SlideShare a Scribd company logo
1 of 83
Download to read offline
Section	3.3
      Derivatives	of	Exponential	and
         Logarithmic	Functions

               V63.0121.006/016, Calculus	I



                       March	2, 2010


Announcements
   Review	sessions: tonight, 7:30	in	CIWW 202	and	517;
   tomorrow, 7:00	in	CIWW 109
   Midterm	is	March	4, covering	§§1.1–2.5
   Recitation	this	week	will	cover	§§3.1–3.2
                                          .    .   .   .   .   .
Announcements




     Review	sessions: tonight, 7:30	in	CIWW 202	and	517;
     tomorrow, 7:00	in	CIWW 109
     Midterm	is	March	4, covering	§§1.1–2.5
     Recitation	this	week	will	cover	§§3.1–3.2




                                            .    .   .   .   .   .
Outline

  “Recall”	Section	3.1–3.2

  Derivative	of	the	natural	exponential	function
     Exponential	Growth

  Derivative	of	the	natural	logarithm	function

  Derivatives	of	other	exponentials	and	logarithms
     Other	exponentials
     Other	logarithms

  Logarithmic	Differentiation
     The	power	rule	for	irrational	powers


                                                 .   .   .   .   .   .
Conventions	on	exponential	functions



   Let a be	a	positive	real	number.
       If n is	a	positive	whole	number, then an = a · a · · · · · a
                                                            n factors
       a0 = 1.
                                   1
       For	any	real	number r, a−r =  .
                                  ar
                                               √
       For	any	positive	whole	number n, a1/n = n a.
   There	is	only	one	continuous	function	which	satisfies	all	of	the
   above. We	call	it	the exponential	function with	base a.




                                                   .    .        .      .   .   .
Properties	of	exponential	functions



   Theorem
   If a > 0 and a ̸= 1, then f(x) = ax is	a	continuous	function	with
   domain R and	range (0, ∞). In	particular, ax > 0 for	all x. If
   a, b > 0 and x, y ∈ R, then
       ax+y = ax ay
                ax
       ax−y = y
                a
       (ax )y = axy
       (ab)x = ax bx




                                                .    .    .   .    .   .
Graphs	of	various	exponential	functions
                          y
                          .




                           .                              x
                                                          .

                                   .      .   .   .   .       .
Graphs	of	various	exponential	functions
                          y
                          .




                                                          . = 1x
                                                          y

                           .                              x
                                                          .

                                   .      .   .   .   .       .
Graphs	of	various	exponential	functions
                          y
                          .
                                              . = 2x
                                              y




                                                               . = 1x
                                                               y

                           .                                   x
                                                               .

                                   .      .     .      .   .       .
Graphs	of	various	exponential	functions
                          y
                          .
                                    . = 3x. = 2x
                                    y     y




                                                           . = 1x
                                                           y

                           .                               x
                                                           .

                                   .      .   .    .   .       .
Graphs	of	various	exponential	functions
                          y
                          .
                               . = 10x= 3x. = 2x
                               y    y
                                    .     y




                                                           . = 1x
                                                           y

                           .                               x
                                                           .

                                    .     .   .    .   .       .
Graphs	of	various	exponential	functions
                          y
                          .
                               . = 10x= 3x. = 2x
                               y    y
                                    .     y                . = 1.5x
                                                           y




                                                            . = 1x
                                                            y

                           .                                x
                                                            .

                                    .     .   .    .   .        .
Graphs	of	various	exponential	functions
                          y
                          .
       . = (1/2)x
       y                       . = 10x= 3x. = 2x
                               y    y
                                    .     y                . = 1.5x
                                                           y




                                                            . = 1x
                                                            y

                           .                                x
                                                            .

                                    .     .   .    .   .        .
Graphs	of	various	exponential	functions
                          y
                          .
       y     y
             . =      x
       . = (1/2)x (1/3)        . = 10x= 3x. = 2x
                               y    y
                                    .     y                . = 1.5x
                                                           y




                                                            . = 1x
                                                            y

                           .                                x
                                                            .

                                    .     .   .    .   .        .
Graphs	of	various	exponential	functions
                             y
                             .
       y     y
             . =      x
       . = (1/2)x (1/3)   . = (1/10)x. = 10x= 3x. = 2x
                          y          y    y
                                          .     y                . = 1.5x
                                                                 y




                                                                  . = 1x
                                                                  y

                              .                                   x
                                                                  .

                                         .   .    .      .   .        .
Graphs	of	various	exponential	functions
                                y
                                .
      yy = 213)x
      . . = ((//2)x (1/3)x
               y
               . =           . = (1/10)x. = 10x= 3x. = 2x
                             y          y    y
                                             .     y                . = 1.5x
                                                                    y




                                                                     . = 1x
                                                                     y

                                 .                                   x
                                                                     .

                                            .   .    .      .   .        .
The	magic	number




  Definition
                     (      )
                          1 n
              e = lim 1 +     = lim+ (1 + h)1/h
                 n→∞      n    h →0




                                        .   .     .   .   .   .
Existence	of e
See	Appendix	B




                         (           )n
                                1
                 n           1+
                                n
                 1       2
                 2       2.25




                 .   .       .   .        .   .
Existence	of e
See	Appendix	B




                         (           )n
                                1
                 n           1+
                                n
                 1       2
                 2       2.25
                 3       2.37037




                 .   .       .   .        .   .
Existence	of e
See	Appendix	B




                          (           )n
                                 1
                 n            1+
                                 n
                 1        2
                 2        2.25
                 3        2.37037
                 10       2.59374




                 .    .       .   .        .   .
Existence	of e
See	Appendix	B




                           (           )n
                                  1
                 n             1+
                                  n
                 1         2
                 2         2.25
                 3         2.37037
                 10        2.59374
                 100       2.70481




                 .     .       .   .        .   .
Existence	of e
See	Appendix	B




                            (           )n
                                   1
                 n              1+
                                   n
                 1          2
                 2          2.25
                 3          2.37037
                 10         2.59374
                 100        2.70481
                 1000       2.71692




                 .      .       .   .        .   .
Existence	of e
See	Appendix	B




                            (           )n
                                   1
                 n              1+
                                   n
                 1          2
                 2          2.25
                 3          2.37037
                 10         2.59374
                 100        2.70481
                 1000       2.71692
                 106        2.71828




                 .      .       .   .        .   .
Existence	of e
See	Appendix	B




                                                 (           )n
                                                        1
        We	can	experimentally         n              1+
                                                        n
        verify	that	this	number
                                      1          2
        exists	and	is
                                      2          2.25
        e ≈ 2.718281828459045 . . .   3          2.37037
                                      10         2.59374
                                      100        2.70481
                                      1000       2.71692
                                      106        2.71828




                                      .      .       .   .        .   .
Existence	of e
See	Appendix	B




                                                 (           )n
                                                        1
        We	can	experimentally         n              1+
                                                        n
        verify	that	this	number
                                      1          2
        exists	and	is
                                      2          2.25
        e ≈ 2.718281828459045 . . .   3          2.37037
                                      10         2.59374
        e is	irrational               100        2.70481
                                      1000       2.71692
                                      106        2.71828




                                      .      .       .   .        .   .
Existence	of e
See	Appendix	B




                                                 (           )n
                                                        1
        We	can	experimentally         n              1+
                                                        n
        verify	that	this	number
                                      1          2
        exists	and	is
                                      2          2.25
        e ≈ 2.718281828459045 . . .   3          2.37037
                                      10         2.59374
        e is	irrational               100        2.70481
        e is transcendental           1000       2.71692
                                      106        2.71828




                                      .      .       .   .        .   .
Logarithms

  Definition
      The	base a logarithm loga x is	the	inverse	of	the	function ax

                          y = loga x ⇐⇒ x = ay

      The	natural	logarithm ln x is	the	inverse	of ex . So
      y = ln x ⇐⇒ x = ey .




                                                .    .       .   .   .   .
Logarithms

  Definition
       The	base a logarithm loga x is	the	inverse	of	the	function ax

                              y = loga x ⇐⇒ x = ay

       The	natural	logarithm ln x is	the	inverse	of ex . So
       y = ln x ⇐⇒ x = ey .

  Facts
    (i) loga (x · x′ ) = loga x + loga x′




                                                 .    .       .   .   .   .
Logarithms

  Definition
       The	base a logarithm loga x is	the	inverse	of	the	function ax

                              y = loga x ⇐⇒ x = ay

       The	natural	logarithm ln x is	the	inverse	of ex . So
       y = ln x ⇐⇒ x = ey .

  Facts
    (i) loga (x · x′ ) = loga x + loga x′
             (x)
   (ii) loga ′ = loga x − loga x′
               x



                                                 .    .       .   .   .   .
Logarithms

  Definition
        The	base a logarithm loga x is	the	inverse	of	the	function ax

                               y = loga x ⇐⇒ x = ay

        The	natural	logarithm ln x is	the	inverse	of ex . So
        y = ln x ⇐⇒ x = ey .

  Facts
     (i) loga (x · x′ ) = loga x + loga x′
              (x)
    (ii) loga ′ = loga x − loga x′
                x
   (iii) loga (xr ) = r loga x


                                                  .    .       .   .   .   .
Logarithms	convert	products	to	sums

      Suppose y = loga x and y′ = loga x′
                                  ′
      Then x = ay and x′ = ay
                   ′          ′
      So xx′ = ay ay = ay+y
      Therefore

                  loga (xx′ ) = y + y′ = loga x + loga x′




                                               .    .       .   .   .   .
Graphs	of	logarithmic	functions

       y
       .
                    . = 2x
                    y


                                              y
                                              . = log2 x



       . . 0 , 1)
         (

       ..1, 0) .
       (                                           x
                                                   .




                                  .   .   .    .    .      .
Graphs	of	logarithmic	functions

       y
       .
                    . = 3x= 2x
                    y . y


                                              y
                                              . = log2 x


                                              y
                                              . = log3 x
       . . 0 , 1)
         (

       ..1, 0) .
       (                                           x
                                                   .




                                  .   .   .    .    .      .
Graphs	of	logarithmic	functions

       y
       .
             . = .10x 3x= 2x
             y y=.    y


                                              y
                                              . = log2 x


                                              y
                                              . = log3 x
       . . 0 , 1)
         (
                                              y
                                              . = log10 x
       ..1, 0) .
       (                                            x
                                                    .




                                  .   .   .     .    .      .
Graphs	of	logarithmic	functions

       y
       .
             . = .10=3xx 2x
                  y xy
             y y. = .e =


                                              y
                                              . = log2 x

                                               y
                                               . = ln x
                                              y
                                              . = log3 x
       . . 0 , 1)
         (
                                              y
                                              . = log10 x
       ..1, 0) .
       (                                            x
                                                    .




                                  .   .   .     .    .      .
Change	of	base	formula	for	exponentials

   Fact
   If a > 0 and a ̸= 1, then

                                          ln x
                               loga x =
                                          ln a




                                                 .   .   .   .   .   .
Change	of	base	formula	for	exponentials

   Fact
   If a > 0 and a ̸= 1, then

                                            ln x
                                 loga x =
                                            ln a


   Proof.
          If y = loga x, then x = ay
          So ln x = ln(ay ) = y ln a
          Therefore
                                                   ln x
                                  y = loga x =
                                                   ln a



                                                          .   .   .   .   .   .
Outline

  “Recall”	Section	3.1–3.2

  Derivative	of	the	natural	exponential	function
     Exponential	Growth

  Derivative	of	the	natural	logarithm	function

  Derivatives	of	other	exponentials	and	logarithms
     Other	exponentials
     Other	logarithms

  Logarithmic	Differentiation
     The	power	rule	for	irrational	powers


                                                 .   .   .   .   .   .
Derivatives	of	Exponential	Functions

   Fact
   If f(x) = ax , then f′ (x) = f′ (0)ax .




                                             .   .   .   .   .   .
Derivatives	of	Exponential	Functions

   Fact
   If f(x) = ax , then f′ (x) = f′ (0)ax .

   Proof.
   Follow	your	nose:

                         f(x + h) − f(x)            a x+h − a x
            f′ (x) = lim                   = lim
                    h →0          h            h →0      h
                         a x a h − ax             a h−1
                  = lim               = ax · lim           = ax · f′ (0).
                    h →0        h            h →0     h




                                                        .    .     .    .   .   .
Derivatives	of	Exponential	Functions

   Fact
   If f(x) = ax , then f′ (x) = f′ (0)ax .

   Proof.
   Follow	your	nose:

                         f(x + h) − f(x)            a x+h − a x
            f′ (x) = lim                   = lim
                    h →0          h            h →0      h
                         a x a h − ax             a h−1
                  = lim               = ax · lim           = ax · f′ (0).
                    h →0        h            h →0     h


   To	reiterate: the	derivative	of	an	exponential	function	is	a
   constant times that	function. Much	different	from	polynomials!


                                                        .    .     .    .   .   .
The	funny	limit	in	the	case	of e
   Remember	the	definition	of e:
                        (       )
                              1 n
               e = lim 1 +        = lim (1 + h)1/h
                   n→∞        n     h →0



   Question
               eh − 1
   What	is lim        ?
          h →0    h




                                           .   .     .   .   .   .
The	funny	limit	in	the	case	of e
   Remember	the	definition	of e:
                        (       )
                              1 n
               e = lim 1 +        = lim (1 + h)1/h
                   n→∞        n     h →0



   Question
                 eh − 1
   What	is lim          ?
            h →0    h
   Answer
   If h is	small	enough, e ≈ (1 + h)1/h . So
                   [          ]h
          eh − 1    (1 + h)1/h − 1   (1 + h) − 1  h
                 ≈                 =             = =1
             h             h              h       h



                                               .   .   .   .   .   .
The	funny	limit	in	the	case	of e
   Remember	the	definition	of e:
                        (       )
                              1 n
               e = lim 1 +        = lim (1 + h)1/h
                   n→∞        n     h →0



   Question
                 eh − 1
   What	is lim          ?
            h →0    h
   Answer
   If h is	small	enough, e ≈ (1 + h)1/h . So
                   [          ]h
          eh − 1    (1 + h)1/h − 1   (1 + h) − 1  h
                 ≈                 =             = =1
             h             h              h       h

                                       eh − 1
   So	in	the	limit	we	get	equality: lim       =1
                                   h→0    h
                                               .   .   .   .   .   .
Derivative	of	the	natural	exponential	function


   From
                      (                 )
             d x               ah − 1                       eh − 1
                a =       lim               ax   and   lim         =1
             dx           h →0    h                    h →0    h

   we	get:
   Theorem
                                    d x
                                       e = ex
                                    dx




                                                        .    .   .      .   .   .
Exponential	Growth

      Commonly	misused	term	to	say	something	grows
      exponentially
      It	means	the	rate	of	change	(derivative)	is	proportional	to	the
      current	value
      Examples: Natural	population	growth, compounded	interest,
      social	networks




                                               .   .    .    .    .     .
Examples

  Examples
  Find	these	derivatives:
      e3x
           2
      ex
      x 2 ex




                            .   .   .   .   .   .
Examples

  Examples
  Find	these	derivatives:
      e3x
           2
      ex
      x 2 ex

  Solution
       d 3x
          e = 3e3x
       dx




                            .   .   .   .   .   .
Examples

  Examples
  Find	these	derivatives:
      e3x
           2
      ex
      x 2 ex

  Solution
       d 3x
          e = 3e3x
       dx
       d x2      2 d              2
          e = ex     (x2 ) = 2xex
       dx         dx




                                      .   .   .   .   .   .
Examples

  Examples
  Find	these	derivatives:
      e3x
           2
      ex
      x 2 ex

  Solution
       d 3x
          e = 3e3x
       dx
       d x2      2 d              2
          e = ex     (x2 ) = 2xex
       dx         dx
       d 2 x
          x e = 2xex + x2 ex
       dx


                                      .   .   .   .   .   .
Outline

  “Recall”	Section	3.1–3.2

  Derivative	of	the	natural	exponential	function
     Exponential	Growth

  Derivative	of	the	natural	logarithm	function

  Derivatives	of	other	exponentials	and	logarithms
     Other	exponentials
     Other	logarithms

  Logarithmic	Differentiation
     The	power	rule	for	irrational	powers


                                                 .   .   .   .   .   .
Derivative	of	the	natural	logarithm	function


  Let y = ln x. Then
  x = ey so




                                     .   .     .   .   .   .
Derivative	of	the	natural	logarithm	function


  Let y = ln x. Then
  x = ey so
            dy
       ey      =1
            dx




                                     .   .     .   .   .   .
Derivative	of	the	natural	logarithm	function


  Let y = ln x. Then
  x = ey so
       dy
       ey =1
       dx
       dy   1   1
    =⇒    = y =
       dx  e    x




                                     .   .     .   .   .   .
Derivative	of	the	natural	logarithm	function


  Let y = ln x. Then
  x = ey so
       dy
         ey
          =1
       dx
       dy   1   1
    =⇒    = y =
       dx  e    x
  So:
  Fact
         d         1
            ln x =
         dx        x



                                     .   .     .   .   .   .
Derivative	of	the	natural	logarithm	function


  Let y = ln x. Then           y
                               .
  x = ey so
       dy
         ey
          =1
       dx                                              .n x
                                                       l
       dy   1   1
    =⇒    = y =
       dx  e    x
                               .                       x
                                                       .
  So:
  Fact
         d         1
            ln x =
         dx        x



                                     .   .     .   .   .      .
Derivative	of	the	natural	logarithm	function


  Let y = ln x. Then           y
                               .
  x = ey so
       dy
         ey
          =1
       dx                                              .n x
                                                       l
       dy   1   1                                      1
    =⇒    = y =                                        .
       dx  e    x                                       x
                               .                       x
                                                       .
  So:
  Fact
         d         1
            ln x =
         dx        x



                                     .   .     .   .   .      .
The	Tower	of	Powers


        y     y′
                      The	derivative	of	a
        x3    3x2     power	function	is	a
                      power	function	of	one
        x2    2x1
                      lower	power
        x1    1x0
        x0     0
        ?      ?
       x−1   −1x−2
       x−2   −2x−3




                       .    .   .   .   .     .
The	Tower	of	Powers


        y         y′
                        The	derivative	of	a
        x3       3x2    power	function	is	a
                        power	function	of	one
        x2       2x1
                        lower	power
        x1       1x0    Each	power	function	is
        x   0
                  0     the	derivative	of	another
                        power	function, except
        ?        x −1   x−1
       x−1      −1x−2
       x−2      −2x−3




                          .   .    .    .   .       .
The	Tower	of	Powers


        y         y′
                        The	derivative	of	a
        x3       3x2    power	function	is	a
                        power	function	of	one
        x2       2x1
                        lower	power
        x1       1x0    Each	power	function	is
        x   0
                  0     the	derivative	of	another
                        power	function, except
       ln x      x −1   x−1
       x−1      −1x−2   ln x fills	in	this	gap
                        precisely.
       x−2      −2x−3




                          .    .    .    .      .   .
Outline

  “Recall”	Section	3.1–3.2

  Derivative	of	the	natural	exponential	function
     Exponential	Growth

  Derivative	of	the	natural	logarithm	function

  Derivatives	of	other	exponentials	and	logarithms
     Other	exponentials
     Other	logarithms

  Logarithmic	Differentiation
     The	power	rule	for	irrational	powers


                                                 .   .   .   .   .   .
Other	logarithms
   Example
                                         d x
   Use	implicit	differentiation	to	find      a.
                                         dx




                                                 .   .   .   .   .   .
Other	logarithms
   Example
                                         d x
   Use	implicit	differentiation	to	find      a.
                                         dx
   Solution
   Let y = ax , so
                          ln y = ln ax = x ln a




                                                  .   .   .   .   .   .
Other	logarithms
   Example
                                           d x
   Use	implicit	differentiation	to	find        a.
                                           dx
   Solution
   Let y = ax , so
                               ln y = ln ax = x ln a
   Differentiate	implicitly:

                 1 dy           dy
                      = ln a =⇒    = (ln a)y = (ln a)ax
                 y dx           dx




                                                       .   .   .   .   .   .
Other	logarithms
   Example
                                           d x
   Use	implicit	differentiation	to	find        a.
                                           dx
   Solution
   Let y = ax , so
                               ln y = ln ax = x ln a
   Differentiate	implicitly:

                 1 dy           dy
                      = ln a =⇒    = (ln a)y = (ln a)ax
                 y dx           dx

   Before	we	showed y′ = y′ (0)y, so	now	we	know	that

                    2h − 1                                  3h − 1
       ln 2 = lim          ≈ 0.693           ln 3 = lim            ≈ 1.10
               h →0    h                               h →0    h

                                                        .   .    .   .      .   .
Other	logarithms

   Example
          d
   Find      loga x.
          dx




                       .   .   .   .   .   .
Other	logarithms

   Example
          d
   Find      loga x.
          dx
   Solution
   Let y = loga x, so ay = x.




                                .   .   .   .   .   .
Other	logarithms

   Example
          d
   Find      loga x.
          dx
   Solution
   Let y = loga x, so ay = x. Now	differentiate	implicitly:

                           dy        dy     1        1
                (ln a)ay      = 1 =⇒    = y     =
                           dx        dx  a ln a   x ln a




                                                 .    .   .   .   .   .
Other	logarithms

   Example
          d
   Find      loga x.
          dx
   Solution
   Let y = loga x, so ay = x. Now	differentiate	implicitly:

                           dy        dy     1        1
                (ln a)ay      = 1 =⇒    = y     =
                           dx        dx  a ln a   x ln a
   Another	way	to	see	this	is	to	take	the	natural	logarithm:

                                                     ln x
                  ay = x =⇒ y ln a = ln x =⇒ y =
                                                     ln a
        dy    1 1
   So      =        .
        dx   ln a x

                                                 .    .     .   .   .   .
More	examples



  Example
         d
  Find      log2 (x2 + 1)
         dx




                            .   .   .   .   .   .
More	examples



  Example
         d
  Find      log2 (x2 + 1)
         dx
  Answer

                 dy    1      1               2x
                    =        2+1
                                 (2x) =
                 dx   ln 2 x            (ln 2)(x2 + 1)




                                              .   .      .   .   .   .
Outline

  “Recall”	Section	3.1–3.2

  Derivative	of	the	natural	exponential	function
     Exponential	Growth

  Derivative	of	the	natural	logarithm	function

  Derivatives	of	other	exponentials	and	logarithms
     Other	exponentials
     Other	logarithms

  Logarithmic	Differentiation
     The	power	rule	for	irrational	powers


                                                 .   .   .   .   .   .
A nasty	derivative


   Example         √
           (x2 + 1) x + 3
   Let y =                . Find y′ .
                x−1




                                        .   .   .   .   .   .
A nasty	derivative


   Example         √
           (x2 + 1) x + 3
   Let y =                . Find y′ .
                x−1
   Solution
   We	use	the	quotient	rule, and	the	product	rule	in	the	numerator:
                [ √                                ]        √
    ′   (x − 1) 2x x + 3 + (x2 + 1) 1 (x + 3)−1/2 − (x2 + 1) x + 3(1)
                                     2
   y =
                                    (x − 1)2
           √                                      √
        2x x + 3        (x2 + 1)        (x 2 + 1 ) x + 3
      =           + √                −
         (x − 1 )   2 x + 3(x − 1)           (x − 1)2




                                             .   .    .   .   .   .
Another	way


                            √
                  (x 2 + 1 ) x + 3
              y=
                        x−1
                                1
           ln y = ln(x2 + 1) + ln(x + 3) − ln(x − 1)
                                2
          1 dy       2x         1      1
                = 2       +        −
          y dx    x + 1 2(x + 3) x − 1

  So
              (                           )
       dy           2x       1      1
          =             +        −            y
       dx         x2 + 1 2(x + 3) x − 1
              (                           )           √
                    2x       1      1         (x2 + 1) x + 3
         =              +        −
                  x2 + 1 2(x + 3) x − 1            x−1


                                              .   .   .   .    .   .
Compare	and	contrast

      Using	the	product, quotient, and	power	rules:
                 √                                    √
           ′   2x x + 3        (x2 + 1)       (x2 + 1) x + 3
          y =            + √               −
                (x − 1)    2 x + 3(x − 1)         (x − 1)2

      Using	logarithmic	differentiation:
                (                           )           √
            ′         2x       1      1         (x2 + 1) x + 3
          y =             +        −
                    x2 + 1 2(x + 3) x − 1            x−1




                                            .      .   .   .     .   .
Compare	and	contrast

      Using	the	product, quotient, and	power	rules:
                 √                                    √
           ′   2x x + 3        (x2 + 1)       (x2 + 1) x + 3
          y =            + √               −
                (x − 1)    2 x + 3(x − 1)         (x − 1)2

      Using	logarithmic	differentiation:
                (                           )           √
            ′         2x       1      1         (x2 + 1) x + 3
          y =             +        −
                    x2 + 1 2(x + 3) x − 1            x−1


      Are	these	the	same?




                                            .      .   .   .     .   .
Compare	and	contrast

      Using	the	product, quotient, and	power	rules:
                 √                                    √
           ′   2x x + 3        (x2 + 1)       (x2 + 1) x + 3
          y =            + √               −
                (x − 1)    2 x + 3(x − 1)         (x − 1)2

      Using	logarithmic	differentiation:
                (                           )           √
            ′         2x       1      1         (x2 + 1) x + 3
          y =             +        −
                    x2 + 1 2(x + 3) x − 1            x−1


      Are	these	the	same?
      Which	do	you	like	better?




                                            .      .   .   .     .   .
Compare	and	contrast

      Using	the	product, quotient, and	power	rules:
                 √                                    √
           ′   2x x + 3        (x2 + 1)       (x2 + 1) x + 3
          y =            + √               −
                (x − 1)    2 x + 3(x − 1)         (x − 1)2

      Using	logarithmic	differentiation:
                (                           )            √
            ′         2x       1      1          (x2 + 1) x + 3
          y =             +        −
                    x2 + 1 2(x + 3) x − 1             x−1


      Are	these	the	same?
      Which	do	you	like	better?
      What	kinds	of	expressions	are	well-suited	for	logarithmic
      differentiation?

                                             .      .   .   .     .   .
Derivatives	of	powers




   Let y = xx . Which	of	these	is	true?
   (A) Since y is	a	power	function, y′ = x · xx−1 = xx .
   (B) Since y is	an	exponential	function, y′ = (ln x) · xx
   (C) Neither




                                                 .    .       .   .   .   .
Derivatives	of	powers




   Let y = xx . Which	of	these	is	true?
   (A) Since y is	a	power	function, y′ = x · xx−1 = xx .
   (B) Since y is	an	exponential	function, y′ = (ln x) · xx
   (C) Neither




                                                 .    .       .   .   .   .
It’s	neither! Or	both?



   If y = xx , then

                       ln y = x ln x
                      1 dy        1
                            = x · + ln x = 1 + ln x
                      y dx        x
                        dy
                            = xx + (ln x)xx
                        dx
   Each	of	these	terms	is	one	of	the	wrong	answers!




                                               .      .   .   .   .   .
Derivative	of	arbitrary	powers

   Fact	(The	power	rule)
   Let y = xr . Then y′ = rxr−1 .




                                    .   .   .   .   .   .
Derivative	of	arbitrary	powers

   Fact	(The	power	rule)
   Let y = xr . Then y′ = rxr−1 .

   Proof.

                          y = xr =⇒ ln y = r ln x
   Now	differentiate:
                             1 dy   r
                                  =
                             y dx   x
                               dy    y
                           =⇒     = r = rxr−1
                               dx    x




                                                .   .   .   .   .   .

More Related Content

What's hot

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Matthew Leingang
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Matthew Leingang
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2zukun
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingEnthought, Inc.
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Matthew Leingang
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).Eko Wijayanto
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...MarcelloSantosChaves
 

What's hot (19)

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Day 01
Day 01Day 01
Day 01
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 
Matlab
MatlabMatlab
Matlab
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 

Viewers also liked

Mapa Conceptual Ambientes De Aprendizajes
Mapa Conceptual Ambientes De AprendizajesMapa Conceptual Ambientes De Aprendizajes
Mapa Conceptual Ambientes De Aprendizajesdubraskapresentaciones
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayMatthew Leingang
 
Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...
Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...
Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...aneronda
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functionsitutor
 
Aprender y crear con las tic
Aprender y crear con las ticAprender y crear con las tic
Aprender y crear con las ticYanzer R-Grösp
 
Musical time periods
Musical time periodsMusical time periods
Musical time periodsJohn Madas
 
Refrigeracion y congelacion
Refrigeracion y congelacionRefrigeracion y congelacion
Refrigeracion y congelacionjose uriarte
 
CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.
CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.
CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.JAIME VELASQUEZ
 
Tecnicas basicas de almacenamiento de alimentos
Tecnicas basicas de almacenamiento de alimentosTecnicas basicas de almacenamiento de alimentos
Tecnicas basicas de almacenamiento de alimentosguest6a9862
 
Conservacion de los alimentos ppt
Conservacion de los alimentos pptConservacion de los alimentos ppt
Conservacion de los alimentos pptcandelariagor
 
recepcion y almacenamiento de alimentos
  recepcion y almacenamiento de alimentos  recepcion y almacenamiento de alimentos
recepcion y almacenamiento de alimentosJr. Villalba Aleman
 

Viewers also liked (20)

Mapa Conceptual Ambientes De Aprendizajes
Mapa Conceptual Ambientes De AprendizajesMapa Conceptual Ambientes De Aprendizajes
Mapa Conceptual Ambientes De Aprendizajes
 
Cadenade frioalamedida
Cadenade frioalamedidaCadenade frioalamedida
Cadenade frioalamedida
 
Metodo de congelacion
Metodo de congelacionMetodo de congelacion
Metodo de congelacion
 
Equipos de congelación
Equipos de congelaciónEquipos de congelación
Equipos de congelación
 
Recursos para un Centro TIC
Recursos para un Centro TICRecursos para un Centro TIC
Recursos para un Centro TIC
 
Derivatives
DerivativesDerivatives
Derivatives
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...
Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...
Valoración de Sedentarismo y Prescripción Ejercicio Físico desde Atención Pri...
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functions
 
Aprender y crear con las tic
Aprender y crear con las ticAprender y crear con las tic
Aprender y crear con las tic
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
Musical time periods
Musical time periodsMusical time periods
Musical time periods
 
Cadena del frio
Cadena del frioCadena del frio
Cadena del frio
 
Refrigeracion y congelacion
Refrigeracion y congelacionRefrigeracion y congelacion
Refrigeracion y congelacion
 
CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.
CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.
CONGELACIÓN TIPOS, EQUIPOS Y MÉTODOS.
 
Tecnicas basicas de almacenamiento de alimentos
Tecnicas basicas de almacenamiento de alimentosTecnicas basicas de almacenamiento de alimentos
Tecnicas basicas de almacenamiento de alimentos
 
Conservacion de los alimentos ppt
Conservacion de los alimentos pptConservacion de los alimentos ppt
Conservacion de los alimentos ppt
 
recepcion y almacenamiento de alimentos
  recepcion y almacenamiento de alimentos  recepcion y almacenamiento de alimentos
recepcion y almacenamiento de alimentos
 
How gallium nitride can save energy, purify water, be used in cancer therapy ...
How gallium nitride can save energy, purify water, be used in cancer therapy ...How gallium nitride can save energy, purify water, be used in cancer therapy ...
How gallium nitride can save energy, purify water, be used in cancer therapy ...
 

Similar to Lesson 13: Derivatives of Logarithmic and Exponential Functions

Unit iii
Unit iiiUnit iii
Unit iiimrecedu
 
Xc ngwenya 201007180
Xc ngwenya 201007180Xc ngwenya 201007180
Xc ngwenya 201007180spounge
 
Ssp notes
Ssp notesSsp notes
Ssp notesbalu902
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)Nigel Simmons
 
11X1 T03 02 sketching polynomials (2011)
11X1 T03 02 sketching polynomials (2011)11X1 T03 02 sketching polynomials (2011)
11X1 T03 02 sketching polynomials (2011)Nigel Simmons
 
11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)Nigel Simmons
 
11 x1 t03 02 sketching polynomials (2013)
11 x1 t03 02 sketching polynomials (2013)11 x1 t03 02 sketching polynomials (2013)
11 x1 t03 02 sketching polynomials (2013)Nigel Simmons
 
Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009Darren Kuropatwa
 
Module 11 graph of functions PMR
Module 11 graph of functions PMRModule 11 graph of functions PMR
Module 11 graph of functions PMRroszelan
 
11 x1 t15 02 sketching polynomials (2012)
11 x1 t15 02 sketching polynomials (2012)11 x1 t15 02 sketching polynomials (2012)
11 x1 t15 02 sketching polynomials (2012)Nigel Simmons
 
11X1 T13 02 sketching polynomials
11X1 T13 02 sketching polynomials11X1 T13 02 sketching polynomials
11X1 T13 02 sketching polynomialsNigel Simmons
 

Similar to Lesson 13: Derivatives of Logarithmic and Exponential Functions (20)

Unit iii
Unit iiiUnit iii
Unit iii
 
Xc ngwenya 201007180
Xc ngwenya 201007180Xc ngwenya 201007180
Xc ngwenya 201007180
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
Ssp notes
Ssp notesSsp notes
Ssp notes
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)11 x1 t03 02 sketching polynomials (2012)
11 x1 t03 02 sketching polynomials (2012)
 
11X1 T03 02 sketching polynomials (2011)
11X1 T03 02 sketching polynomials (2011)11X1 T03 02 sketching polynomials (2011)
11X1 T03 02 sketching polynomials (2011)
 
11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)11 X1 T03 02 sketching polynomials (2010)
11 X1 T03 02 sketching polynomials (2010)
 
11 x1 t03 02 sketching polynomials (2013)
11 x1 t03 02 sketching polynomials (2013)11 x1 t03 02 sketching polynomials (2013)
11 x1 t03 02 sketching polynomials (2013)
 
Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009
 
Difcalc10week3
Difcalc10week3Difcalc10week3
Difcalc10week3
 
Cross product
Cross productCross product
Cross product
 
Module 11 graph of functions PMR
Module 11 graph of functions PMRModule 11 graph of functions PMR
Module 11 graph of functions PMR
 
11 x1 t15 02 sketching polynomials (2012)
11 x1 t15 02 sketching polynomials (2012)11 x1 t15 02 sketching polynomials (2012)
11 x1 t15 02 sketching polynomials (2012)
 
11X1 T13 02 sketching polynomials
11X1 T13 02 sketching polynomials11X1 T13 02 sketching polynomials
11X1 T13 02 sketching polynomials
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 

Lesson 13: Derivatives of Logarithmic and Exponential Functions

  • 1. Section 3.3 Derivatives of Exponential and Logarithmic Functions V63.0121.006/016, Calculus I March 2, 2010 Announcements Review sessions: tonight, 7:30 in CIWW 202 and 517; tomorrow, 7:00 in CIWW 109 Midterm is March 4, covering §§1.1–2.5 Recitation this week will cover §§3.1–3.2 . . . . . .
  • 2. Announcements Review sessions: tonight, 7:30 in CIWW 202 and 517; tomorrow, 7:00 in CIWW 109 Midterm is March 4, covering §§1.1–2.5 Recitation this week will cover §§3.1–3.2 . . . . . .
  • 3. Outline “Recall” Section 3.1–3.2 Derivative of the natural exponential function Exponential Growth Derivative of the natural logarithm function Derivatives of other exponentials and logarithms Other exponentials Other logarithms Logarithmic Differentiation The power rule for irrational powers . . . . . .
  • 4. Conventions on exponential functions Let a be a positive real number. If n is a positive whole number, then an = a · a · · · · · a n factors a0 = 1. 1 For any real number r, a−r = . ar √ For any positive whole number n, a1/n = n a. There is only one continuous function which satisfies all of the above. We call it the exponential function with base a. . . . . . .
  • 5. Properties of exponential functions Theorem If a > 0 and a ̸= 1, then f(x) = ax is a continuous function with domain R and range (0, ∞). In particular, ax > 0 for all x. If a, b > 0 and x, y ∈ R, then ax+y = ax ay ax ax−y = y a (ax )y = axy (ab)x = ax bx . . . . . .
  • 7. Graphs of various exponential functions y . . = 1x y . x . . . . . . .
  • 8. Graphs of various exponential functions y . . = 2x y . = 1x y . x . . . . . . .
  • 9. Graphs of various exponential functions y . . = 3x. = 2x y y . = 1x y . x . . . . . . .
  • 10. Graphs of various exponential functions y . . = 10x= 3x. = 2x y y . y . = 1x y . x . . . . . . .
  • 11. Graphs of various exponential functions y . . = 10x= 3x. = 2x y y . y . = 1.5x y . = 1x y . x . . . . . . .
  • 12. Graphs of various exponential functions y . . = (1/2)x y . = 10x= 3x. = 2x y y . y . = 1.5x y . = 1x y . x . . . . . . .
  • 13. Graphs of various exponential functions y . y y . = x . = (1/2)x (1/3) . = 10x= 3x. = 2x y y . y . = 1.5x y . = 1x y . x . . . . . . .
  • 14. Graphs of various exponential functions y . y y . = x . = (1/2)x (1/3) . = (1/10)x. = 10x= 3x. = 2x y y y . y . = 1.5x y . = 1x y . x . . . . . . .
  • 15. Graphs of various exponential functions y . yy = 213)x . . = ((//2)x (1/3)x y . = . = (1/10)x. = 10x= 3x. = 2x y y y . y . = 1.5x y . = 1x y . x . . . . . . .
  • 16. The magic number Definition ( ) 1 n e = lim 1 + = lim+ (1 + h)1/h n→∞ n h →0 . . . . . .
  • 17. Existence of e See Appendix B ( )n 1 n 1+ n 1 2 2 2.25 . . . . . .
  • 18. Existence of e See Appendix B ( )n 1 n 1+ n 1 2 2 2.25 3 2.37037 . . . . . .
  • 19. Existence of e See Appendix B ( )n 1 n 1+ n 1 2 2 2.25 3 2.37037 10 2.59374 . . . . . .
  • 20. Existence of e See Appendix B ( )n 1 n 1+ n 1 2 2 2.25 3 2.37037 10 2.59374 100 2.70481 . . . . . .
  • 21. Existence of e See Appendix B ( )n 1 n 1+ n 1 2 2 2.25 3 2.37037 10 2.59374 100 2.70481 1000 2.71692 . . . . . .
  • 22. Existence of e See Appendix B ( )n 1 n 1+ n 1 2 2 2.25 3 2.37037 10 2.59374 100 2.70481 1000 2.71692 106 2.71828 . . . . . .
  • 23. Existence of e See Appendix B ( )n 1 We can experimentally n 1+ n verify that this number 1 2 exists and is 2 2.25 e ≈ 2.718281828459045 . . . 3 2.37037 10 2.59374 100 2.70481 1000 2.71692 106 2.71828 . . . . . .
  • 24. Existence of e See Appendix B ( )n 1 We can experimentally n 1+ n verify that this number 1 2 exists and is 2 2.25 e ≈ 2.718281828459045 . . . 3 2.37037 10 2.59374 e is irrational 100 2.70481 1000 2.71692 106 2.71828 . . . . . .
  • 25. Existence of e See Appendix B ( )n 1 We can experimentally n 1+ n verify that this number 1 2 exists and is 2 2.25 e ≈ 2.718281828459045 . . . 3 2.37037 10 2.59374 e is irrational 100 2.70481 e is transcendental 1000 2.71692 106 2.71828 . . . . . .
  • 26. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . . . . . . .
  • 27. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . Facts (i) loga (x · x′ ) = loga x + loga x′ . . . . . .
  • 28. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . Facts (i) loga (x · x′ ) = loga x + loga x′ (x) (ii) loga ′ = loga x − loga x′ x . . . . . .
  • 29. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . Facts (i) loga (x · x′ ) = loga x + loga x′ (x) (ii) loga ′ = loga x − loga x′ x (iii) loga (xr ) = r loga x . . . . . .
  • 30. Logarithms convert products to sums Suppose y = loga x and y′ = loga x′ ′ Then x = ay and x′ = ay ′ ′ So xx′ = ay ay = ay+y Therefore loga (xx′ ) = y + y′ = loga x + loga x′ . . . . . .
  • 31. Graphs of logarithmic functions y . . = 2x y y . = log2 x . . 0 , 1) ( ..1, 0) . ( x . . . . . . .
  • 32. Graphs of logarithmic functions y . . = 3x= 2x y . y y . = log2 x y . = log3 x . . 0 , 1) ( ..1, 0) . ( x . . . . . . .
  • 33. Graphs of logarithmic functions y . . = .10x 3x= 2x y y=. y y . = log2 x y . = log3 x . . 0 , 1) ( y . = log10 x ..1, 0) . ( x . . . . . . .
  • 34. Graphs of logarithmic functions y . . = .10=3xx 2x y xy y y. = .e = y . = log2 x y . = ln x y . = log3 x . . 0 , 1) ( y . = log10 x ..1, 0) . ( x . . . . . . .
  • 35. Change of base formula for exponentials Fact If a > 0 and a ̸= 1, then ln x loga x = ln a . . . . . .
  • 36. Change of base formula for exponentials Fact If a > 0 and a ̸= 1, then ln x loga x = ln a Proof. If y = loga x, then x = ay So ln x = ln(ay ) = y ln a Therefore ln x y = loga x = ln a . . . . . .
  • 37. Outline “Recall” Section 3.1–3.2 Derivative of the natural exponential function Exponential Growth Derivative of the natural logarithm function Derivatives of other exponentials and logarithms Other exponentials Other logarithms Logarithmic Differentiation The power rule for irrational powers . . . . . .
  • 38. Derivatives of Exponential Functions Fact If f(x) = ax , then f′ (x) = f′ (0)ax . . . . . . .
  • 39. Derivatives of Exponential Functions Fact If f(x) = ax , then f′ (x) = f′ (0)ax . Proof. Follow your nose: f(x + h) − f(x) a x+h − a x f′ (x) = lim = lim h →0 h h →0 h a x a h − ax a h−1 = lim = ax · lim = ax · f′ (0). h →0 h h →0 h . . . . . .
  • 40. Derivatives of Exponential Functions Fact If f(x) = ax , then f′ (x) = f′ (0)ax . Proof. Follow your nose: f(x + h) − f(x) a x+h − a x f′ (x) = lim = lim h →0 h h →0 h a x a h − ax a h−1 = lim = ax · lim = ax · f′ (0). h →0 h h →0 h To reiterate: the derivative of an exponential function is a constant times that function. Much different from polynomials! . . . . . .
  • 41. The funny limit in the case of e Remember the definition of e: ( ) 1 n e = lim 1 + = lim (1 + h)1/h n→∞ n h →0 Question eh − 1 What is lim ? h →0 h . . . . . .
  • 42. The funny limit in the case of e Remember the definition of e: ( ) 1 n e = lim 1 + = lim (1 + h)1/h n→∞ n h →0 Question eh − 1 What is lim ? h →0 h Answer If h is small enough, e ≈ (1 + h)1/h . So [ ]h eh − 1 (1 + h)1/h − 1 (1 + h) − 1 h ≈ = = =1 h h h h . . . . . .
  • 43. The funny limit in the case of e Remember the definition of e: ( ) 1 n e = lim 1 + = lim (1 + h)1/h n→∞ n h →0 Question eh − 1 What is lim ? h →0 h Answer If h is small enough, e ≈ (1 + h)1/h . So [ ]h eh − 1 (1 + h)1/h − 1 (1 + h) − 1 h ≈ = = =1 h h h h eh − 1 So in the limit we get equality: lim =1 h→0 h . . . . . .
  • 44. Derivative of the natural exponential function From ( ) d x ah − 1 eh − 1 a = lim ax and lim =1 dx h →0 h h →0 h we get: Theorem d x e = ex dx . . . . . .
  • 45. Exponential Growth Commonly misused term to say something grows exponentially It means the rate of change (derivative) is proportional to the current value Examples: Natural population growth, compounded interest, social networks . . . . . .
  • 46. Examples Examples Find these derivatives: e3x 2 ex x 2 ex . . . . . .
  • 47. Examples Examples Find these derivatives: e3x 2 ex x 2 ex Solution d 3x e = 3e3x dx . . . . . .
  • 48. Examples Examples Find these derivatives: e3x 2 ex x 2 ex Solution d 3x e = 3e3x dx d x2 2 d 2 e = ex (x2 ) = 2xex dx dx . . . . . .
  • 49. Examples Examples Find these derivatives: e3x 2 ex x 2 ex Solution d 3x e = 3e3x dx d x2 2 d 2 e = ex (x2 ) = 2xex dx dx d 2 x x e = 2xex + x2 ex dx . . . . . .
  • 50. Outline “Recall” Section 3.1–3.2 Derivative of the natural exponential function Exponential Growth Derivative of the natural logarithm function Derivatives of other exponentials and logarithms Other exponentials Other logarithms Logarithmic Differentiation The power rule for irrational powers . . . . . .
  • 51. Derivative of the natural logarithm function Let y = ln x. Then x = ey so . . . . . .
  • 52. Derivative of the natural logarithm function Let y = ln x. Then x = ey so dy ey =1 dx . . . . . .
  • 53. Derivative of the natural logarithm function Let y = ln x. Then x = ey so dy ey =1 dx dy 1 1 =⇒ = y = dx e x . . . . . .
  • 54. Derivative of the natural logarithm function Let y = ln x. Then x = ey so dy ey =1 dx dy 1 1 =⇒ = y = dx e x So: Fact d 1 ln x = dx x . . . . . .
  • 55. Derivative of the natural logarithm function Let y = ln x. Then y . x = ey so dy ey =1 dx .n x l dy 1 1 =⇒ = y = dx e x . x . So: Fact d 1 ln x = dx x . . . . . .
  • 56. Derivative of the natural logarithm function Let y = ln x. Then y . x = ey so dy ey =1 dx .n x l dy 1 1 1 =⇒ = y = . dx e x x . x . So: Fact d 1 ln x = dx x . . . . . .
  • 57. The Tower of Powers y y′ The derivative of a x3 3x2 power function is a power function of one x2 2x1 lower power x1 1x0 x0 0 ? ? x−1 −1x−2 x−2 −2x−3 . . . . . .
  • 58. The Tower of Powers y y′ The derivative of a x3 3x2 power function is a power function of one x2 2x1 lower power x1 1x0 Each power function is x 0 0 the derivative of another power function, except ? x −1 x−1 x−1 −1x−2 x−2 −2x−3 . . . . . .
  • 59. The Tower of Powers y y′ The derivative of a x3 3x2 power function is a power function of one x2 2x1 lower power x1 1x0 Each power function is x 0 0 the derivative of another power function, except ln x x −1 x−1 x−1 −1x−2 ln x fills in this gap precisely. x−2 −2x−3 . . . . . .
  • 60. Outline “Recall” Section 3.1–3.2 Derivative of the natural exponential function Exponential Growth Derivative of the natural logarithm function Derivatives of other exponentials and logarithms Other exponentials Other logarithms Logarithmic Differentiation The power rule for irrational powers . . . . . .
  • 61. Other logarithms Example d x Use implicit differentiation to find a. dx . . . . . .
  • 62. Other logarithms Example d x Use implicit differentiation to find a. dx Solution Let y = ax , so ln y = ln ax = x ln a . . . . . .
  • 63. Other logarithms Example d x Use implicit differentiation to find a. dx Solution Let y = ax , so ln y = ln ax = x ln a Differentiate implicitly: 1 dy dy = ln a =⇒ = (ln a)y = (ln a)ax y dx dx . . . . . .
  • 64. Other logarithms Example d x Use implicit differentiation to find a. dx Solution Let y = ax , so ln y = ln ax = x ln a Differentiate implicitly: 1 dy dy = ln a =⇒ = (ln a)y = (ln a)ax y dx dx Before we showed y′ = y′ (0)y, so now we know that 2h − 1 3h − 1 ln 2 = lim ≈ 0.693 ln 3 = lim ≈ 1.10 h →0 h h →0 h . . . . . .
  • 65. Other logarithms Example d Find loga x. dx . . . . . .
  • 66. Other logarithms Example d Find loga x. dx Solution Let y = loga x, so ay = x. . . . . . .
  • 67. Other logarithms Example d Find loga x. dx Solution Let y = loga x, so ay = x. Now differentiate implicitly: dy dy 1 1 (ln a)ay = 1 =⇒ = y = dx dx a ln a x ln a . . . . . .
  • 68. Other logarithms Example d Find loga x. dx Solution Let y = loga x, so ay = x. Now differentiate implicitly: dy dy 1 1 (ln a)ay = 1 =⇒ = y = dx dx a ln a x ln a Another way to see this is to take the natural logarithm: ln x ay = x =⇒ y ln a = ln x =⇒ y = ln a dy 1 1 So = . dx ln a x . . . . . .
  • 69. More examples Example d Find log2 (x2 + 1) dx . . . . . .
  • 70. More examples Example d Find log2 (x2 + 1) dx Answer dy 1 1 2x = 2+1 (2x) = dx ln 2 x (ln 2)(x2 + 1) . . . . . .
  • 71. Outline “Recall” Section 3.1–3.2 Derivative of the natural exponential function Exponential Growth Derivative of the natural logarithm function Derivatives of other exponentials and logarithms Other exponentials Other logarithms Logarithmic Differentiation The power rule for irrational powers . . . . . .
  • 72. A nasty derivative Example √ (x2 + 1) x + 3 Let y = . Find y′ . x−1 . . . . . .
  • 73. A nasty derivative Example √ (x2 + 1) x + 3 Let y = . Find y′ . x−1 Solution We use the quotient rule, and the product rule in the numerator: [ √ ] √ ′ (x − 1) 2x x + 3 + (x2 + 1) 1 (x + 3)−1/2 − (x2 + 1) x + 3(1) 2 y = (x − 1)2 √ √ 2x x + 3 (x2 + 1) (x 2 + 1 ) x + 3 = + √ − (x − 1 ) 2 x + 3(x − 1) (x − 1)2 . . . . . .
  • 74. Another way √ (x 2 + 1 ) x + 3 y= x−1 1 ln y = ln(x2 + 1) + ln(x + 3) − ln(x − 1) 2 1 dy 2x 1 1 = 2 + − y dx x + 1 2(x + 3) x − 1 So ( ) dy 2x 1 1 = + − y dx x2 + 1 2(x + 3) x − 1 ( ) √ 2x 1 1 (x2 + 1) x + 3 = + − x2 + 1 2(x + 3) x − 1 x−1 . . . . . .
  • 75. Compare and contrast Using the product, quotient, and power rules: √ √ ′ 2x x + 3 (x2 + 1) (x2 + 1) x + 3 y = + √ − (x − 1) 2 x + 3(x − 1) (x − 1)2 Using logarithmic differentiation: ( ) √ ′ 2x 1 1 (x2 + 1) x + 3 y = + − x2 + 1 2(x + 3) x − 1 x−1 . . . . . .
  • 76. Compare and contrast Using the product, quotient, and power rules: √ √ ′ 2x x + 3 (x2 + 1) (x2 + 1) x + 3 y = + √ − (x − 1) 2 x + 3(x − 1) (x − 1)2 Using logarithmic differentiation: ( ) √ ′ 2x 1 1 (x2 + 1) x + 3 y = + − x2 + 1 2(x + 3) x − 1 x−1 Are these the same? . . . . . .
  • 77. Compare and contrast Using the product, quotient, and power rules: √ √ ′ 2x x + 3 (x2 + 1) (x2 + 1) x + 3 y = + √ − (x − 1) 2 x + 3(x − 1) (x − 1)2 Using logarithmic differentiation: ( ) √ ′ 2x 1 1 (x2 + 1) x + 3 y = + − x2 + 1 2(x + 3) x − 1 x−1 Are these the same? Which do you like better? . . . . . .
  • 78. Compare and contrast Using the product, quotient, and power rules: √ √ ′ 2x x + 3 (x2 + 1) (x2 + 1) x + 3 y = + √ − (x − 1) 2 x + 3(x − 1) (x − 1)2 Using logarithmic differentiation: ( ) √ ′ 2x 1 1 (x2 + 1) x + 3 y = + − x2 + 1 2(x + 3) x − 1 x−1 Are these the same? Which do you like better? What kinds of expressions are well-suited for logarithmic differentiation? . . . . . .
  • 79. Derivatives of powers Let y = xx . Which of these is true? (A) Since y is a power function, y′ = x · xx−1 = xx . (B) Since y is an exponential function, y′ = (ln x) · xx (C) Neither . . . . . .
  • 80. Derivatives of powers Let y = xx . Which of these is true? (A) Since y is a power function, y′ = x · xx−1 = xx . (B) Since y is an exponential function, y′ = (ln x) · xx (C) Neither . . . . . .
  • 81. It’s neither! Or both? If y = xx , then ln y = x ln x 1 dy 1 = x · + ln x = 1 + ln x y dx x dy = xx + (ln x)xx dx Each of these terms is one of the wrong answers! . . . . . .
  • 82. Derivative of arbitrary powers Fact (The power rule) Let y = xr . Then y′ = rxr−1 . . . . . . .
  • 83. Derivative of arbitrary powers Fact (The power rule) Let y = xr . Then y′ = rxr−1 . Proof. y = xr =⇒ ln y = r ln x Now differentiate: 1 dy r = y dx x dy y =⇒ = r = rxr−1 dx x . . . . . .