carbons.
• Atoms or groups bonded to the  carbon are described as alpha
() substituents.
Calculating 1H NMR—Chemical Shift Values
(Hydrogen under consideration)
C C H
 
28
Nuclear Magnetic Resonance Spectroscopy
Calculating 1H NMR—Chemical Shift Values
(Hydrogen under consideration)
C C H
H
H
H
H
Cl
 
Base Chemical Shift = 0.87 ppm
no substituents = 0.00
one  -Cl (CH3) = 0.63
TOTAL = 1.50 ppm
(Hydrogen under consideration)
C C H
H
H
H
H
Cl


Base Chemical Shift = 1.20 ppm
one  -Cl (CH2) = 2.30
no substituents = 0.00
TOTAL = 3.50 ppm
29
Nuclear Magnetic Resonance Spectroscopy
• In a magnetic field, the six  electrons in benzene circulate
around the ring creating a ring current.
• The magnetic field induced by these moving electrons reinforces
the applied magnetic field in the vicinity of the protons.
• The protons thus feel a stronger magnetic field and a higher
frequency is needed for resonance. Thus they are deshielded
and absorb downfield.
1H NMR—Chemical Shift Values
30
Nuclear Magnetic Resonance Spectroscopy
• In a magnetic field, the loosely held  electrons of the
double bond create a magnetic field that reinforces the
applied field in the vicinity of the protons.
• The protons now feel a stronger magnetic field, and
require a higher frequency for resonance. Thus the
protons are deshielded and the absorption is downfield.
1H NMR—Chemical Shift Values
31
Nuclear Magnetic Resonance Spectroscopy
• In a magnetic field, the  electrons of a carbon-carbon triple
bond are induced to circulate, but in this case the induced
magnetic field opposes the applied magnetic field (B0).
• Thus, the proton feels a weaker magnetic field, so a lower
frequency is needed for resonance. The nucleus is shielded and
the absorption is upfield.
1H NMR—Chemical Shift Values
32
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Chemical Shift Values
33
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Chemical Shift Values)
1H NMR of Methyl Acetate
C
O
R O
H3C C O
Base Chemical Shift = 0.87 ppm
one  = 2.88 ppm
TOTAL = 3.75 ppm
O
CH3
C
O
R
Base Chemical Shift = 0.87 ppm
one  = 1.23 ppm
TOTAL = 2.10 ppm
2,3-Dimethyl-2-Butene
(Hydrogen under consideration)
Base Chemical Shift = 0.87 ppm
one  (CH3) = 0.78 ppm
TOTAL = 1.65 ppm
H2C C
H
36
Nuclear Magnetic Resonance Spectroscopy
• The area under an NMR signal is proportional to the
number of absorbing protons.
• An NMR spectrometer automatically integrates the area
under the peaks, and prints out a stepped curve
(integral) on the spectrum.
• The height of each step is proportional to the area under
the peak, which in turn is proportional to the number of
absorbing protons.
• Modern NMR spectrometers automatically calculate and
plot the value of each integral in arbitrary units.
• The ratio of integrals to one another gives the ratio of
absorbing protons in a spectrum. Note that this gives a
ratio, and not the absolute number, of absorbing
protons.
1H NMR—Intensity of Signals
37
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Intensity of Signals
Methyl ,-Dimethylpropionate
39
44
Nuclear Magnetic Resonance Spectroscopy
• Consider the spectrum below:
1H NMR—Spin-Spin Splitting
Ethyl Bromide
Spin-Spin Splitting in 1H NMR Spectra
• Peaks are often split into multiple peaks due to magnetic
interactions between nonequivalent protons on adjacent carbons,
The process is called spin-spin splitting
• The splitting is into one more peak than the number of H’s on the
adjacent carbon(s), This is the “n+1 rule”
• The relative intensities are in proportion of a binomial distribution
given by Pascal’s Triangle
• The set of peaks is a multiplet (2 = doublet, 3 = triplet, 4 =
quartet, 5=pentet, 6=hextet, 7=heptet…..)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
singlet
doublet
triplet
quartet
pentet
hextet
heptet
Rules for Spin-Spin Splitting
• Equivalent protons do not split each other
• Protons that are farther than two carbon atoms apart do not
split each other
48
1H NMR—Spin-Spin Splitting
Splitting is not generally observed between protons separated by
more than three  bonds.
If Ha and Hb are not equivalent, splitting is observed when:
49
• Spin-spin splitting occurs only between nonequivalent protons
on the same carbon or adjacent carbons.
The Origin of 1H NMR—Spin-Spin Splitting
Let us consider how the doublet due to the CH2 group on
BrCH2CHBr2 occurs:
• When placed in an applied field, (B0), the adjacent proton
(CHBr2) can be aligned with () or against () B0. The likelihood
of either case is about 50% (i.e., 1,000,006 vs 1,000,000).
• Thus, the absorbing CH2 protons feel two slightly different
magnetic fields—one slightly larger than B0, and one slightly
smaller than B0.
• Since the absorbing protons feel two different magnetic fields,
they absorb at two different frequencies in the NMR spectrum,
thus splitting a single absorption into a doublet, where the two
peaks of the doublet have equal intensity.
50
The Origin of 1H NMR—Spin-Spin Splitting
The frequency difference, measured in Hz, between two peaks
of the doublet is called the coupling constant, J.
J
51
The Origin of 1H NMR—Spin-Spin Splitting
Let us now consider how a triplet arises:
• When placed in an applied magnetic field (B0), the adjacent
protons Ha and Hb can each be aligned with () or against () B0.
• Thus, the absorbing proton feels three slightly different
magnetic fields—one slightly larger than B0(ab). one slightly
smaller than B0(ab) and one the same strength as B0 (ab).
52
The Origin of 1H NMR—Spin-Spin Splitting
• Because the absorbing proton feels three different magnetic
fields, it absorbs at three different frequencies in the NMR
spectrum, thus splitting a single absorption into a triplet.
• Because there are two different ways to align one proton with B0,
and one proton against B0—that is, ab and ab—the middle peak
of the triplet is twice as intense as the two outer peaks, making
the ratio of the areas under the three peaks 1:2:1.
• Two adjacent protons split an NMR signal into a triplet.
• When two protons split each other, they are said to be coupled.
• The spacing between peaks in a split NMR signal, measured by the
J value, is equal for coupled protons.
53
The Origin of 1H NMR—Spin-Spin Splitting
The Origin of 1H NMR—Spin-Spin Splitting
55
56
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Spin-Spin Splitting
Whenever two (or three) different sets of adjacent protons are
equivalent to each other, use the n + 1 rule to determine the
splitting pattern.
57
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Spin-Spin Splitting
Whenever two (or three) different sets of adjacent protons are
equivalent to each other, use the n + 1 rule to determine the
splitting pattern.
58
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Spin-Spin Splitting
Whenever two (or three) different sets of adjacent protons are
not equivalent to each other, use the n + 1 rule to determine the
splitting pattern only if the coupling constants (J) are identical:
a a
b
c
Free rotation around C-C bonds averages
coupling constant to J = 7Hz
Jab = Jbc
59
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Spin-Spin Splitting
Whenever two (or three) different sets of adjacent protons are
not equivalent to each other, use the n + 1 rule to determine the
splitting pattern only if the coupling constants (J) are identical:
a
b
c
c
Jab = Jbc
60
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Structure Determination
61
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Structure Determination
62
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Structure Determination
63
Nuclear Magnetic Resonance Spectroscopy
1H NMR—Structure Determination

More Related Content

What's hot

NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPYNUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
Asra Hameed
 
BT631-18-NMR_3
BT631-18-NMR_3BT631-18-NMR_3
BT631-18-NMR_3Rajesh G
 
BT631-16-NMR_1
BT631-16-NMR_1BT631-16-NMR_1
BT631-16-NMR_1Rajesh G
 
NMR
NMRNMR
NMR
NMR NMR
13 C NMR Spectroscopy by Dr Anthony Melvin Crasto
13 C NMR Spectroscopy by Dr Anthony Melvin Crasto13 C NMR Spectroscopy by Dr Anthony Melvin Crasto
13 C NMR Spectroscopy by Dr Anthony Melvin Crasto
Anthony Melvin Crasto Ph.D
 
Spin spin splitting (n+1 Rule) NMR spectroscopy
Spin spin splitting (n+1 Rule) NMR spectroscopySpin spin splitting (n+1 Rule) NMR spectroscopy
Spin spin splitting (n+1 Rule) NMR spectroscopy
HumnaMehmood
 
Nuclear magnetic resonance final
Nuclear magnetic resonance finalNuclear magnetic resonance final
Nuclear magnetic resonance final
Aashish Patel
 
Seminar on nmr
Seminar on nmrSeminar on nmr
Seminar on nmr
PromilaThakur4
 
C13 & 2D NMR
C13 & 2D NMRC13 & 2D NMR
C13 & 2D NMR
VK VIKRAM VARMA
 
C13 nmr
C13 nmrC13 nmr
2D NMR & PROBLEMS BASED ON IT
2D NMR & PROBLEMS BASED ON IT2D NMR & PROBLEMS BASED ON IT
2D NMR & PROBLEMS BASED ON IT
Kalam Sirisha
 
use of nmr in structure ellucidation
 use of nmr in structure ellucidation use of nmr in structure ellucidation
use of nmr in structure ellucidation
Anuradha Verma
 
Comparison of 1H-NMR and 13C-NMR
Comparison of 1H-NMR and 13C-NMRComparison of 1H-NMR and 13C-NMR
Comparison of 1H-NMR and 13C-NMR
Vrushali Tambe
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
Anthony Melvin Crasto Ph.D
 
Nmr lect
Nmr lectNmr lect
Nmr lect
Zainab&Sons
 

What's hot (20)

NMR
NMRNMR
NMR
 
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPYNUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
 
BT631-18-NMR_3
BT631-18-NMR_3BT631-18-NMR_3
BT631-18-NMR_3
 
BT631-16-NMR_1
BT631-16-NMR_1BT631-16-NMR_1
BT631-16-NMR_1
 
Nmr good
Nmr goodNmr good
Nmr good
 
NMR
NMRNMR
NMR
 
NMR
NMR NMR
NMR
 
13 C NMR Spectroscopy by Dr Anthony Melvin Crasto
13 C NMR Spectroscopy by Dr Anthony Melvin Crasto13 C NMR Spectroscopy by Dr Anthony Melvin Crasto
13 C NMR Spectroscopy by Dr Anthony Melvin Crasto
 
Nmr 2
Nmr 2Nmr 2
Nmr 2
 
Nmr for friends
Nmr for friendsNmr for friends
Nmr for friends
 
Spin spin splitting (n+1 Rule) NMR spectroscopy
Spin spin splitting (n+1 Rule) NMR spectroscopySpin spin splitting (n+1 Rule) NMR spectroscopy
Spin spin splitting (n+1 Rule) NMR spectroscopy
 
Nuclear magnetic resonance final
Nuclear magnetic resonance finalNuclear magnetic resonance final
Nuclear magnetic resonance final
 
Seminar on nmr
Seminar on nmrSeminar on nmr
Seminar on nmr
 
C13 & 2D NMR
C13 & 2D NMRC13 & 2D NMR
C13 & 2D NMR
 
C13 nmr
C13 nmrC13 nmr
C13 nmr
 
2D NMR & PROBLEMS BASED ON IT
2D NMR & PROBLEMS BASED ON IT2D NMR & PROBLEMS BASED ON IT
2D NMR & PROBLEMS BASED ON IT
 
use of nmr in structure ellucidation
 use of nmr in structure ellucidation use of nmr in structure ellucidation
use of nmr in structure ellucidation
 
Comparison of 1H-NMR and 13C-NMR
Comparison of 1H-NMR and 13C-NMRComparison of 1H-NMR and 13C-NMR
Comparison of 1H-NMR and 13C-NMR
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
 
Nmr lect
Nmr lectNmr lect
Nmr lect
 

Similar to nmr2_pl.ppt

Introduction to NMR
Introduction to NMRIntroduction to NMR
Introduction to NMR
Ravi Balaskar
 
Nmr
NmrNmr
Ch14nmr.ppt
Ch14nmr.pptCh14nmr.ppt
Ch14nmr.ppt
ssuserfd5c77
 
NMR Introductory Lecture for students -1.pdf
NMR Introductory Lecture for students -1.pdfNMR Introductory Lecture for students -1.pdf
NMR Introductory Lecture for students -1.pdf
DrKishorMazumder
 
nmr spectroscopy and decription of nmr in details
nmr spectroscopy and decription of nmr in detailsnmr spectroscopy and decription of nmr in details
nmr spectroscopy and decription of nmr in details
irfanshah481940
 
Nmr spectroscopy.
Nmr spectroscopy.Nmr spectroscopy.
Nmr spectroscopy.
sayyadali
 
Nmr
NmrNmr
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
AFSATH
 
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance SpectroscopyNuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
ASUTOSH MOHAPATRA
 
NMR
NMRNMR
1H NUCLEAR MAGNETIC RESONANCE
1H NUCLEAR MAGNETIC RESONANCE1H NUCLEAR MAGNETIC RESONANCE
1H NUCLEAR MAGNETIC RESONANCE
santoshkumar3159
 
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON ITNMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
Kalam Sirisha
 
NMR
NMRNMR
Nuclear magnetic Resonance(NMR) spectroscopy
Nuclear magnetic Resonance(NMR) spectroscopyNuclear magnetic Resonance(NMR) spectroscopy
Nuclear magnetic Resonance(NMR) spectroscopy
Preeti Choudhary
 
spectroscopy nmr for basic principles nmr
spectroscopy nmr for basic principles nmrspectroscopy nmr for basic principles nmr
spectroscopy nmr for basic principles nmr
prakashsaran1
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
keyurbhuva2
 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonance
School of Pharmacy DAVV Indore
 
Basic NMR
Basic NMRBasic NMR
Basic NMR
K Thambi durai
 

Similar to nmr2_pl.ppt (20)

Introduction to NMR
Introduction to NMRIntroduction to NMR
Introduction to NMR
 
Nmr2 pl
Nmr2 plNmr2 pl
Nmr2 pl
 
Nmr
NmrNmr
Nmr
 
Ch14nmr.ppt
Ch14nmr.pptCh14nmr.ppt
Ch14nmr.ppt
 
NMR Introductory Lecture for students -1.pdf
NMR Introductory Lecture for students -1.pdfNMR Introductory Lecture for students -1.pdf
NMR Introductory Lecture for students -1.pdf
 
nmr spectroscopy and decription of nmr in details
nmr spectroscopy and decription of nmr in detailsnmr spectroscopy and decription of nmr in details
nmr spectroscopy and decription of nmr in details
 
Nmr spectroscopy.
Nmr spectroscopy.Nmr spectroscopy.
Nmr spectroscopy.
 
Nmr
NmrNmr
Nmr
 
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
 
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance SpectroscopyNuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
 
NMR
NMRNMR
NMR
 
1H NUCLEAR MAGNETIC RESONANCE
1H NUCLEAR MAGNETIC RESONANCE1H NUCLEAR MAGNETIC RESONANCE
1H NUCLEAR MAGNETIC RESONANCE
 
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON ITNMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
 
Nmr 2
Nmr 2Nmr 2
Nmr 2
 
NMR
NMRNMR
NMR
 
Nuclear magnetic Resonance(NMR) spectroscopy
Nuclear magnetic Resonance(NMR) spectroscopyNuclear magnetic Resonance(NMR) spectroscopy
Nuclear magnetic Resonance(NMR) spectroscopy
 
spectroscopy nmr for basic principles nmr
spectroscopy nmr for basic principles nmrspectroscopy nmr for basic principles nmr
spectroscopy nmr for basic principles nmr
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Nuclear magnetic resonance
Nuclear magnetic resonanceNuclear magnetic resonance
Nuclear magnetic resonance
 
Basic NMR
Basic NMRBasic NMR
Basic NMR
 

More from ZORAIZ HAIDER

Excel_2007_Final.pptx
Excel_2007_Final.pptxExcel_2007_Final.pptx
Excel_2007_Final.pptx
ZORAIZ HAIDER
 
Health-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptxHealth-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptx
ZORAIZ HAIDER
 
Fundamentals of Computer.pptx
Fundamentals of Computer.pptxFundamentals of Computer.pptx
Fundamentals of Computer.pptx
ZORAIZ HAIDER
 
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
ZORAIZ HAIDER
 
tlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppttlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppt
ZORAIZ HAIDER
 
Mass Spectrometer.pptx
Mass Spectrometer.pptxMass Spectrometer.pptx
Mass Spectrometer.pptx
ZORAIZ HAIDER
 
hplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppthplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppt
ZORAIZ HAIDER
 
Differential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.pptDifferential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.ppt
ZORAIZ HAIDER
 
Atomic_Absorption_Emission.ppt
Atomic_Absorption_Emission.pptAtomic_Absorption_Emission.ppt
Atomic_Absorption_Emission.ppt
ZORAIZ HAIDER
 
3rd.prof mam abida.pptx
3rd.prof mam abida.pptx3rd.prof mam abida.pptx
3rd.prof mam abida.pptx
ZORAIZ HAIDER
 
gass chromatography(dr.islam).docx
gass chromatography(dr.islam).docxgass chromatography(dr.islam).docx
gass chromatography(dr.islam).docx
ZORAIZ HAIDER
 
GC Power Point.pptx
GC Power Point.pptxGC Power Point.pptx
GC Power Point.pptx
ZORAIZ HAIDER
 
Drug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptxDrug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptx
ZORAIZ HAIDER
 
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptxEpidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
ZORAIZ HAIDER
 
Acupuncture.pptx
Acupuncture.pptxAcupuncture.pptx
Acupuncture.pptx
ZORAIZ HAIDER
 
20160_powders.ppt
20160_powders.ppt20160_powders.ppt
20160_powders.ppt
ZORAIZ HAIDER
 
Dispensing.pdf
Dispensing.pdfDispensing.pdf
Dispensing.pdf
ZORAIZ HAIDER
 
Various Methods of Preparation of Dispersed system (1).docx
Various Methods of Preparation of  Dispersed system (1).docxVarious Methods of Preparation of  Dispersed system (1).docx
Various Methods of Preparation of Dispersed system (1).docx
ZORAIZ HAIDER
 
Stability of dispersed systems.pptx
Stability of dispersed  systems.pptxStability of dispersed  systems.pptx
Stability of dispersed systems.pptx
ZORAIZ HAIDER
 
Dispersed System Classification.docx
Dispersed System  Classification.docxDispersed System  Classification.docx
Dispersed System Classification.docx
ZORAIZ HAIDER
 

More from ZORAIZ HAIDER (20)

Excel_2007_Final.pptx
Excel_2007_Final.pptxExcel_2007_Final.pptx
Excel_2007_Final.pptx
 
Health-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptxHealth-Research-Methods-HRM-1.pptx
Health-Research-Methods-HRM-1.pptx
 
Fundamentals of Computer.pptx
Fundamentals of Computer.pptxFundamentals of Computer.pptx
Fundamentals of Computer.pptx
 
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf1._Practical_Research_Methods__this_book_used_at_UBB.pdf
1._Practical_Research_Methods__this_book_used_at_UBB.pdf
 
tlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppttlc-lecture-120629110900-phpapp02.ppt
tlc-lecture-120629110900-phpapp02.ppt
 
Mass Spectrometer.pptx
Mass Spectrometer.pptxMass Spectrometer.pptx
Mass Spectrometer.pptx
 
hplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppthplc-120629111345-phpapp01.ppt
hplc-120629111345-phpapp01.ppt
 
Differential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.pptDifferential_Scanning_Calorimetry.ppt
Differential_Scanning_Calorimetry.ppt
 
Atomic_Absorption_Emission.ppt
Atomic_Absorption_Emission.pptAtomic_Absorption_Emission.ppt
Atomic_Absorption_Emission.ppt
 
3rd.prof mam abida.pptx
3rd.prof mam abida.pptx3rd.prof mam abida.pptx
3rd.prof mam abida.pptx
 
gass chromatography(dr.islam).docx
gass chromatography(dr.islam).docxgass chromatography(dr.islam).docx
gass chromatography(dr.islam).docx
 
GC Power Point.pptx
GC Power Point.pptxGC Power Point.pptx
GC Power Point.pptx
 
Drug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptxDrug Misuse and Abuse (sir ali).pptx
Drug Misuse and Abuse (sir ali).pptx
 
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptxEpidemiology newwwwwwwwwwwwwwwwwwww.pptx
Epidemiology newwwwwwwwwwwwwwwwwwww.pptx
 
Acupuncture.pptx
Acupuncture.pptxAcupuncture.pptx
Acupuncture.pptx
 
20160_powders.ppt
20160_powders.ppt20160_powders.ppt
20160_powders.ppt
 
Dispensing.pdf
Dispensing.pdfDispensing.pdf
Dispensing.pdf
 
Various Methods of Preparation of Dispersed system (1).docx
Various Methods of Preparation of  Dispersed system (1).docxVarious Methods of Preparation of  Dispersed system (1).docx
Various Methods of Preparation of Dispersed system (1).docx
 
Stability of dispersed systems.pptx
Stability of dispersed  systems.pptxStability of dispersed  systems.pptx
Stability of dispersed systems.pptx
 
Dispersed System Classification.docx
Dispersed System  Classification.docxDispersed System  Classification.docx
Dispersed System Classification.docx
 

Recently uploaded

Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
Shweta
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
pal078100
 
The Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of IIThe Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of II
MedicoseAcademics
 
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Oleg Kshivets
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
Sapna Thakur
 
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
kevinkariuki227
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
MedicoseAcademics
 
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptxPharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
greendigital
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Dr Jeenal Mistry
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
د.محمود نجيب
 
Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
vimalpl1234
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
FFragrant
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
aljamhori teaching hospital
 
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Savita Shen $i11
 
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model SafeSurat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Savita Shen $i11
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
Dr. Vinay Pareek
 
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
i3 Health
 

Recently uploaded (20)

Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
 
Ocular injury ppt Upendra pal optometrist upums saifai etawah
Ocular injury  ppt  Upendra pal  optometrist upums saifai etawahOcular injury  ppt  Upendra pal  optometrist upums saifai etawah
Ocular injury ppt Upendra pal optometrist upums saifai etawah
 
The Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of IIThe Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of II
 
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
 
NVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control programNVBDCP.pptx Nation vector borne disease control program
NVBDCP.pptx Nation vector borne disease control program
 
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
TEST BANK for Operations Management, 14th Edition by William J. Stevenson, Ve...
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
 
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptxPharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
 
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness JourneyTom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
Tom Selleck Health: A Comprehensive Look at the Iconic Actor’s Wellness Journey
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
 
KDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologistsKDIGO 2024 guidelines for diabetologists
KDIGO 2024 guidelines for diabetologists
 
Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
 
basicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdfbasicmodesofventilation2022-220313203758.pdf
basicmodesofventilation2022-220313203758.pdf
 
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
Phone Us ❤85270-49040❤ #ℂall #gIRLS In Surat By Surat @ℂall @Girls Hotel With...
 
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model SafeSurat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
Surat @ℂall @Girls ꧁❤8527049040❤꧂@ℂall @Girls Service Vip Top Model Safe
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
 
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
 

nmr2_pl.ppt

  • 1. 1 Nuclear Magnetic Resonance Spectroscopy II Structure Determination:
  • 2. Spin of Nuclei • Fermions : Odd mass nuclei with an odd number of nucleons have • fractional spins. • I = 1/2 ( 1H, 13C, 19F, 31P ), I = 3/2 ( 11B, 33S ) & I = 5/2 ( 17O ). • Bosons : Even mass nuclei with odd numbers of protons and • neutrons have integral spins. • • I = 1 ( 2H, 14N ) • Even mass nuclei composed of even numbers of protons • and neutrons have zero spin • I = 0 (12C, and 16O, 32S) 2
  • 3. 3 • Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules. • Two common types of NMR spectroscopy are used to characterize organic structure: 1H NMR is used to determine the type and number of H atoms in a molecule; 13C NMR is used to determine the type of carbon atoms in the molecule. • The source of energy in NMR is radio waves which have long wavelengths, and thus low energy and frequency. • When low-energy radio waves interact with a molecule, they can change the nuclear spins of some elements, including 1H and 13C. Introduction to NMR Spectroscopy
  • 4. 4 • When a charged particle such as a proton spins on its axis, it creates a magnetic field. Thus, the nucleus can be considered to be a tiny bar magnet. • Normally, these tiny bar magnets are randomly oriented in space. However, in the presence of a magnetic field B0, they are oriented with or against this applied field. More nuclei are oriented with the applied field because this arrangement is lower in energy. • The energy difference between these two states is very small (<0.1 cal). Introduction to NMR Spectroscopy
  • 5. 5 Nuclear Magnetic Resonance Spectroscopy • In a magnetic field, there are now two energy states for a proton: a lower energy state with the nucleus aligned in the same direction as B0, and a higher energy state in which the nucleus aligned against B0. • When an external energy source (hn) that matches the energy difference (DE) between these two states is applied, energy is absorbed, causing the nucleus to “spin flip” from one orientation to another. • The energy difference between these two nuclear spin states corresponds to the low frequency RF region of the electromagnetic spectrum. Introduction to NMR Spectroscopy
  • 7. 7 • Thus, two variables characterize NMR: an applied magnetic field B0, the strength of which is measured in tesla (T), and the frequency n of radiation used for resonance, measured in hertz (Hz), or megahertz (MHz)—(1 MHz = 106 Hz). Introduction to NMR Spectroscopy
  • 8. 8 Nuclear Magnetic Resonance Spectroscopy • The frequency needed for resonance and the applied magnetic field strength are proportionally related: • NMR spectrometers are referred to as 300 MHz instruments, 500 MHz instruments, and so forth, depending on the frequency of the RF radiation used for resonance. • These spectrometers use very powerful magnets to create a small but measurable energy difference between two possible spin states. Introduction to NMR Spectroscopy
  • 11. 11 Nuclear Magnetic Resonance Spectroscopy • Protons in different environments absorb at slightly different frequencies, so they are distinguishable by NMR. • The frequency at which a particular proton absorbs is determined by its electronic environment. • The size of the magnetic field generated by the electrons around a proton determines where it absorbs. • Modern NMR spectrometers use a constant magnetic field strength B0, and then a narrow range of frequencies is applied to achieve the resonance of all protons. • Only nuclei that contain odd mass numbers (such as 1H, 13C, 19F and 31P) or odd atomic numbers (such as 2H and 14N) give rise to NMR signals. Introduction to NMR Spectroscopy
  • 12. 12 Nuclear Magnetic Resonance Spectroscopy • An NMR spectrum is a plot of the intensity of a peak against its chemical shift, measured in parts per million (ppm). 1H NMR—The Spectrum
  • 13. 13 Nuclear Magnetic Resonance Spectroscopy • NMR absorptions generally appear as sharp peaks. • Increasing chemical shift is plotted from left to right. • Most protons absorb between 0-10 ppm. • The terms “upfield” and “downfield” describe the relative location of peaks. Upfield means to the right. Downfield means to the left. • NMR absorptions are measured relative to the position of a reference peak at 0 ppm on the d scale due to tetramethylsilane (TMS). TMS is a volatile inert compound that gives a single peak upfield from typical NMR absorptions. 1H NMR—The Spectrum
  • 14. 14 Nuclear Magnetic Resonance Spectroscopy • The chemical shift of the x axis gives the position of an NMR signal, measured in ppm, according to the following equation: 1H NMR—The Spectrum • By reporting the NMR absorption as a fraction of the NMR operating frequency, we get units, ppm, that are independent of the spectrometer. • Four different features of a 1H NMR spectrum provide information about a compound’s structure: a. Number of signals b. Position of signals c. Intensity of signals. d. Spin-spin splitting of signals.
  • 15. 15 Nuclear Magnetic Resonance Spectroscopy • The number of NMR signals equals the number of different types of protons in a compound. • Protons in different environments give different NMR signals. • Equivalent protons give the same NMR signal. 1H NMR—Number of Signals • To determine equivalent protons in cycloalkanes and alkenes, always draw all bonds to hydrogen.
  • 16. 16 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Number of Signals
  • 17. 17 Nuclear Magnetic Resonance Spectroscopy • In comparing two H atoms on a ring or double bond, two protons are equivalent only if they are cis (or trans) to the same groups. 1H NMR—Number of Signals
  • 18. 18 Nuclear Magnetic Resonance Spectroscopy • Proton equivalency in cycloalkanes can be determined similarly. 1H NMR—Number of Signals
  • 19. 19 Nuclear Magnetic Resonance Spectroscopy • In the vicinity of the nucleus, the magnetic field generated by the circulating electron decreases the external magnetic field that the proton “feels”. • Since the electron experiences a lower magnetic field strength, it needs a lower frequency to achieve resonance. Lower frequency is to the right in an NMR spectrum, toward a lower chemical shift, so shielding shifts the absorption upfield. 1H NMR—Position of Signals
  • 20. 20 Nuclear Magnetic Resonance Spectroscopy • The less shielded the nucleus becomes, the more of the applied magnetic field (B0) it feels. • This deshielded nucleus experiences a higher magnetic field strength, to it needs a higher frequency to achieve resonance. • Higher frequency is to the left in an NMR spectrum, toward higher chemical shift—so deshielding shifts an absorption downfield. • Protons near electronegative atoms are deshielded, so they absorb downfield. 1H NMR—Position of Signals
  • 21. 21 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Position of Signals
  • 22. 22 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Position of Signals
  • 23. 23 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Position of Signals
  • 24. 24 Nuclear Magnetic Resonance Spectroscopy • Protons in a given environment absorb in a predictable region in an NMR spectrum. 1H NMR—Chemical Shift Values
  • 25. 25 Nuclear Magnetic Resonance Spectroscopy • The chemical shift of a C—H bond increases with increasing alkyl substitution. 1H NMR—Chemical Shift Values
  • 26. 26 Nuclear Magnetic Resonance Spectroscopy • The chemical shift of a C—H can be calculated with a high degree of precision if a chemical shift additivity table is used. • The additivity tables starts with a base chemical shift value depending on the structural type of hydrogen under consideration: Calculating 1H NMR—Chemical Shift Values CH3 C H2 C H Methylene Methine 0.87 ppm 1.20 ppm 1.20 ppm Base Chemical Shift
  • 27. 27 Nuclear Magnetic Resonance Spectroscopy • The presence of nearby atoms or groups will effect the base chemical shift by a specific amount: • The carbon atom bonded to the hydrogen(s) under consideration are described as alpha () carbons. • Atoms or groups bonded to the same carbon as the hydrogen(s) under consideration are described as alpha () substituents. • Atoms or groups on carbons one bond removed from the a carbon are called beta () carbons. • Atoms or groups bonded to the  carbon are described as alpha () substituents. Calculating 1H NMR—Chemical Shift Values (Hydrogen under consideration) C C H  
  • 28. 28 Nuclear Magnetic Resonance Spectroscopy Calculating 1H NMR—Chemical Shift Values (Hydrogen under consideration) C C H H H H H Cl   Base Chemical Shift = 0.87 ppm no substituents = 0.00 one  -Cl (CH3) = 0.63 TOTAL = 1.50 ppm (Hydrogen under consideration) C C H H H H H Cl   Base Chemical Shift = 1.20 ppm one  -Cl (CH2) = 2.30 no substituents = 0.00 TOTAL = 3.50 ppm
  • 29. 29 Nuclear Magnetic Resonance Spectroscopy • In a magnetic field, the six  electrons in benzene circulate around the ring creating a ring current. • The magnetic field induced by these moving electrons reinforces the applied magnetic field in the vicinity of the protons. • The protons thus feel a stronger magnetic field and a higher frequency is needed for resonance. Thus they are deshielded and absorb downfield. 1H NMR—Chemical Shift Values
  • 30. 30 Nuclear Magnetic Resonance Spectroscopy • In a magnetic field, the loosely held  electrons of the double bond create a magnetic field that reinforces the applied field in the vicinity of the protons. • The protons now feel a stronger magnetic field, and require a higher frequency for resonance. Thus the protons are deshielded and the absorption is downfield. 1H NMR—Chemical Shift Values
  • 31. 31 Nuclear Magnetic Resonance Spectroscopy • In a magnetic field, the  electrons of a carbon-carbon triple bond are induced to circulate, but in this case the induced magnetic field opposes the applied magnetic field (B0). • Thus, the proton feels a weaker magnetic field, so a lower frequency is needed for resonance. The nucleus is shielded and the absorption is upfield. 1H NMR—Chemical Shift Values
  • 32. 32 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Chemical Shift Values
  • 33. 33 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Chemical Shift Values)
  • 34. 1H NMR of Methyl Acetate C O R O H3C C O Base Chemical Shift = 0.87 ppm one  = 2.88 ppm TOTAL = 3.75 ppm O CH3 C O R Base Chemical Shift = 0.87 ppm one  = 1.23 ppm TOTAL = 2.10 ppm
  • 35. 2,3-Dimethyl-2-Butene (Hydrogen under consideration) Base Chemical Shift = 0.87 ppm one  (CH3) = 0.78 ppm TOTAL = 1.65 ppm H2C C H
  • 36. 36 Nuclear Magnetic Resonance Spectroscopy • The area under an NMR signal is proportional to the number of absorbing protons. • An NMR spectrometer automatically integrates the area under the peaks, and prints out a stepped curve (integral) on the spectrum. • The height of each step is proportional to the area under the peak, which in turn is proportional to the number of absorbing protons. • Modern NMR spectrometers automatically calculate and plot the value of each integral in arbitrary units. • The ratio of integrals to one another gives the ratio of absorbing protons in a spectrum. Note that this gives a ratio, and not the absolute number, of absorbing protons. 1H NMR—Intensity of Signals
  • 37. 37 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Intensity of Signals
  • 39. 39
  • 40.
  • 41.
  • 42.
  • 43.
  • 44. 44 Nuclear Magnetic Resonance Spectroscopy • Consider the spectrum below: 1H NMR—Spin-Spin Splitting
  • 46. Spin-Spin Splitting in 1H NMR Spectra • Peaks are often split into multiple peaks due to magnetic interactions between nonequivalent protons on adjacent carbons, The process is called spin-spin splitting • The splitting is into one more peak than the number of H’s on the adjacent carbon(s), This is the “n+1 rule” • The relative intensities are in proportion of a binomial distribution given by Pascal’s Triangle • The set of peaks is a multiplet (2 = doublet, 3 = triplet, 4 = quartet, 5=pentet, 6=hextet, 7=heptet…..) 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 singlet doublet triplet quartet pentet hextet heptet
  • 47. Rules for Spin-Spin Splitting • Equivalent protons do not split each other • Protons that are farther than two carbon atoms apart do not split each other
  • 48. 48 1H NMR—Spin-Spin Splitting Splitting is not generally observed between protons separated by more than three  bonds. If Ha and Hb are not equivalent, splitting is observed when:
  • 49. 49 • Spin-spin splitting occurs only between nonequivalent protons on the same carbon or adjacent carbons. The Origin of 1H NMR—Spin-Spin Splitting Let us consider how the doublet due to the CH2 group on BrCH2CHBr2 occurs: • When placed in an applied field, (B0), the adjacent proton (CHBr2) can be aligned with () or against () B0. The likelihood of either case is about 50% (i.e., 1,000,006 vs 1,000,000). • Thus, the absorbing CH2 protons feel two slightly different magnetic fields—one slightly larger than B0, and one slightly smaller than B0. • Since the absorbing protons feel two different magnetic fields, they absorb at two different frequencies in the NMR spectrum, thus splitting a single absorption into a doublet, where the two peaks of the doublet have equal intensity.
  • 50. 50 The Origin of 1H NMR—Spin-Spin Splitting The frequency difference, measured in Hz, between two peaks of the doublet is called the coupling constant, J. J
  • 51. 51 The Origin of 1H NMR—Spin-Spin Splitting Let us now consider how a triplet arises: • When placed in an applied magnetic field (B0), the adjacent protons Ha and Hb can each be aligned with () or against () B0. • Thus, the absorbing proton feels three slightly different magnetic fields—one slightly larger than B0(ab). one slightly smaller than B0(ab) and one the same strength as B0 (ab).
  • 52. 52 The Origin of 1H NMR—Spin-Spin Splitting • Because the absorbing proton feels three different magnetic fields, it absorbs at three different frequencies in the NMR spectrum, thus splitting a single absorption into a triplet. • Because there are two different ways to align one proton with B0, and one proton against B0—that is, ab and ab—the middle peak of the triplet is twice as intense as the two outer peaks, making the ratio of the areas under the three peaks 1:2:1. • Two adjacent protons split an NMR signal into a triplet. • When two protons split each other, they are said to be coupled. • The spacing between peaks in a split NMR signal, measured by the J value, is equal for coupled protons.
  • 53. 53 The Origin of 1H NMR—Spin-Spin Splitting
  • 54. The Origin of 1H NMR—Spin-Spin Splitting
  • 55. 55
  • 56. 56 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Spin-Spin Splitting Whenever two (or three) different sets of adjacent protons are equivalent to each other, use the n + 1 rule to determine the splitting pattern.
  • 57. 57 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Spin-Spin Splitting Whenever two (or three) different sets of adjacent protons are equivalent to each other, use the n + 1 rule to determine the splitting pattern.
  • 58. 58 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Spin-Spin Splitting Whenever two (or three) different sets of adjacent protons are not equivalent to each other, use the n + 1 rule to determine the splitting pattern only if the coupling constants (J) are identical: a a b c Free rotation around C-C bonds averages coupling constant to J = 7Hz Jab = Jbc
  • 59. 59 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Spin-Spin Splitting Whenever two (or three) different sets of adjacent protons are not equivalent to each other, use the n + 1 rule to determine the splitting pattern only if the coupling constants (J) are identical: a b c c Jab = Jbc
  • 60. 60 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Structure Determination
  • 61. 61 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Structure Determination
  • 62. 62 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Structure Determination
  • 63. 63 Nuclear Magnetic Resonance Spectroscopy 1H NMR—Structure Determination