P1: FCH/FFX    P2: FCH/FFX               QC: FCH/FFX             T1: FCH
GTBL001-front˙end       GTBL001-Smith-v16.cls                 October 17, 2005             20:2




                             Algebra                                                                                 Geometry
               Arithmetic                                                                                Triangle                            Circle
                a+b  a  b                                            a  c  ad + bc                       Area = 1 bh                         Area = πr 2
                    = +                                                + =                                        2
                 c   c  c                                            b  d    bd                          c2 = a 2 + b2 − 2ab cos θ           C = 2πr
                    a
                    b           a    d         ad
                         =                 =                                                                         a
                    c           b    c         bc                                                                                        c                  r
                                                                                                                                 h
                    d
                                                                                                             ␪
                                                                                                                             b
               Factoring
               x 2 − y 2 = (x − y)(x + y)                       x 3 − y 3 = (x − y)(x 2 + x y + y 2 )    Sector of a Circle                  Trapezoid
               x 3 + y 3 = (x + y)(x 2 − x y + y 2 )            x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 )
                                                                                                         Area = 1 r 2 θ
                                                                                                                  2                          Area = 1 (a + b)h
                                                                                                                                                    2
                                                                                                         s = rθ
               Binomial                                                                                  (for θ in radians only)                        a

               (x + y)2 = x 2 + 2x y + y 2                      (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3
                                                                                                                                                                h
                                                                                                                                     s
               Exponents                                                                                                                                b
                                               xn                                                            ␪
               xn xm    =   x n+m                 = x n−m                        (x n )m     =   x nm
                                               xm                                                                    r
                                                                                         n
                          1                                                          x        xn
               x −n     = n                    (x y)n   =   x n yn                           = n
                         x                                                           y        y          Sphere                              Cone
                                                                                             √
                            √                  √            √ √                      x     x n
               x n/m =      m
                                xn             n    xy =    n
                                                              xny                n     = √               Volume = 4 πr 3                     Volume = 1 πr 2 h
                                                                                     y   n y
                                                                                                                    3                                   3      √
                                                                                                         Surface Area = 4πr 2                Surface Area = πr r 2 + h 2

               Lines
               Slope m of line through (x0 , y0 ) and (x1 , y1 )
                                                                                                                         r
                                                                                                                                                  h
                                                               y1 − y0
                                                        m=
                                                               x1 − x0
                                                                                                                                                       r
               Through (x0 , y0 ), slope m
                                                    y − y0 = m(x − x0 )
               Slope m, y-intercept b
                                                                                                         Cylinder
                                                        y = mx + b                                       Volume = πr 2 h
                                                                                                         Surface Area = 2πr h
               Quadratic Formula
               If ax 2 + bx + c = 0 then
                                                                √
                                                        −b ±          b2 − 4ac                                   h
                                                x=
                                                                     2a                                                  r

               Distance
               Distance d between (x1 , y1 ) and (x2 , y2 )

                                           d=        (x2 − x1 )2 + (y2 − y1 )2




                                                                                                                                 1
P1: FCH/FFX      P2: FCH/FFX                QC: FCH/FFX            T1: FCH
GTBL001-front˙end        GTBL001-Smith-v16.cls                   October 17, 2005          20:2




                       Trigonometry

                                          (x, y)                      sin θ =
                                                                                y                       Half-Angle
                                                                                r
                                                                                                                   1 − cos 2θ                                      1 + cos 2θ
                                    r                                                                   sin2 θ =                                      cos2 θ =
                                                                              x                                        2                                               2
                                                                      cos θ =
                                      ␪                                       r

                                                                                y
                                                                                                        Addition
                                                                      tan θ =
                                                                                x                       sin(a + b) = sin a cos b + cos a sin b        cos(a + b) = cos a cos b − sin a sin b


                                                                                                        Subtraction
                                                                      sin θ =
                                                                                opp                     sin(a − b) = sin a cos b − cos a sin b        cos(a − b) = cos a cos b + sin a sin b
                                                                                hyp

                              hyp                                               adj                     Sum
                                                          opp         cos θ =
                                                                                hyp                                          u+v      u−v
                                                                                                        sin u + sin v = 2 sin     cos
                                                                                                                               2        2
                                                                                opp                                           u+v      u−v
                                                                      tan θ =                           cos u + cos v = 2 cos      cos
                 ␪                                                              adj                                             2        2
                                adj
                                                                                                        Product
                                                                                                        sin u sin v = 1 [cos(u − v) − cos(u + v)]
                                                                                                                      2
           Reciprocals                                                                                  cos u cos v = 1 [cos(u − v) + cos(u + v)]
                                                                                                                      2

                        1                                  1                                 1          sin u cos v = 1 [sin(u + v) + sin(u − v)]
                                                                                                                      2
           cot θ =                            sec θ =                           csc θ =
                      tan θ                              cos θ                             sin θ        cos u sin v = 1 [sin(u + v) − sin(u − v)]
                                                                                                                      2



           Definitions                                                                                                                      π/2
                                                                                                                                     2π/3             π/3
                   cos θ                                1                                 1                                                                  π/4
           cot θ =                            sec θ =                           csc θ =                                 3π/4
                   sin θ                              cos θ                             sin θ
                                                                                                                   5π/6                                            π/6


           Pythagorean                                                                                              π                                               0


           sin2 θ + cos2 θ = 1                 tan2 θ + 1 = sec2 θ              1 + cot2 θ = csc2 θ                                         Radians

                                                                                                             sin(0) = 0                                cos(0) = 1
                                                                                                                                                                         √
                                                                                                                   π                                         π
           Cofunction                                                                                        sin   6      =    1
                                                                                                                               2                       cos   6     =     2
                                                                                                                                                                          3

                                                                                                                               √                                         √
                                                                                                                   π                                         π
                 π                                  π                                 π                      sin          =      2
                                                                                                                                                       cos         =      2
           sin   2   − θ = cos θ              cos   2   − θ = sin θ             tan   2   − θ = cot θ              4            2                            4           2
                                                                                                                               √
                                                                                                                   π                                         π
                                                                                                             sin   3      =     2
                                                                                                                                 3
                                                                                                                                                       cos   3     =     1
                                                                                                                                                                         2
                                                                                                                   π                                         π
                                                                                                             sin          =1                           cos         =0
           Even/Odd                                                                                                2
                                                                                                                                √
                                                                                                                                                             2

                                                                                                             sin   2π
                                                                                                                    3     =     2
                                                                                                                                 3
                                                                                                                                                       cos   2π
                                                                                                                                                              3     = −1
                                                                                                                                                                       2
           sin(−θ ) = −sin θ                  cos(−θ) = cos θ                   tan(−θ ) = −tan θ                               √                                             √
                                                                                                             sin   3π
                                                                                                                    4     =     2
                                                                                                                                 2
                                                                                                                                                       cos   3π
                                                                                                                                                              4     =−     2
                                                                                                                                                                            2

                                                                                                                                                                          √
                                                                                                             sin   5π
                                                                                                                    6     =     1
                                                                                                                                2                      cos   5π
                                                                                                                                                              6     =    − 23
           Double-Angle                                                                                      sin(π) = 0                                cos(π ) = −1
           sin 2θ = 2 sin θ cos θ             cos 2θ = cos2 θ − sin2 θ          cos 2θ = 1 − 2 sin2 θ        sin(2π) = 0                               cos(2π) = 1




                                                                                                                                     2

Figures

  • 1.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-front˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 Algebra Geometry Arithmetic Triangle Circle a+b a b a c ad + bc Area = 1 bh Area = πr 2 = + + = 2 c c c b d bd c2 = a 2 + b2 − 2ab cos θ C = 2πr a b a d ad = = a c b c bc c r h d ␪ b Factoring x 2 − y 2 = (x − y)(x + y) x 3 − y 3 = (x − y)(x 2 + x y + y 2 ) Sector of a Circle Trapezoid x 3 + y 3 = (x + y)(x 2 − x y + y 2 ) x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 ) Area = 1 r 2 θ 2 Area = 1 (a + b)h 2 s = rθ Binomial (for θ in radians only) a (x + y)2 = x 2 + 2x y + y 2 (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3 h s Exponents b xn ␪ xn xm = x n+m = x n−m (x n )m = x nm xm r n 1 x xn x −n = n (x y)n = x n yn = n x y y Sphere Cone √ √ √ √ √ x x n x n/m = m xn n xy = n xny n = √ Volume = 4 πr 3 Volume = 1 πr 2 h y n y 3 3 √ Surface Area = 4πr 2 Surface Area = πr r 2 + h 2 Lines Slope m of line through (x0 , y0 ) and (x1 , y1 ) r h y1 − y0 m= x1 − x0 r Through (x0 , y0 ), slope m y − y0 = m(x − x0 ) Slope m, y-intercept b Cylinder y = mx + b Volume = πr 2 h Surface Area = 2πr h Quadratic Formula If ax 2 + bx + c = 0 then √ −b ± b2 − 4ac h x= 2a r Distance Distance d between (x1 , y1 ) and (x2 , y2 ) d= (x2 − x1 )2 + (y2 − y1 )2 1
  • 2.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-front˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 Trigonometry (x, y) sin θ = y Half-Angle r 1 − cos 2θ 1 + cos 2θ r sin2 θ = cos2 θ = x 2 2 cos θ = ␪ r y Addition tan θ = x sin(a + b) = sin a cos b + cos a sin b cos(a + b) = cos a cos b − sin a sin b Subtraction sin θ = opp sin(a − b) = sin a cos b − cos a sin b cos(a − b) = cos a cos b + sin a sin b hyp hyp adj Sum opp cos θ = hyp u+v u−v sin u + sin v = 2 sin cos 2 2 opp u+v u−v tan θ = cos u + cos v = 2 cos cos ␪ adj 2 2 adj Product sin u sin v = 1 [cos(u − v) − cos(u + v)] 2 Reciprocals cos u cos v = 1 [cos(u − v) + cos(u + v)] 2 1 1 1 sin u cos v = 1 [sin(u + v) + sin(u − v)] 2 cot θ = sec θ = csc θ = tan θ cos θ sin θ cos u sin v = 1 [sin(u + v) − sin(u − v)] 2 Definitions π/2 2π/3 π/3 cos θ 1 1 π/4 cot θ = sec θ = csc θ = 3π/4 sin θ cos θ sin θ 5π/6 π/6 Pythagorean π 0 sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Radians sin(0) = 0 cos(0) = 1 √ π π Cofunction sin 6 = 1 2 cos 6 = 2 3 √ √ π π π π π sin = 2 cos = 2 sin 2 − θ = cos θ cos 2 − θ = sin θ tan 2 − θ = cot θ 4 2 4 2 √ π π sin 3 = 2 3 cos 3 = 1 2 π π sin =1 cos =0 Even/Odd 2 √ 2 sin 2π 3 = 2 3 cos 2π 3 = −1 2 sin(−θ ) = −sin θ cos(−θ) = cos θ tan(−θ ) = −tan θ √ √ sin 3π 4 = 2 2 cos 3π 4 =− 2 2 √ sin 5π 6 = 1 2 cos 5π 6 = − 23 Double-Angle sin(π) = 0 cos(π ) = −1 sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ cos 2θ = 1 − 2 sin2 θ sin(2π) = 0 cos(2π) = 1 2