SlideShare a Scribd company logo
1 of 61
Download to read offline
Approximations To Roots
(1) Halving The Interval
Approximations To Roots
(1) Halving The Interval
        y
                                         y  f x


                                               x




  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign,
Approximations To Roots
(1) Halving The Interval
        y
                                         y  f x
     f a 

                 a         b                   x
     f b 



  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign,
Approximations To Roots
(1) Halving The Interval
        y
                                          y  f x
     f a 

                 a         b                   x
     f b 



  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign, then at least one root of the equation
   f(x) = 0 lies in the interval a  x  b
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19   f 3  34  23  19
                                      16  0              68  0
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19   f 3  34  23  19
                                      16  0             68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                       1       2         3
      2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19       f 3  34  23  19
                                      16  0                 68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                          1        2         3
      2
                                                solution lies in interval 1  x  2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19       f 3  34  23  19
                                      16  0                 68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                          1        2         3
      2
                                                solution lies in interval 1  x  2

        1 2
   x2            f 1.5  1.54  21.5  19
           2
                           10.9  0                   1       1.5        2
       1 .5
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19        f 3  34  23  19
                                      16  0                  68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                           1        2         3
      2
                                                 solution lies in interval 1  x  2

        1 2
   x2            f 1.5  1.54  21.5  19
           2
                           10.9  0                    1       1.5        2
       1 .5
                                                solution lies in interval 1.5  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5   1.75   2
    1.75
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2

     1.88  2 f 1.94   1.94 4  21.94   19
x5 
        2
                         0.96  0              1.88   1.94       2
    1.94
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2

     1.88  2 f 1.94   1.94 4  21.94   19
x5 
        2
                         0.96  0              1.88   1.94        2
    1.94
                                       solution lies in interval 1.94  x  2
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97   2
    1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94       1.96       1.97
    1.96
                       0.32  0
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97

     1.96  1.97
x8 
          2
    1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97

     1.96  1.97
x8 
          2
    1.97
                     an approximation for the root is x  1.97
(2) Newton’s Method of Approximation
(2) Newton’s Method of Approximation
     y




                                       x
(2) Newton’s Method of Approximation
     y




                                            x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
(2) Newton’s Method of Approximation
     y




                                                  x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                                         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
                                                  x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                       y  f x         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
                     x0                           x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                       y  f x         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
              x1     x0                           x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                       y  f x         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
              x1     x0                           x            If f  x0   0
                                                           i.e. tangent || x axis
                                                   the method will fail
 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.53  2
                            10.9375                     15.5
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.53  2
                            10.9375                     15.5

                f  x0 
   x1  x0 
                f  x0 
                10.9375
       1 .5 
                  15.5
       2.21
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.53  2
                            10.9375                        15.5

                f  x0 
   x1  x0                           f 2.21  2.214  22.21  19
                f  x0 
                                                9.2744
                10.9375
       1 .5                        f 2.21  42.21  2
                                                        3
                  15.5
       2.21                                    45.1754
9.2744
x2  2.21 
            45.1754
    2.00
9.2744    f 2   2 4  22   19
x2  2.21 
            45.1754          1
    2.00
                      f 2   42   2
                                    3


                               35
9.2744    f 2   2 4  22   19
x2  2.21 
            45.1754          1
    2.00
                      f 2   42   2
                                    3


                               35
          1
 x3  2 
          35
     1.97
9.2744         f 2   2 4  22   19
x2  2.21 
            45.1754               1
    2.00
                          f 2   42   2
                                         3


                                   35
 x3  2 
          1           f 1.97   1.97 4  21.97   19
          35                     0.001
     1.97
                      f 1.97   41.97   2
                                             3


                                  32.58
9.2744          f 2   2 4  22   19
x2  2.21 
            45.1754                1
    2.00
                           f 2   42   2
                                          3


                                    35
 x3  2 
          1            f 1.97   1.97 4  21.97   19
          35                      0.001
     1.97
                       f 1.97   41.97   2
                                              3


                                   32.58
               0.001
 x4  1.97 
               32.58
    1.97
9.2744                f 2   2 4  22   19
x2  2.21 
            45.1754                      1
    2.00
                                 f 2   42   2
                                                3


                                          35
 x3  2 
          1                  f 1.97   1.97 4  21.97   19
          35                            0.001
     1.97
                             f 1.97   41.97   2
                                                    3


                                         32.58
               0.001
 x4  1.97 
               32.58
    1.97

                 x  1.97 is a better approximation for the root
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
   f  x   x 2  23
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
   f  x   x 2  23
   f  x  2x
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
       x0  5
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
       x0  5
         52  23
    x1 
          2 5

    x1  4.8
(ii ) Use Newton's Method to obtain an approximation to        23
      correct to two decimal places
                                                  xn12  23
      f  x   x  23
                  2
                                      xn  xn1 
                                                    2 xn1
     f  x  2x
                                           xn12  23
                                         
                                             2 xn1
       x0  5
              52  23      4.82  23
       x1            x2 
               2 5        2  4.8 

    x1  4.8       x2  4.795833333
                   x2  4.80 (to 2 dp)
(ii ) Use Newton's Method to obtain an approximation to        23
      correct to two decimal places
                                                  xn12  23
      f  x   x  23
                  2
                                      xn  xn1 
                                                    2 xn1
     f  x  2x
                                           xn12  23
                                         
                                             2 xn1
       x0  5
              52  23      4.82  23
       x1            x2 
               2 5        2  4.8 

    x1  4.8       x2  4.795833333
                   x2  4.80 (to 2 dp)
                23  4.80 (to 2 dp)
Other Possible Problems with Newton’s Method
Other Possible Problems with Newton’s Method
          Approximations oscillate
Other Possible Problems with Newton’s Method
    y     Approximations oscillate




                                     x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



                                          x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2            x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2            x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2             x


                                          wrong side of stationary point
                                            converges to wrong root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2             x


                                          wrong side of stationary point
                              y             converges to wrong root



                                                                    x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                                       x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root
                                                     Exercise 6E; 1, 3ac,
                                                       6adf, 8a, 10, 12
            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root

More Related Content

Similar to 12X1 T04 05 approximations to roots (2011)

Similar to 12X1 T04 05 approximations to roots (2011) (7)

Limit of algebraic functions
Limit of algebraic functionsLimit of algebraic functions
Limit of algebraic functions
 
Q2
Q2Q2
Q2
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
Peter Brusilovsky
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
CaitlinCummins3
 

Recently uploaded (20)

Supporting Newcomer Multilingual Learners
Supporting Newcomer  Multilingual LearnersSupporting Newcomer  Multilingual Learners
Supporting Newcomer Multilingual Learners
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptx
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 

12X1 T04 05 approximations to roots (2011)

  • 1. Approximations To Roots (1) Halving The Interval
  • 2. Approximations To Roots (1) Halving The Interval y y  f x x If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign,
  • 3. Approximations To Roots (1) Halving The Interval y y  f x f a  a b x f b  If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign,
  • 4. Approximations To Roots (1) Halving The Interval y y  f x f a  a b x f b  If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign, then at least one root of the equation f(x) = 0 lies in the interval a  x  b
  • 5. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3
  • 6. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0
  • 7. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2
  • 8. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2
  • 9. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2 1 2 x2  f 1.5  1.54  21.5  19 2  10.9  0 1 1.5 2  1 .5
  • 10. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2 1 2 x2  f 1.5  1.54  21.5  19 2  10.9  0 1 1.5 2  1 .5  solution lies in interval 1.5  x  2
  • 11. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75
  • 12. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2
  • 13. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88
  • 14. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2
  • 15. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2 1.88  2 f 1.94   1.94 4  21.94   19 x5  2  0.96  0 1.88 1.94 2  1.94
  • 16. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2 1.88  2 f 1.94   1.94 4  21.94   19 x5  2  0.96  0 1.88 1.94 2  1.94  solution lies in interval 1.94  x  2
  • 17. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97
  • 18. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97
  • 19. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0
  • 20. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97
  • 21. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 1.96  1.97 x8  2  1.97
  • 22. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 1.96  1.97 x8  2  1.97  an approximation for the root is x  1.97
  • 23. (2) Newton’s Method of Approximation
  • 24. (2) Newton’s Method of Approximation y x
  • 25. (2) Newton’s Method of Approximation y x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0 
  • 26. (2) Newton’s Method of Approximation y x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 27. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation Newton’s method finds where the tangent at x0 cuts the x axis x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 28. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x0 x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 29. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 30. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If f  x0   0 i.e. tangent || x axis the method will fail If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 31. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0
  • 32. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2
  • 33. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.53  2  10.9375  15.5
  • 34. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.53  2  10.9375  15.5 f  x0  x1  x0  f  x0   10.9375  1 .5  15.5  2.21
  • 35. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.53  2  10.9375  15.5 f  x0  x1  x0  f 2.21  2.214  22.21  19 f  x0   9.2744  10.9375  1 .5  f 2.21  42.21  2 3 15.5  2.21  45.1754
  • 36. 9.2744 x2  2.21  45.1754  2.00
  • 37. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35
  • 38. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 1 x3  2  35  1.97
  • 39. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58
  • 40. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58 0.001 x4  1.97  32.58  1.97
  • 41. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58 0.001 x4  1.97  32.58  1.97  x  1.97 is a better approximation for the root
  • 42. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places
  • 43. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places f  x   x 2  23
  • 44. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places f  x   x 2  23 f  x  2x
  • 45. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1
  • 46. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5
  • 47. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 x1  2 5 x1  4.8
  • 48. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 4.82  23 x1  x2  2 5 2  4.8  x1  4.8 x2  4.795833333 x2  4.80 (to 2 dp)
  • 49. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 4.82  23 x1  x2  2 5 2  4.8  x1  4.8 x2  4.795833333 x2  4.80 (to 2 dp)  23  4.80 (to 2 dp)
  • 50. Other Possible Problems with Newton’s Method
  • 51. Other Possible Problems with Newton’s Method Approximations oscillate
  • 52. Other Possible Problems with Newton’s Method y Approximations oscillate x
  • 53. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x
  • 54. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x
  • 55. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x
  • 56. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point converges to wrong root
  • 57. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x
  • 58. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x want to find this root
  • 59. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root
  • 60. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root
  • 61. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root Exercise 6E; 1, 3ac, 6adf, 8a, 10, 12 x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root