University of KwaZulu-Natal
                               School of Mathematical Sciences

                 MATH134: Quantitative Methods I
                            Test 2
   Date: Friday April 25, 2008         Max Time Allowed: 60 min   Total Marks: 35

This test contains 19 multiple choice questions. For each question, indicate your
answer by marking the corresponding letter on the MCQ answer sheet provided.
The mark allocation for each question is given in square brackets [ ]. Negative
marking will not be applied.

                           dy
Q1. If y  x 2 − 6, then                                                       1
                           dx
    a.   2x − 6
    b.   2x − 1
    c.   x
    d.   2x
    e.   none of the above.

Q2. Find the derivative of fx        x4 .                                    2
                                      3x − 1
            3
    a. 4x
          3
        4x 3 3x − 1 − 3x 4
    b.
               3x − 1 2
    c. 4x − 32
              3

        3x − 1
    d. x 2 − 4x 3
        4x 3 3x − 1  3x 4
    e.
               3x − 1 2

Q3. If P  4x 2 − x 10 , then the derivative dP equals:                       2
                                               dx
                   9
   a. 104x − x 8x − 1
             2

   b. 108x − 1 9
   c. 104x 2 − x8x − 1 9
   d. 80x 19 − 10x 9
   e. none of the above.

Q4. The definition of the derivative is                                         1
                     fx − fx  Δx
   a. f ′ x  lim
                Δx→0        Δx
                     fx  Δx  fx
   b. f ′ x  lim
                Δx→0        Δx
        ′            fx  Δx − fx
   c. f x  lim
                Δx→0        Δx
                     fx  Δx − fx
   d. f ′ x  lim
                Δx→0        Δx
e. none of the above.

                                           Δy
Q5. If fx  1 , the difference quotient,    , is:                                2
               x                           Δx
   a. −      1
         xx  Δx
           1  Δx
    b. −
           xx  Δx
    c.    1  Δx
         xx  Δx
    d.       1
         xx  Δx
         1 − x − Δx
    e.
          Δxx  Δx

Q6. The demand function for a gas cookers is pQ  360 − 3Q. What is the total
  revenue function?                                                                1
   a. −3
   b. 360Q − 3Q 2
       360 − 3Q
   c.
           Q
   d. 360Q 2 − 3Q 3
   e. 360 − 6Q
Q7. What is the marginal revenue function for the demand function in question 6 (above)
  when the demand is 40 gas cookers?                                                2
   a. 240
   b. 9600
   c. 6
   d. 3
   e. 120

Q8. Solve for x, to 2 decimal places, if 3  e x  17.                             2
   a. x  1. 73
   b. x  2. 64
   c. x  1. 15
   d. x  2. 58
   e. none of the above
Q9. Solve for x, to 2 decimal places, if x 7  −20                                   2
   a. No real solution exists.
   b. x  −1. 28  10 9
   c. x  −23. 67
   d. x  −1. 28
   e. x  −1. 53
               dy
Q10. Find           if y  3e 4x  e x  e.                                          2
               dx
    a.   3e 4x  e x  1
    b.   12e 4x  e x  e
    c.   3 4x   1
             1
                     x
    d.   12e  e
              4x     x

    e.   3 4x   1  1
             1
                     x

Q11. What is the derivative of y  log e x 5 ?                                     2
   a. y ′  5x
   b. y ′  5log e x 4 e x 
                     4
   c. y ′  5 1 x
   d. y ′  5log e x 4 1  x
    e. none of the above.
Q12. Solve f ′ x  0 if fx  x 3 − 27x.                                          2
   a. x   27
   b. x  0
   c. x  0 and x  9
   d. x  3
   e. None of these are solutions.
Q13. What is the local maximum value for fx  x 3 − 27x?                           2
   a. 9
   b. 108
   c. −54
   d. 18
   e. None of these.
Q14. Farmer Brown wants to build a new rectangular chicken pen on his farm. He needs:
    the area of the pen to be 60 m 2
    the pen to border the farm fence so that he only has to fence 3 sides of the chicken
      pen
    to use a minimum amount of fencing.
    Give a formula for the amount of fencing needed.                                 [1]
    a. xy
    b. x 2 y
    c. x  y
d. 2x  y
    e. 2xy
Q15. What dimensions will minimise the amount of fencing needed for Farmer Brown’s
  chicken pen?                                                                 [2]
   a. x  6, y  10
   b. x  5, y  10
   c. x  30 , y  60
                      30
   d. x  60 , y  60
             60
   e. x        , y  60
            30

Q16. Find and simplify ∂P if P  xy log e x .
                               ∂x
                                                                                    [2]
       xy log e x
   a.         x      logx 2 y
   b. log e xxy log e x−1
   c. y log e x logx 2 y
         1
   d. y x
   e. xy log e x y  y log e x

Q17. The Big-M method is being used to solve a maximisation linear programming
  problem. The following step has been reached:

              cj      −2 −4      0    0    −M −M
       cB   Basis x 1     x2    x3 x4       x5    x6   Solution Ratio
      −2      x1      1   1/4 −1/4    0    1/4    0       3
      −M      x6      0   9/2   1/2 −1 −1/2       1      12
              zj
            cj − zj

    Complete the last two rows and the “Ratio" column of the tableau. Only one of the
   following statements is true. Which one is it?                                   [2]
   (a) x 2 enters the basis and x 1 leaves the basis.
   (b) x 2 enters the basis and x 6 leaves the basis.
   (c) x 3 enters the basis and x 1 leaves the basis.
   (d) x 3 enters the basis and x 6 leaves the basis.
   (e) x 5 enters the basis and x 6 leaves the basis.

Q18. Consider the following linear programming problem:
Maximize         P  3x 1  x 2
                           subject to                x1  x2 ≥ 3
                                                     2x 1  x 2 ≤ 4
                                                          x1, x2 ≥ 0


 Which one of the following partially completed simplex tableaux is the correct initial
simplex tableau?
                                                                                   [2]
 (a)          cj       3   1
       c B Basis x 1 x 2 Solution Ratio
       3      x1       1   1     3
       1      x2       2   1     4
              zj
            cj − zj

 (b)           cj      3   1 −M 0
       cB    Basis x 1 x 2      x 3 x 4 Solution Ratio
       −M      x3      1   1    −1 0             3
        0      x4      2   1     0 1             4
               zj
             cj − zj

 (c)           cj      3   1 −M 0
       cB    Basis x 1 x 2      x 3 x 4 Solution Ratio
       −M      x3      1   1     1 0             3
       0       x4      2   1     0 1             4
               zj
             cj − zj

 (d)           cj      3   1    0 −M 0
       cB    Basis x 1 x 2 x 3       x4     x 5 Solution Ratio
       −M      x4      1   1 −1         1    0        3
        0      x5      2   1    0       0    1        4
               zj
             cj − zj

 (e) None of the above
Q19. The simplex method is being used to solve a maximisation linear programming
  problem. The following step has been reached:

            cj      3   2   0   0   0
     c B Basis x 1 x 2 x 3 x 4 x 5 Solution Ratio
      0     x3      0   1   1   0 −1      5
      0     x4      0   2   0   1 −1     21
      3     x1      1   0   0   0   1    15
            zj
          cj − zj

    Proceed with the simplex method until an optimal tableau is reached. The optimal
   solution is                                                                       [3]
   (a) x 1  5,    x 2  11,     x 3  15,      x 4  0,   x 5  0,  P  55
   (b) x 1  15,     x 2  0,    x 3  5,     x 4  11,    x 5  0,  P  55
   (c) x 1  15,     x 2  5,    x 3  0,     x 4  11,    x 5  0,  P  55
   (d) x 1  11,     x 2  15,     x 3  0,     x 4  0,   x 2  5,  P  55
   (e) x 1  0,    x 2  0,    x 3  5,     x 4  11,    x 5  15,   P  55

Q2

  • 1.
    University of KwaZulu-Natal School of Mathematical Sciences MATH134: Quantitative Methods I Test 2 Date: Friday April 25, 2008 Max Time Allowed: 60 min Total Marks: 35 This test contains 19 multiple choice questions. For each question, indicate your answer by marking the corresponding letter on the MCQ answer sheet provided. The mark allocation for each question is given in square brackets [ ]. Negative marking will not be applied. dy Q1. If y  x 2 − 6, then  1 dx a. 2x − 6 b. 2x − 1 c. x d. 2x e. none of the above. Q2. Find the derivative of fx  x4 . 2 3x − 1 3 a. 4x 3 4x 3 3x − 1 − 3x 4 b. 3x − 1 2 c. 4x − 32 3 3x − 1 d. x 2 − 4x 3 4x 3 3x − 1  3x 4 e. 3x − 1 2 Q3. If P  4x 2 − x 10 , then the derivative dP equals: 2 dx 9 a. 104x − x 8x − 1 2 b. 108x − 1 9 c. 104x 2 − x8x − 1 9 d. 80x 19 − 10x 9 e. none of the above. Q4. The definition of the derivative is 1 fx − fx  Δx a. f ′ x  lim Δx→0 Δx fx  Δx  fx b. f ′ x  lim Δx→0 Δx ′ fx  Δx − fx c. f x  lim Δx→0 Δx fx  Δx − fx d. f ′ x  lim Δx→0 Δx
  • 2.
    e. none ofthe above. Δy Q5. If fx  1 , the difference quotient, , is: 2 x Δx a. − 1 xx  Δx 1  Δx b. − xx  Δx c. 1  Δx xx  Δx d. 1 xx  Δx 1 − x − Δx e. Δxx  Δx Q6. The demand function for a gas cookers is pQ  360 − 3Q. What is the total revenue function? 1 a. −3 b. 360Q − 3Q 2 360 − 3Q c. Q d. 360Q 2 − 3Q 3 e. 360 − 6Q Q7. What is the marginal revenue function for the demand function in question 6 (above) when the demand is 40 gas cookers? 2 a. 240 b. 9600 c. 6 d. 3 e. 120 Q8. Solve for x, to 2 decimal places, if 3  e x  17. 2 a. x  1. 73 b. x  2. 64 c. x  1. 15 d. x  2. 58 e. none of the above
  • 3.
    Q9. Solve forx, to 2 decimal places, if x 7  −20 2 a. No real solution exists. b. x  −1. 28  10 9 c. x  −23. 67 d. x  −1. 28 e. x  −1. 53 dy Q10. Find if y  3e 4x  e x  e. 2 dx a. 3e 4x  e x  1 b. 12e 4x  e x  e c. 3 4x   1 1 x d. 12e  e 4x x e. 3 4x   1  1 1 x Q11. What is the derivative of y  log e x 5 ? 2 a. y ′  5x b. y ′  5log e x 4 e x  4 c. y ′  5 1 x d. y ′  5log e x 4 1 x e. none of the above. Q12. Solve f ′ x  0 if fx  x 3 − 27x. 2 a. x   27 b. x  0 c. x  0 and x  9 d. x  3 e. None of these are solutions. Q13. What is the local maximum value for fx  x 3 − 27x? 2 a. 9 b. 108 c. −54 d. 18 e. None of these. Q14. Farmer Brown wants to build a new rectangular chicken pen on his farm. He needs:  the area of the pen to be 60 m 2  the pen to border the farm fence so that he only has to fence 3 sides of the chicken pen  to use a minimum amount of fencing. Give a formula for the amount of fencing needed. [1] a. xy b. x 2 y c. x  y
  • 4.
    d. 2x y e. 2xy Q15. What dimensions will minimise the amount of fencing needed for Farmer Brown’s chicken pen? [2] a. x  6, y  10 b. x  5, y  10 c. x  30 , y  60 30 d. x  60 , y  60 60 e. x  , y  60 30 Q16. Find and simplify ∂P if P  xy log e x . ∂x [2] xy log e x a. x logx 2 y b. log e xxy log e x−1 c. y log e x logx 2 y 1 d. y x e. xy log e x y  y log e x Q17. The Big-M method is being used to solve a maximisation linear programming problem. The following step has been reached: cj −2 −4 0 0 −M −M cB Basis x 1 x2 x3 x4 x5 x6 Solution Ratio −2 x1 1 1/4 −1/4 0 1/4 0 3 −M x6 0 9/2 1/2 −1 −1/2 1 12 zj cj − zj Complete the last two rows and the “Ratio" column of the tableau. Only one of the following statements is true. Which one is it? [2] (a) x 2 enters the basis and x 1 leaves the basis. (b) x 2 enters the basis and x 6 leaves the basis. (c) x 3 enters the basis and x 1 leaves the basis. (d) x 3 enters the basis and x 6 leaves the basis. (e) x 5 enters the basis and x 6 leaves the basis. Q18. Consider the following linear programming problem:
  • 5.
    Maximize P  3x 1  x 2 subject to x1  x2 ≥ 3 2x 1  x 2 ≤ 4 x1, x2 ≥ 0 Which one of the following partially completed simplex tableaux is the correct initial simplex tableau? [2] (a) cj 3 1 c B Basis x 1 x 2 Solution Ratio 3 x1 1 1 3 1 x2 2 1 4 zj cj − zj (b) cj 3 1 −M 0 cB Basis x 1 x 2 x 3 x 4 Solution Ratio −M x3 1 1 −1 0 3 0 x4 2 1 0 1 4 zj cj − zj (c) cj 3 1 −M 0 cB Basis x 1 x 2 x 3 x 4 Solution Ratio −M x3 1 1 1 0 3 0 x4 2 1 0 1 4 zj cj − zj (d) cj 3 1 0 −M 0 cB Basis x 1 x 2 x 3 x4 x 5 Solution Ratio −M x4 1 1 −1 1 0 3 0 x5 2 1 0 0 1 4 zj cj − zj (e) None of the above
  • 6.
    Q19. The simplexmethod is being used to solve a maximisation linear programming problem. The following step has been reached: cj 3 2 0 0 0 c B Basis x 1 x 2 x 3 x 4 x 5 Solution Ratio 0 x3 0 1 1 0 −1 5 0 x4 0 2 0 1 −1 21 3 x1 1 0 0 0 1 15 zj cj − zj Proceed with the simplex method until an optimal tableau is reached. The optimal solution is [3] (a) x 1  5, x 2  11, x 3  15, x 4  0, x 5  0, P  55 (b) x 1  15, x 2  0, x 3  5, x 4  11, x 5  0, P  55 (c) x 1  15, x 2  5, x 3  0, x 4  11, x 5  0, P  55 (d) x 1  11, x 2  15, x 3  0, x 4  0, x 2  5, P  55 (e) x 1  0, x 2  0, x 3  5, x 4  11, x 5  15, P  55