SlideShare a Scribd company logo
1 of 75
Download to read offline
Projectile Motion
Projectile Motion
    y




           x
Projectile Motion
    y




          /s
        vm
         
               x
Projectile Motion
    y




          /s
        vm
         
               x
Projectile Motion
                     y          maximum range
                                      45




                           /s
                         vm
                          
                                x

Initial conditions
Projectile Motion
                     y            maximum range
                                        45




                           /s
                         vm
                          
                                  x

Initial conditions   when t = 0


          v
      
Projectile Motion
                         y            maximum range
                                            45




                               /s
                             vm
                              
                                      x

Initial conditions       when t = 0


          v          
                     y
      
              
              x
Projectile Motion
                         y                     maximum range
                                                     45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x
          v                          cos
                     
                     y            v
                                 x  v cos
                                  
              
              x
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
                                     cos        sin 
          v          
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
                                     cos        sin 
          v          
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x                     x0
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
          v                          cos        sin 
                     
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x                     x0        y0
  0
x           g
         y
  0
x           g
         y
x  c1

  0
x           g
         y
x  c1
        y   gt  c2
         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
   c1  v cos
    x  v cos
    
  0
       x                      g
                           y
      x  c1
                          y   gt  c2
                           
when t  0, x  v cos
                          y  v sin 
                           
   c1  v cos              c2  v sin 
    x  v cos
                        y   gt  v sin 
                         
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
       c3  0
    x  vt cos
  0
       x                          g
                               y
      x  c1
                             y   gt  c2
                              
when t  0, x  v cos
                             y  v sin 
                              
   c1  v cos                 c2  v sin 
    x  v cos
                           y   gt  v sin 
                            

                               1 2
   x  vt cos  c3       y   gt  vt sin   c4
                               2
    when t  0, x  0           y0
       c3  0                   c4  0
    x  vt cos               1
                         y   gt 2  vt sin 
                              2
Common Questions
Common Questions
(1) When does the particle hit the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
    i  find when y  0
                   
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
     i  find when y  0
    ii  substitute into y
                          
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
   ii  substitute into y
                                    
                                     y
   iii  tan  
                  y
                                                   
                 
                 x                             
                                               x
Summary
Summary
 A particle undergoing projectile motion obeys
Summary
 A particle undergoing projectile motion obeys
              0
            x           and            g
                                    y
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions

           x  v cos
                          and    y  v sin 
                                  
Summary
   A particle undergoing projectile motion obeys
                  0
                x            and             g
                                          y

   with initial conditions

             x  v cos
                            and        y  v sin 
                                        

e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                 3
        tan 1 to the ground. Determine;.
                 4
Summary
    A particle undergoing projectile motion obeys
                  0
                x             and             g
                                           y

    with initial conditions

              x  v cos
                             and        y  v sin 
                                         

 e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                  3
         tan 1 to the ground. Determine;.
                  4
a) greatest height obtained
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions                                       5
                                                                            3
                                                                    3
                                                         tan 1
                                                                    4
                                                               4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                            3
                                                                    3
                                                         tan 1
                                                                    4
                                                               4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                          3
                            4
                     x  25 
                                                       tan 1
                                                                 3
                           5                                   4
                        20m/s                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                        5
                                                                          3
                            4
                     x  25 
                                                       tan 1
                                                                 3
                           5                                   4
                        20m/s                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                        5
                                                                          3
                            4            3
                     x  25 
                                  y  25 
                                                       tan 1
                                                                 3
                           5            5                    4
                        20m/s         15m/s                 4
  0
x          10
         y
  0
x          10
         y
x  c1

  0
x          10
         y
x  c1
        y  10t  c2
         
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20
   x  20
   
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3      y  5t 2  15t  c4
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
   c3  0
   x  20t
  0
    x                    10
                       y
   x  c1
                      y  10t  c2
                       
when t  0, x  20
                        y  15
                         
  c1  20                  c2  15
   x  20
                      y  10t  15
                       
  x  20t  c3        y  5t 2  15t  c4
 when t  0, x  0       y0
   c3  0               c4  0
   x  20t           y  5t 2  15t
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
           10t  15  0
                   3
              t
                   2
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
          x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                           3
                                                            2
                                                       3   15 3 
           10t  15  0            when t  , y  5          
                                            2          2       2
                   3                               45
              t                                 
                   2                               4
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
         x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                              3         3
                                                             2
                                                                3
           10t  15  0             when t  , y  5   15 
                                               2         2    2
                   3                                 45
              t                                   
                   2                                 4
                                 1
           greatest height is 11 m above the ground
                                 4
b) range
b) range
  time of flight is 3 seconds
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
   range is 60m
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                           
             2                    2
                              10
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                    10 5
             2                    2                         10
                              10                    
                                                         20
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                    10 5
             2                    2                         10
                              10                    
         1
 tan                                                   20
         2
       2634
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                       10 5
             2                    2                              10
                              10                      
         1
 tan                                                     20
         2
       2634
                       1
                after second, velocity  10 5m/s and it is traveling at
                       2
                  an angle of 2634 to the horizontal
d) cartesian equation of the path
d) cartesian equation of the path

        x  20t
             x
        t
            20
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x
                             y  5   15 
        t                            x       x
                                          
            20                      20    20 
                                  x 2 3x
                             y       
                                  80     4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x
                             y  5   15 
        t                            x       x
                                          
            20                      20    20 
                                  x 2 3x
                             y       
                                  80     4




          Exercise 3G; 1ac, 2ac, 4, 6, 8, 9, 11, 13, 16, 18

                   Exercise 3H; 2, 4, 6, 7, 10, 11

More Related Content

Viewers also liked

11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)Nigel Simmons
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)Nigel Simmons
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)Nigel Simmons
 
11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)Nigel Simmons
 
11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)Nigel Simmons
 
X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)Nigel Simmons
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)Nigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)Nigel Simmons
 
11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)Nigel Simmons
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)Nigel Simmons
 
11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)Nigel Simmons
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)Nigel Simmons
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)Nigel Simmons
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)Nigel Simmons
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)Nigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)Nigel Simmons
 
11 x1 t11 01 locus (2012)
11 x1 t11 01 locus (2012)11 x1 t11 01 locus (2012)
11 x1 t11 01 locus (2012)Nigel Simmons
 
11 x1 t10 03 second derivative (2012)
11 x1 t10 03 second derivative (2012)11 x1 t10 03 second derivative (2012)
11 x1 t10 03 second derivative (2012)Nigel Simmons
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]Nigel Simmons
 
11X1 T13 02 angle theorems 1 (2011)
11X1 T13 02 angle theorems 1 (2011)11X1 T13 02 angle theorems 1 (2011)
11X1 T13 02 angle theorems 1 (2011)Nigel Simmons
 

Viewers also liked (20)

11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)
 
11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)
 
11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)
 
X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)
 
11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
11 x1 t11 01 locus (2012)
11 x1 t11 01 locus (2012)11 x1 t11 01 locus (2012)
11 x1 t11 01 locus (2012)
 
11 x1 t10 03 second derivative (2012)
11 x1 t10 03 second derivative (2012)11 x1 t10 03 second derivative (2012)
11 x1 t10 03 second derivative (2012)
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]
 
11X1 T13 02 angle theorems 1 (2011)
11X1 T13 02 angle theorems 1 (2011)11X1 T13 02 angle theorems 1 (2011)
11X1 T13 02 angle theorems 1 (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesPooky Knightsmith
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSean M. Fox
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...EADTU
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhleson0603
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17Celine George
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...Gary Wood
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024Borja Sotomayor
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppCeline George
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppCeline George
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code ExamplesPeter Brusilovsky
 
How to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxHow to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxCeline George
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxAdelaideRefugio
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxLimon Prince
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
How to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxHow to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptx
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
 
Supporting Newcomer Multilingual Learners
Supporting Newcomer  Multilingual LearnersSupporting Newcomer  Multilingual Learners
Supporting Newcomer Multilingual Learners
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 

12X1 T07 01 projectile motion (2011)

  • 3. Projectile Motion y /s vm  x
  • 4. Projectile Motion y /s vm  x
  • 5. Projectile Motion y maximum range   45 /s vm  x Initial conditions
  • 6. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0 v 
  • 7. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0 v  y   x
  • 8. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x v  cos  y v  x  v cos   x
  • 9. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x
  • 10. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x x0
  • 11. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y v  cos  sin   y v v  x  v cos  y  v sin    x x0 y0
  • 12.   0 x    g y
  • 13.   0 x    g y x  c1 
  • 14.   0 x    g y x  c1  y   gt  c2 
  • 15.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin  
  • 16.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos x  v cos 
  • 17.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin  
  • 18.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2
  • 19.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0
  • 20.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 x  vt cos
  • 21.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 y   gt 2  vt sin  2
  • 23. Common Questions (1) When does the particle hit the ground?
  • 24. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0
  • 25. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle?
  • 26. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0
  • 27. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x
  • 28. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle?
  • 29. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0 
  • 30. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y
  • 31. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground?
  • 32. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0
  • 33. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y 
  • 34. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y   y iii  tan   y   x  x
  • 36. Summary A particle undergoing projectile motion obeys
  • 37. Summary A particle undergoing projectile motion obeys   0 x and    g y
  • 38. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions
  • 39. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin  
  • 40. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4
  • 41. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained
  • 42. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions
  • 43. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions 5 3 3   tan 1 4 4
  • 44. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 3   tan 1 4 4
  • 45. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3  4 x  25     tan 1 3 5 4  20m/s 4
  • 46. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3  4 x  25     tan 1 3 5 4  20m/s 4
  • 47. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3  4  3 x  25   y  25     tan 1 3 5 5 4  20m/s  15m/s 4
  • 48.   0 x   10 y
  • 49.   0 x   10 y x  c1 
  • 50.   0 x   10 y x  c1  y  10t  c2 
  • 51.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15 
  • 52.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 x  20 
  • 53.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15 
  • 54.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3
  • 55.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4
  • 56.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0
  • 57.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 x  20t
  • 58.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t
  • 59.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0 
  • 60.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0   10t  15  0 3 t 2
  • 61.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3 2  3   15 3   10t  15  0 when t  , y  5    2  2  2 3 45 t  2 4
  • 62.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3  3 2  3  10t  15  0 when t  , y  5   15  2  2  2 3 45 t  2 4 1  greatest height is 11 m above the ground 4
  • 64. b) range time of flight is 3 seconds
  • 65. b) range time of flight is 3 seconds when t  3, x  203  60
  • 66. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m
  • 67. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2
  • 68. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   2 2  10
  • 69. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  20
  • 70. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  1 tan   20 2   2634
  • 71. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  1 tan   20 2   2634 1  after second, velocity  10 5m/s and it is traveling at 2 an angle of 2634 to the horizontal
  • 72. d) cartesian equation of the path
  • 73. d) cartesian equation of the path x  20t x t 20
  • 74. d) cartesian equation of the path x  20t y  5t 2  15t 2 x y  5   15  t x x     20  20   20   x 2 3x y  80 4
  • 75. d) cartesian equation of the path x  20t y  5t 2  15t 2 x y  5   15  t x x     20  20   20   x 2 3x y  80 4 Exercise 3G; 1ac, 2ac, 4, 6, 8, 9, 11, 13, 16, 18 Exercise 3H; 2, 4, 6, 7, 10, 11