SlideShare a Scribd company logo
1 of 61
Download to read offline
Approximations To Roots
(1) Halving The Interval
Approximations To Roots
(1) Halving The Interval
        y
                                         y  f x


                                               x




  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign,
Approximations To Roots
(1) Halving The Interval
        y
                                         y  f x
     f a 

                 a         b                   x
     f b 



  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign,
Approximations To Roots
(1) Halving The Interval
        y
                                          y  f x
     f a 

                 a         b                   x
     f b 



  If y = f(x) is a continuous function over the interval a  x  b , and
  f(a) and f(b) are opposite in sign, then at least one root of the equation
   f(x) = 0 lies in the interval a  x  b
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19   f 3  34  23  19
                                      16  0              68  0
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19   f 3  34  23  19
                                      16  0             68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                       1       2         3
      2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19       f 3  34  23  19
                                      16  0                 68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                          1        2         3
      2
                                                solution lies in interval 1  x  2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19       f 3  34  23  19
                                      16  0                 68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                          1        2         3
      2
                                                solution lies in interval 1  x  2

        1 2
   x2            f 1.5  1.54  21.5  19
           2
                           10.9  0                   1       1.5        2
       1 .5
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0 in the interval 1  x  3
    f  x   x 4  2 x  19   f 1  14  2  19        f 3  34  23  19
                                      16  0                  68  0
        1 3
   x1             f 2   2 4  22   19
         2
                         1 0                           1        2         3
      2
                                                 solution lies in interval 1  x  2

        1 2
   x2            f 1.5  1.54  21.5  19
           2
                           10.9  0                    1       1.5        2
       1 .5
                                                solution lies in interval 1.5  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5   1.75   2
    1.75
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2

     1.88  2 f 1.94   1.94 4  21.94   19
x5 
        2
                         0.96  0              1.88   1.94       2
    1.94
1 .5  2
x3           f 1.75  1.75 4  21.75  19
         2
                        6.12  0               1.5     1.75       2
    1.75
                                      solution lies in interval 1.75  x  2

     1.75  2 f 1.88  1.88 4  21.88  19
x4 
        2
                        2.75  0             1.75     1.88        2
    1.88
                                      solution lies in interval 1.88  x  2

     1.88  2 f 1.94   1.94 4  21.94   19
x5 
        2
                         0.96  0              1.88   1.94        2
    1.94
                                       solution lies in interval 1.94  x  2
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97   2
    1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94       1.96       1.97
    1.96
                       0.32  0
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97

     1.96  1.97
x8 
          2
    1.97
1.94  2
x6           f 1.97   1.97 4  21.97   19
        2
                         0.001  0                1.94   1.97       2
    1.97
                                     solution lies in interval 1.94  x  1.97

     1.94  1.97
x7 
          2 f 1.96   1.96 4  21.96   19
                                               1.94      1.96       1.97
    1.96
                       0.32  0
                                    solution lies in interval 1.96  x  1.97

     1.96  1.97
x8 
          2
    1.97
                     an approximation for the root is x  1.97
(2) Newton’s Method of Approximation
(2) Newton’s Method of Approximation
     y




                                       x
(2) Newton’s Method of Approximation
     y




                                            x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
(2) Newton’s Method of Approximation
     y




                                                  x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                                         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
                                                  x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                       y  f x         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
                     x0                           x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                       y  f x         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
              x1     x0                           x



 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
NOTE:
(2) Newton’s Method of Approximation
     y                                                   x0 must be a good first
                                                         approximation
                                       y  f x         Newton’s method finds
                                                         where the tangent at x0
                                                         cuts the x axis
              x1     x0                           x            If f  x0   0
                                                           i.e. tangent || x axis
                                                   the method will fail
 If x0 is a good first approximation to a root of the equation f(x) = 0,
 then a closer approximation is given by;
                                        f  x0 
                              x1  x0 
                                        f  x0 
 Successive approximations x2 , x3 ,  , xn , xn 1are given by;
                                             f  xn 
                              xn 1  xn 
                                             f  xn 
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.53  2
                            10.9375                     15.5
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.53  2
                            10.9375                     15.5

                f  x0 
   x1  x0 
                f  x0 
                10.9375
       1 .5 
                  15.5
       2.21
e.g Find an approximation to two decimal places for a root of
     x 4  2 x  19  0
    f  x   x 4  2 x  19

   f  x   4 x 3  2
   x0  1.5        f 1.5  1.54  21.5  19   f 1.5  41.53  2
                            10.9375                        15.5

                f  x0 
   x1  x0                           f 2.21  2.214  22.21  19
                f  x0 
                                                9.2744
                10.9375
       1 .5                        f 2.21  42.21  2
                                                        3
                  15.5
       2.21                                    45.1754
9.2744
x2  2.21 
            45.1754
    2.00
9.2744    f 2   2 4  22   19
x2  2.21 
            45.1754          1
    2.00
                      f 2   42   2
                                    3


                               35
9.2744    f 2   2 4  22   19
x2  2.21 
            45.1754          1
    2.00
                      f 2   42   2
                                    3


                               35
          1
 x3  2 
          35
     1.97
9.2744         f 2   2 4  22   19
x2  2.21 
            45.1754               1
    2.00
                          f 2   42   2
                                         3


                                   35
 x3  2 
          1           f 1.97   1.97 4  21.97   19
          35                     0.001
     1.97
                      f 1.97   41.97   2
                                             3


                                  32.58
9.2744          f 2   2 4  22   19
x2  2.21 
            45.1754                1
    2.00
                           f 2   42   2
                                          3


                                    35
 x3  2 
          1            f 1.97   1.97 4  21.97   19
          35                      0.001
     1.97
                       f 1.97   41.97   2
                                              3


                                   32.58
               0.001
 x4  1.97 
               32.58
    1.97
9.2744                f 2   2 4  22   19
x2  2.21 
            45.1754                      1
    2.00
                                 f 2   42   2
                                                3


                                          35
 x3  2 
          1                  f 1.97   1.97 4  21.97   19
          35                            0.001
     1.97
                             f 1.97   41.97   2
                                                    3


                                         32.58
               0.001
 x4  1.97 
               32.58
    1.97

                 x  1.97 is a better approximation for the root
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
   f  x   x 2  23
(ii ) Use Newton's Method to obtain an approximation to   23
      correct to two decimal places
   f  x   x 2  23
   f  x  2x
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
       x0  5
(ii ) Use Newton's Method to obtain an approximation to    23
      correct to two decimal places
                                              xn12  23
      f  x   x  23
                 2
                                  xn  xn1 
                                                2 xn1
     f  x  2x
                                       xn12  23
                                     
                                         2 xn1
       x0  5
         52  23
    x1 
          2 5

    x1  4.8
(ii ) Use Newton's Method to obtain an approximation to        23
      correct to two decimal places
                                                  xn12  23
      f  x   x  23
                  2
                                      xn  xn1 
                                                    2 xn1
     f  x  2x
                                           xn12  23
                                         
                                             2 xn1
       x0  5
              52  23      4.82  23
       x1            x2 
               2 5        2  4.8 

    x1  4.8       x2  4.795833333
                   x2  4.80 (to 2 dp)
(ii ) Use Newton's Method to obtain an approximation to        23
      correct to two decimal places
                                                  xn12  23
      f  x   x  23
                  2
                                      xn  xn1 
                                                    2 xn1
     f  x  2x
                                           xn12  23
                                         
                                             2 xn1
       x0  5
              52  23      4.82  23
       x1            x2 
               2 5        2  4.8 

    x1  4.8       x2  4.795833333
                   x2  4.80 (to 2 dp)
                23  4.80 (to 2 dp)
Other Possible Problems with Newton’s Method
Other Possible Problems with Newton’s Method
          Approximations oscillate
Other Possible Problems with Newton’s Method
    y     Approximations oscillate




                                     x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



                                          x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2            x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2            x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2             x


                                          wrong side of stationary point
                                            converges to wrong root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                 want to find this root



            x1              x2             x


                                          wrong side of stationary point
                              y             converges to wrong root



                                                                    x
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                                       x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root



            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root
Other Possible Problems with Newton’s Method
    y     Approximations oscillate
                    want to find this root
                                                     Exercise 6E; 1, 3ac,
                                                       6adf, 8a, 10, 12
            x1                 x2             x


                                             wrong side of stationary point
                                  y            converges to wrong root



                                                       x1        x2    x


             want to find this root

More Related Content

Similar to 12 X1 T04 07 approximations to roots (2010)

Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Groupingswartzje
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMel Anthony Pepito
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 

Similar to 12 X1 T04 07 approximations to roots (2010) (7)

Limit of algebraic functions
Limit of algebraic functionsLimit of algebraic functions
Limit of algebraic functions
 
Q2
Q2Q2
Q2
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 

Recently uploaded (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

12 X1 T04 07 approximations to roots (2010)

  • 1. Approximations To Roots (1) Halving The Interval
  • 2. Approximations To Roots (1) Halving The Interval y y  f x x If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign,
  • 3. Approximations To Roots (1) Halving The Interval y y  f x f a  a b x f b  If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign,
  • 4. Approximations To Roots (1) Halving The Interval y y  f x f a  a b x f b  If y = f(x) is a continuous function over the interval a  x  b , and f(a) and f(b) are opposite in sign, then at least one root of the equation f(x) = 0 lies in the interval a  x  b
  • 5. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3
  • 6. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0
  • 7. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2
  • 8. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2
  • 9. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2 1 2 x2  f 1.5  1.54  21.5  19 2  10.9  0 1 1.5 2  1 .5
  • 10. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 in the interval 1  x  3 f  x   x 4  2 x  19 f 1  14  2  19 f 3  34  23  19  16  0  68  0 1 3 x1  f 2   2 4  22   19 2 1 0 1 2 3 2  solution lies in interval 1  x  2 1 2 x2  f 1.5  1.54  21.5  19 2  10.9  0 1 1.5 2  1 .5  solution lies in interval 1.5  x  2
  • 11. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75
  • 12. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2
  • 13. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88
  • 14. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2
  • 15. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2 1.88  2 f 1.94   1.94 4  21.94   19 x5  2  0.96  0 1.88 1.94 2  1.94
  • 16. 1 .5  2 x3  f 1.75  1.75 4  21.75  19 2  6.12  0 1.5 1.75 2  1.75  solution lies in interval 1.75  x  2 1.75  2 f 1.88  1.88 4  21.88  19 x4  2  2.75  0 1.75 1.88 2  1.88  solution lies in interval 1.88  x  2 1.88  2 f 1.94   1.94 4  21.94   19 x5  2  0.96  0 1.88 1.94 2  1.94  solution lies in interval 1.94  x  2
  • 17. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97
  • 18. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97
  • 19. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0
  • 20. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97
  • 21. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 1.96  1.97 x8  2  1.97
  • 22. 1.94  2 x6  f 1.97   1.97 4  21.97   19 2  0.001  0 1.94 1.97 2  1.97  solution lies in interval 1.94  x  1.97 1.94  1.97 x7  2 f 1.96   1.96 4  21.96   19 1.94 1.96 1.97  1.96  0.32  0  solution lies in interval 1.96  x  1.97 1.96  1.97 x8  2  1.97  an approximation for the root is x  1.97
  • 23. (2) Newton’s Method of Approximation
  • 24. (2) Newton’s Method of Approximation y x
  • 25. (2) Newton’s Method of Approximation y x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0 
  • 26. (2) Newton’s Method of Approximation y x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 27. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation Newton’s method finds where the tangent at x0 cuts the x axis x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 28. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x0 x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 29. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 30. NOTE: (2) Newton’s Method of Approximation y x0 must be a good first approximation y  f x Newton’s method finds where the tangent at x0 cuts the x axis x1 x0 x If f  x0   0 i.e. tangent || x axis the method will fail If x0 is a good first approximation to a root of the equation f(x) = 0, then a closer approximation is given by; f  x0  x1  x0  f  x0  Successive approximations x2 , x3 ,  , xn , xn 1are given by; f  xn  xn 1  xn  f  xn 
  • 31. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0
  • 32. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2
  • 33. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.53  2  10.9375  15.5
  • 34. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.53  2  10.9375  15.5 f  x0  x1  x0  f  x0   10.9375  1 .5  15.5  2.21
  • 35. e.g Find an approximation to two decimal places for a root of x 4  2 x  19  0 f  x   x 4  2 x  19 f  x   4 x 3  2 x0  1.5 f 1.5  1.54  21.5  19 f 1.5  41.53  2  10.9375  15.5 f  x0  x1  x0  f 2.21  2.214  22.21  19 f  x0   9.2744  10.9375  1 .5  f 2.21  42.21  2 3 15.5  2.21  45.1754
  • 36. 9.2744 x2  2.21  45.1754  2.00
  • 37. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35
  • 38. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 1 x3  2  35  1.97
  • 39. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58
  • 40. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58 0.001 x4  1.97  32.58  1.97
  • 41. 9.2744 f 2   2 4  22   19 x2  2.21  45.1754 1  2.00 f 2   42   2 3  35 x3  2  1 f 1.97   1.97 4  21.97   19 35  0.001  1.97 f 1.97   41.97   2 3  32.58 0.001 x4  1.97  32.58  1.97  x  1.97 is a better approximation for the root
  • 42. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places
  • 43. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places f  x   x 2  23
  • 44. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places f  x   x 2  23 f  x  2x
  • 45. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1
  • 46. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5
  • 47. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 x1  2 5 x1  4.8
  • 48. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 4.82  23 x1  x2  2 5 2  4.8  x1  4.8 x2  4.795833333 x2  4.80 (to 2 dp)
  • 49. (ii ) Use Newton's Method to obtain an approximation to 23 correct to two decimal places xn12  23 f  x   x  23 2 xn  xn1  2 xn1 f  x  2x xn12  23  2 xn1 x0  5 52  23 4.82  23 x1  x2  2 5 2  4.8  x1  4.8 x2  4.795833333 x2  4.80 (to 2 dp)  23  4.80 (to 2 dp)
  • 50. Other Possible Problems with Newton’s Method
  • 51. Other Possible Problems with Newton’s Method Approximations oscillate
  • 52. Other Possible Problems with Newton’s Method y Approximations oscillate x
  • 53. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x
  • 54. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x
  • 55. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x
  • 56. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point converges to wrong root
  • 57. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x
  • 58. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x want to find this root
  • 59. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root
  • 60. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root
  • 61. Other Possible Problems with Newton’s Method y Approximations oscillate want to find this root Exercise 6E; 1, 3ac, 6adf, 8a, 10, 12 x1 x2 x wrong side of stationary point y converges to wrong root x1 x2 x want to find this root