SlideShare a Scribd company logo
1 of 55
Download to read offline
Volumes By Non Circular
    Cross-Sections
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid


          h



                      a

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h



                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x

          b
                                                   z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x
                                 2y
          b
                                                   z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a   x
                                 2y
          b
                                            2x     z
Volumes By Non Circular
      Cross-Sections
e.g. Find the volume of this rectangular pyramid
                     y
          h
  z

                         a x
                                 2y
          b
                                            2x         z
                                       A z   4 xy
Find x in terms of z
          z
         h




 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h




 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h
             x


 1                 1 x
 b                  b
 2                 2
Find x in terms of z
          z
         h
             x   (x,z)


 1                   1 x
 b                    b
 2                   2
Find x in terms of z
           z
           h
               x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
Find x in terms of z
           z
           h
               x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s

 h

     1
       b
     2
Find x in terms of z
           z
            h
                x   (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s

  h

      1
        b
      2

h-z
       x
Find x in terms of z
           z
            h
                x    (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1     x
                      b
      1             2
        b
      2

h-z
       x
Find x in terms of z
           z
            h
                x      (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1       x
                      b
      1             2
        b            2h h  z
      2                 
                      b      x
h-z                       b h  z 
                       x
       x                      2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
            h
                x      (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                     h hz
  h                     
                    1       x
                      b
      1             2
        b            2h h  z
      2                 
                      b      x
h-z                       b h  z 
                       x
       x                      2h
Find x in terms of z             Method 2 : using coordinate geometry
           z
            h (0,h)
               x (x,z)


 1                   1 x
 b                    b
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
            h (0,h)
               x (x,z)

                            1 b,0 
 1                   1 x 2 
 b                    b          
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2 
 b                    b          
 2                   2
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s
                h hz
  h                
               1       x
                 b
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s                   b z  h   2hx
                h hz
                                                           b h  z 
  h
               1                                       x
                 b     x                                       2h
      1        2
        b       2h h  z
      2            
                 b      x
h-z                  b h  z 
                  x
       x                 2h
Find x in terms of z                  Method 2 : using coordinate geometry
           z
                                             h0
                                       m
            h (0,h)                            1
                                            0 b
               x (x,z)                         2
                                             2h
                                          
                            1 b,0          b
 1                   1 x 2                          2h
 b                    b                     zh        x  0
 2                   2                                b
Method 1 : using similar s                   b z  h   2hx
                h hz
                                                           b h  z 
  h
               1                                       x
                 b     x                                       2h
      1        2
        b       2h h  z                       Similarly;
      2            
                 b      x                         a h  z 
h-z                  b h  z                 y
                  x                                 2h
       x                 2h
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
         abh  z 
                     2
       
            h2
 bh  z   ah  z 
A z   4 
            2h   2h 
                                 
      abh  z 
                     2
    
          h2
      abh  z 
                2
 V       2
                   z
         h
 b h  z    a  h  z  
A z   4 
            2h   2h                                     abh  z 
                                                       h             2
                                         V  lim             2
                                                                        z
                                                z  0         h
      abh  z 
                        2                              z 0
    
          h2
      abh  z 
                2
 V       2
                   z
         h
 bh  z   ah  z 
A z   4 
            2h   2h                                abh  z 
                                                    h           2
                                    V  lim             2
                                                                   z
                                           z  0         h
      abh  z 
                     2                            z 0
                                          ab
                                                h
          h2                               2  h  z  dz
                                                        2

      abh  z                            h 0
                2
 V       2
                   z
         h
 bh  z   ah  z 
A z   4 
            2h   2h                                abh  z 
                                                    h            2
                                    V  lim             2
                                                                   z
                                           z  0         h
      abh  z 
                     2                            z 0
                                          ab
                                                h
          h2                               2  h  z  dz
                                                        2

      abh  z                            h 0
                2
 V               z
                                           ab  h  z  
                                                         3   h
           2
         h                                 2
                                           h   3 0    
 b h  z    a  h  z  
A z   4 
            2h   2h                                     abh  z 
                                                         h             2
                                         V  lim             2
                                                                        z
                                                z  0         h
      abh  z 
                        2                              z 0
                                               ab
                                                     h
          h2                                    2  h  z  dz
                                                             2

      abh  z                                 h 0
                2
 V               z
                                                ab  h  z  
                                                               3   h
           2
         h                                      2
                                                h   3 0    
                                                ab  h 3 
                                                2 0  
                                                h     3
                                                 abh
                                                    units 3
                                                  3
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x

        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x

        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

   -2                       2 x
        -2




                       x
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                     2 x
          -2




2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                       2 x
          -2


                        A x   4 y 2

2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                       2 x
          -2


                        A x   4 y 2
                                44  x 2 
2y

                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                          y


                   2

     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                   x  0
                                                            
                                                            x  2


                   2

     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0


     -2                        2 x
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0
                                                                       2
                                                      4 x  1 x 3 
                                                    8
     -2                        2 x                          3 0  
          -2


                        A x   4 y 2
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                     x  0
                                                              
                                                              x  2
                                                       2

                   2                                8 4  x 2 dx
                                                       0
                                                                       2
                                                      4 x  1 x 3 
                                                    8
     -2                        2 x                          3 0  
          -2                                          8  8  0
                                                    8           
                                                          3 
                                                     128
                        A x   4 y 2                  units 3
                                                      3
                                 44  x 2 
2y
                            V  44  x 2  x
                       x
          2y
(ii) A solid has a circular base, x 2  y 2  4 , and each cross section is
     a square perpendicular to the base.
                                                          44  x 2  x
                                                        2
                          y                  V  lim
                                                   x  0
                                                            
                                                            x  2
                                                     2

                   2                              8 4  x 2 dx
                                                     0
                                                                     2
                                                    4 x  1 x 3 
                                                  8
     -2                        2 x                        3 0  
          -2                                        8  8  0
                                                  8           
                                                        3 
                                                   128
                        A x   4 y 2                units 3
                                                    3
                                 44  x 2 
2y
                            V  44  x  x
                                          2
                                                   Exercise 3A; 16ade, 19

                       x                             Exercise 3C; 2, 7, 8
          2y

More Related Content

What's hot

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration MethodsSilvius
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)Nigel Simmons
 

What's hot (6)

Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)
 
Em03 t
Em03 tEm03 t
Em03 t
 
11X1 T14 05 volumes
11X1 T14 05 volumes11X1 T14 05 volumes
11X1 T14 05 volumes
 

Similar to X2 T06 03 parallel crosssections (2010)

11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functionslgemgnani
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functionslgemgnani
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functionsTarun Gehlot
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equationsTarun Gehlot
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theoremsmiller5
 

Similar to X2 T06 03 parallel crosssections (2010) (12)

11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functions
 
Week 8 - Trigonometry
Week 8 - TrigonometryWeek 8 - Trigonometry
Week 8 - Trigonometry
 
sol pg 89
sol pg 89 sol pg 89
sol pg 89
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
 
Solving trignometric equations
Solving trignometric equationsSolving trignometric equations
Solving trignometric equations
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 

Recently uploaded (20)

Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 

X2 T06 03 parallel crosssections (2010)

  • 1. Volumes By Non Circular Cross-Sections
  • 2. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid h a b
  • 3. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h a x b
  • 4. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b
  • 5. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b
  • 6. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x b z
  • 7. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b z
  • 8. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b 2x z
  • 9. Volumes By Non Circular Cross-Sections e.g. Find the volume of this rectangular pyramid y h z a x 2y b 2x z A z   4 xy
  • 10. Find x in terms of z z h 1 1 x  b b 2 2
  • 11. Find x in terms of z z h 1 1 x  b b 2 2
  • 12. Find x in terms of z z h x 1 1 x  b b 2 2
  • 13. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2
  • 14. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s
  • 15. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h 1 b 2
  • 16. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h 1 b 2 h-z x
  • 17. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2 h-z x
  • 18. Find x in terms of z z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 19. Find x in terms of z Method 2 : using coordinate geometry z h x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 20. Find x in terms of z Method 2 : using coordinate geometry z h (0,h) x (x,z) 1 1 x  b b 2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 21. Find x in terms of z Method 2 : using coordinate geometry z h (0,h) x (x,z)  1 b,0  1 1 x 2   b b   2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 22. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   b b   2 2 Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 23. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s h hz h  1 x b 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 24. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s b z  h   2hx h hz  b h  z  h 1 x b x 2h 1 2 b 2h h  z 2  b x h-z b h  z  x x 2h
  • 25. Find x in terms of z Method 2 : using coordinate geometry z h0 m h (0,h) 1 0 b x (x,z) 2  2h   1 b,0  b 1 1 x 2   2h  b b   zh   x  0 2 2 b Method 1 : using similar s b z  h   2hx h hz  b h  z  h 1 x b x 2h 1 2 b 2h h  z Similarly; 2  b x a h  z  h-z b h  z  y x 2h x 2h
  • 26.  bh  z   ah  z  A z   4   2h   2h   
  • 27.  bh  z   ah  z  A z   4   2h   2h    abh  z  2  h2
  • 28.  bh  z   ah  z  A z   4   2h   2h    abh  z  2  h2 abh  z  2 V  2  z h
  • 29.  b h  z    a  h  z   A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  h2 abh  z  2 V  2  z h
  • 30.  bh  z   ah  z  A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V  2  z h
  • 31.  bh  z   ah  z  A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V   z ab  h  z   3 h 2 h  2 h   3 0 
  • 32.  b h  z    a  h  z   A z   4   2h   2h  abh  z  h 2   V  lim  2  z z  0 h abh  z  2 z 0  ab h h2  2  h  z  dz 2 abh  z  h 0 2 V   z ab  h  z   3 h 2 h  2 h   3 0  ab  h 3   2 0   h  3 abh  units 3 3
  • 33. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base.
  • 34. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 35. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 36. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 37. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 38. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 39. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 40. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 41. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 42. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 43. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 44. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 45. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2
  • 46. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 x
  • 47. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 2y x 2y
  • 48. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2 2y x 2y
  • 49. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2  44  x 2  2y x 2y
  • 50. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. y 2 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 51. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 52. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 -2 2 x -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 53. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 A x   4 y 2  44  x 2  2y V  44  x 2  x x 2y
  • 54. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 8  8  0  8   3  128 A x   4 y 2  units 3 3  44  x 2  2y V  44  x 2  x x 2y
  • 55. (ii) A solid has a circular base, x 2  y 2  4 , and each cross section is a square perpendicular to the base. 44  x 2  x 2 y V  lim x  0  x  2 2 2  8 4  x 2 dx 0 2 4 x  1 x 3   8 -2 2 x  3 0  -2 8  8  0  8   3  128 A x   4 y 2  units 3 3  44  x 2  2y V  44  x  x 2 Exercise 3A; 16ade, 19 x Exercise 3C; 2, 7, 8 2y