SlideShare a Scribd company logo
Sum and Product of Roots
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
     Thus
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
     Thus
                        b
                             (sum of roots)
                        a
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
     Thus
                        b
                             (sum of roots)
                        a
                        c
                             (product of roots)
                        a
e.g. (i) Form a quadratic equation whose roots are;
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
        1
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
        1
        6
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
        1
        6
  x2  x  6  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1
        6
  x2  x  6  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1                            4
        6
  x2  x  6  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1                            4
        6                               4  5
  x2  x  6  0                              1
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1                            4
        6                                4  5
  x2  x  6  0                                1
                                        x2  4x 1  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
      a)   
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
                   b
        a)    
                    a
                   3
                 
                   2
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
                   b                    b) 
        a)    
                    a
                   3
                 
                   2
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
                   b                    b)  
                                                    c
        a)    
                    a                               a
                   3                                1
                                                 
                   2                                 2
c)  2   2
c)  2   2       2
                     2
c)  2   2       2
                      2



                      1
                  2

                2 
                3
                    
               2    2
c)  2   2       2
                      2



                      1
                  2

                2 
                3
                    
               2    2
              9
             1
              4
              13
            
               4
1       1
c)          2            
    2   2           2
                            d)
                                        
                      1
                2

                2 
                3
                    
               2    2
              9
             1
              4
              13
            
               4
1   1  
c)          2   d)   
    2   2           2

                                   
                      1
                2

                2 
                3
                    
               2    2
              9
             1
              4
              13
            
               4
1   1  
c)          2   d)   
    2   2           2

                                   
                      1
                2

                2 
                3                       3
                    
               2    2              2
              9                         1
             1                        2
              4
              13
            
               4
1   1  
c)          2     d)   
    2   2            2

                                     
                      1 
                 2
              3                         3
                2 
              2     2                2
              9                           1
             1                          2
              4
              13                         3
            
               4
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6
1    
                                               1
 c)          2            d)   
      2    2             2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6
               3  6
                  2
1    
                                               1
 c)          2            d)   
      2    2             2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
               3  6
                  2
1    
                                               1
 c)          2            d)   
      2    2             2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
                3  6                              2 2  m
                  2
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
                3  6                               2 2  m
                                                  2  2   m
                                                          2
                   2
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
                3  6                               2 2  m
                                                  2  2   m
                                                          2
                   2
                                                         m8
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
                                            1
                                       1
                                          2m  1
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
                                            1
                                       1
                                          2m  1
                                 2m  1  1
                                     2m  2
                                      m 1
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
                                            1
                                       1
                                          2m  1
                                 2m  1  1
                                     2m  2
                                      m 1



             Exercise 8H; 3beh, 4bdf, 5, 6, 7abc i, 8, 10, 12,
                        13cd, 15, 18, 20, 21ac

More Related Content

What's hot

Pc12 sol c04_review
Pc12 sol c04_reviewPc12 sol c04_review
Pc12 sol c04_reviewGarden City
 
Challenge 10 square of a binomial
Challenge 10 square of a binomialChallenge 10 square of a binomial
Challenge 10 square of a binomialmrstrementozzi
 
Higher booklet answers_(3)_(1)_(1)
Higher booklet answers_(3)_(1)_(1)Higher booklet answers_(3)_(1)_(1)
Higher booklet answers_(3)_(1)_(1)mrlautest
 
Binomial expansion+teorem pascal+mapping
Binomial expansion+teorem pascal+mappingBinomial expansion+teorem pascal+mapping
Binomial expansion+teorem pascal+mappingazurani
 
11X1 T11 02 parabola as a locus (2010)
11X1 T11 02 parabola as a locus (2010)11X1 T11 02 parabola as a locus (2010)
11X1 T11 02 parabola as a locus (2010)Nigel Simmons
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_reviewGarden City
 

What's hot (11)

Pc12 sol c04_review
Pc12 sol c04_reviewPc12 sol c04_review
Pc12 sol c04_review
 
Summer Task - MATHS - Yr 12 preparation
Summer Task - MATHS - Yr 12 preparationSummer Task - MATHS - Yr 12 preparation
Summer Task - MATHS - Yr 12 preparation
 
Challenge 10 square of a binomial
Challenge 10 square of a binomialChallenge 10 square of a binomial
Challenge 10 square of a binomial
 
Higher booklet answers_(3)_(1)_(1)
Higher booklet answers_(3)_(1)_(1)Higher booklet answers_(3)_(1)_(1)
Higher booklet answers_(3)_(1)_(1)
 
#Maths wrkshts
#Maths wrkshts#Maths wrkshts
#Maths wrkshts
 
ฟังก์ชัน 1
ฟังก์ชัน 1ฟังก์ชัน 1
ฟังก์ชัน 1
 
Binomial expansion+teorem pascal+mapping
Binomial expansion+teorem pascal+mappingBinomial expansion+teorem pascal+mapping
Binomial expansion+teorem pascal+mapping
 
1003 ch 10 day 3
1003 ch 10 day 31003 ch 10 day 3
1003 ch 10 day 3
 
Mat 128 11 3
Mat 128 11 3Mat 128 11 3
Mat 128 11 3
 
11X1 T11 02 parabola as a locus (2010)
11X1 T11 02 parabola as a locus (2010)11X1 T11 02 parabola as a locus (2010)
11X1 T11 02 parabola as a locus (2010)
 
Pc12 sol c03_review
Pc12 sol c03_reviewPc12 sol c03_review
Pc12 sol c03_review
 

Viewers also liked

11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)Nigel Simmons
 
11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)Nigel Simmons
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)Nigel Simmons
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)Nigel Simmons
 
11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)Nigel Simmons
 
11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)Nigel Simmons
 
11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)Nigel Simmons
 
12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)Nigel Simmons
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)Nigel Simmons
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)Nigel Simmons
 
X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)Nigel Simmons
 
11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)Nigel Simmons
 
11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)Nigel Simmons
 
11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)Nigel Simmons
 
11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)Nigel Simmons
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)Nigel Simmons
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)Nigel Simmons
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)Nigel Simmons
 
12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of XNigel Simmons
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)Nigel Simmons
 

Viewers also liked (20)

11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)
 
11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)
 
11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)
 
11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)
 
11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)
 
12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)
 
X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)
 
11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)
 
11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)
 
11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)
 
11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X12 X1 T07 01 V And A In Terms Of X
12 X1 T07 01 V And A In Terms Of X
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
 

Similar to 11X1 T10 07 sum & product of roots (2011)

11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)Nigel Simmons
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)Nigel Simmons
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomialsNigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equationsprofashfaq
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102nurulhanim
 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewjackieeee
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)Nigel Simmons
 

Similar to 11X1 T10 07 sum & product of roots (2011) (20)

11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
1007 ch 10 day 7
1007 ch 10 day 71007 ch 10 day 7
1007 ch 10 day 7
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 review
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 

Recently uploaded (20)

Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 

11X1 T10 07 sum & product of roots (2011)

  • 1. Sum and Product of Roots
  • 2. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then;
  • 3. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x   
  • 4. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x   
  • 5. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a
  • 6. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a Thus
  • 7. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a Thus b    (sum of roots) a
  • 8. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a Thus b    (sum of roots) a c   (product of roots) a
  • 9. e.g. (i) Form a quadratic equation whose roots are;
  • 10. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3
  • 11. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3     1
  • 12. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3     1   6
  • 13. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3     1   6 x2  x  6  0
  • 14. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   6 x2  x  6  0
  • 15. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6 x2  x  6  0
  • 16. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1
  • 17. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0
  • 18. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
  • 19. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; a)   
  • 20. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; b a)     a 3  2
  • 21. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; b b)  a)     a 3  2
  • 22. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; b b)   c a)     a a 3 1   2 2
  • 23. c)  2   2
  • 24. c)  2   2       2 2
  • 25. c)  2   2       2 2 1 2     2  3      2  2
  • 26. c)  2   2       2 2 1 2     2  3      2  2 9  1 4 13  4
  • 27. 1 1 c)          2  2 2 2 d)   1 2     2  3      2  2 9  1 4 13  4
  • 28. 1 1   c)          2 d)   2 2 2    1 2     2  3      2  2 9  1 4 13  4
  • 29. 1 1   c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  4
  • 30. 1 1   c)          2 d)   2 2 2     1  2 3 3     2  2  2  2 9 1  1 2 4 13  3  4
  • 31. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
  • 32. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2
  • 33. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6
  • 34. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6 3  6   2
  • 35. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6   2
  • 36. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6 2 2  m   2
  • 37. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6 2 2  m 2  2   m 2   2
  • 38. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6 2 2  m 2  2   m 2   2 m8
  • 39. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other.
  • 40. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and 
  • 41. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1
  • 42. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1 1 1 2m  1
  • 43. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1 1 1 2m  1 2m  1  1 2m  2 m 1
  • 44. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1 1 1 2m  1 2m  1  1 2m  2 m 1 Exercise 8H; 3beh, 4bdf, 5, 6, 7abc i, 8, 10, 12, 13cd, 15, 18, 20, 21ac