SlideShare a Scribd company logo
Sample Assignment For Reference Only
Tutorial 1
1. Show that the differential pdG of a function G , from a surface S to 3
 is linear.
(proof) Let be , ( )G F C S
 . It is sufficient that for any ,   ,
( )d F G dF dG      .
Assume that , p pp S X T S  . Then
( ) ( )
( )
p p p p p
p p p p p
d F G X X F G X F X G
dF X dG X dF dG X
     
   
     
   
(end)
2. Calculate the Gauss map, the Wiengarten map and the principal curvatures for
(a) A sphere of radius, R ,
(solution) cos cos , cos sin , sinx R u v y R u v z R u   !
sin cos , sin sin , cos
cos sin , cos cos , 0
u u u
v v v
x R u v y R u v z R u
x R u v y R u v z
    
    
  
  
2 2 2
, 0, cosE R F G R u  
2 2
cosH EG F R u  
 
 
 
2
2
cos cos , cos sin , sin
sin sin , sin cos ,0
cos cos , cos sin ,0
u
uv
v
r R u v R u v R u
r R u v R u v
r R u v R u v
   
 
  



2 2
3 3 3
( , , ) cos , ( , , ) 0, ( , , ) cosu v u v uv u vu v
r r r R u r r r r r r R u   
        
2
2
3
2
3 3
2
2
1 cos
( , , )
cos
1
( , , ) 0
1 cos
( , , ) cos
cos
u v u
u v uv
u v v
R u
L r r r R
H R u
M r r r
H
R u
N r r r R u
H R u
     
  
     
  
  
  
-weingarten map:
3 2
2 4 2 3 2
1
0
cos 01 1
1cos 0 cos
0
GL FM GM FN R u R
FL EM FM ENEG F R u R u
R
 
     
      
           
 
A
-Gauss map:
Sample Assignment For Reference Only
2 2 2
2
2 2
2
(cos cos ,cos sin ,sin cos ),
(cos cos ,cos sin ,sin cos )
cos
u v
u v
u u
r r R u v u v u v
r r R
n u v u v u v
R ur r
  
 
 

 
 

 
-principle curvature:
1 2
1
k k
R
   .
(b) A surface of revolution given by the curve ( )x f z rotated about the z axis, and
(solution)
( )cos
( )sin
x f z
y f z
z z





 
( ( )cos , ( )sin , )r f z f z z 

2
2
2 2
2 2 2 2
( ( )cos , ( )sin ,1)
( ( )sin , ( )cos ,0)
( ) 1, 0, ( ) , ( ) ( ) 1
( ( )cos , ( )sin ,0)
( ( )sin , ( )cos ,0)
( (
z
z
z
z
r f z f z
r f z f z
E r f z F G r f z H EG F f z f z
r f z f z
r f z f z
r f z




 
 
 
 
  
  
                 
   
 
  
 


 



)cos , ( )sin ,0)f z 
2 2
2
( , , ) ( ) ( ), ( , , ) 0, ( , , ) ( )z z z zz
r r r f z f z r r r r r r f z    
   
        
2 2
2
2 2 2
( ) ( ) ( )
,
( ) ( ) 1 ( ) 1
0 ( ) ( )
0,
( ) ( ) 1 ( ) ( ) 1 ( ) 1
f z f z f z
L
f z f z f z
f z f z
M N
f z f z f z f z f z
 
    
  
      
    
-weingarten map:
2
2
2 2
2
2
2 3/ 2
2 1/ 2
( )
( ) 0
( ) 11
( )( )( ( ) 1)
0 ( ( ) 1)
( ) 1
( )
0
( ( ) 1)
0 ( ( ) 1) ( )
f z
f z
f z
f zf z f z
f z
f z
f z
f z
f z f z
 
  
     
   
   
 
  
 
    
A
-Gauss map:
Sample Assignment For Reference Only
 2
1
( )cos , ( )sin , ( ) 9 )
( ) ( ) 1
n f z f z f z f z
f z f z
    
 

-principle curvature:
1 22 3/ 2
( )
, ( ) ( ) 1
( ( ) 1)
f z
k k f z f z
f z

     
 
(c) The surface of revolution about the z  axis of a circle in the xz  plane with center
( ,0,0)d with radius r d .
(solution)
 
 
2 22 2 2
( cos )cos
( cos )sin
sin
sin cos , sin sin , cos
( cos )sin ,( cos )cos ,0
, 0, ( cos ) , ( cos )
( cos )cos cos , ( cos
u
v
u v
u v
x d r u v
y d r u v
z r u
r r u v r u v r u
r d r u v d r u v
E r r F G r d r u H EG F r d r u
r r r d r u u v r d r
 

 
 
  
   
         
     


 
 
 
2
2
2
)cos sin , ( cos )sin
( cos cos , cos sin , sin )
( sin sin , sin cos ,0)
( ( cos )cos , ( cos )sin ,0)
( cos ) ( cos )cos
, 0, cos
( cos ) ( cos )
u
uv
v
u u v r d r u u
r r u v r u v r u
r r u v r u v
r d r u v d r u v
r d r u r d r u u
L r M N u
r d r u r d r u
 
   
 
    
 
        
 



-weingarten map:
2
2 2 2
2
1
0
( cos ) ( ) 01
cos( cos ) 0 cos 0
( cos )
d r u r r
ur d r u r u
d r u
 
   
   
       
A
-Gauss map:
(cos sin ,cos sin ,sin )n u v u v u 

-principle curvature:
1 2 2
1 cos
,
( cos )
u
k k
r d r u
 

(d) The surface parametrized by
 3 2 3 2 2 2
( , ) /3 , /3 ,r u v u u uv v v vu u v      .
(solution)
Sample Assignment For Reference Only
 
2 2
2 2
2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2
2
(1 ,2 ,2 )
(2 ,1 , 2 )
(1 ) , 0, (1 ) , (1 )
( 2 ,2 ,2), (2 ,2 ,0), (2 , 2 , 2)
2 ( 1),2 ( 1),1 ( )
4(1
u
v
u
uvu v
u v
r u v uv u
r uv v u v
E r u v F G u v H u v
r u v r v u r u v
r r u u v v u v u v
u v
L
  
   
          
     
        
 
 



  
 
2
2 2 2 2 2
2 2
2 2 2 2 2
) 4
, 0,
(1 ) 1
4(1 ) 4
(1 ) 1
M
u v u v
u v
N
u v u v
  
   
  
  
   
-weingarten map:
2 2 32 2
2 2 4 2 2
2 2 3
4
0
(1 )4(1 ) 01
4(1 ) 0 4(1 )
0
(1 )
u vu v
u v u v
u v
 
          
     
   
A
-Gauss map:
2 2 2 2 2 2
2 2 2
2 2
2 2 2 2 2 2
1
( 2 (1 ),2 (1 ),1 ( ))
(1 )
2 2 1
, ,
1 1 1
n u u v v u v u v
u v
u v u v
u v u v u v
       
 
  
  
      

-principle curvature:
1 22 2 3 2 2 3
4 4
,
(1 ) (1 )
k k
u v u v
  
   
Tutorial 2
1. Show that the second fundamental form II p is symmetric.
(proof) we take two arbitrary tangent vectors , pT S   and two arbitrary real number
,   . Then we have, first of all:
1
2 1 1 1 2
self-adjoint symmetrical
( , ) ( ( ), ) ( , ( )) ( ( ), ) ( , )
A
A A A

                     ,
which means that 2 is symmetrical. (end)
Sample Assignment For Reference Only
2. Show that the elementary symmetric functions 1 1( , , )i nS k k  are the coefficient of
i
x in
the expansion of 1 1(1 ) (1 )nk x k x  .
(proof) When 2n  ,
2 2
1 2 1 2 1 2 1 2(1 )(1 ) 1 ( ) 1k x k x k k x k k x S x S x         .
Therefor 0 1 1 2 1 2 2 1 2 1 21, ( , ) , ( , )S S k k k k S k k k k    .
When 3n  ,
1 2 3 1 2 3
2 3
1 2 2 3 1 3 1 2 3
(1 )(1 )(1 ) 1 ( )
( )
k x k x k x k k k x
k k k k k k x k k k x
       
   
So 0 1 1 2 3 2 1 2 2 3 1 3 3 1 2 31, , ,S S k k k S k k k k k k S k k k        .
…
1 2
1 2
2
1 2
1
1 2
(1 )(1 ) (1 ) 1
n
n i i i
i i i
n
n
k x k x k x x k x k k
x k k k
 
      
 
 
 
so 1 2
1 2
0 1 2 1 1
1
1, , , ,
n
i i i n n
i i i
S S k S k k S k k
 
       .
3. Calculate the frames for the sphere based on
(a) the standard parameterization
(solution)
(cos cos , cos sin , sin )
( sin cos , sin sin , cos )
( cos sin , cos cos , 0)
u
v
r u v u v u
r u v u v u
r u v u v

  
 



(b) stereographic projection
4. Calculate frames for
(a) The torus
(solution) the equation
( cos )cos
( cos )sin
sin
x a b u v
y a b u v
z b u
  

  
 
.
( , , ) ( sin cos , sin sin , cos )
( , , ) ( ( cos )sin ,( cos )cos ,0)
u u u u
v v v v
r x y z b u v b u v b u
r x y z a b u v a b u v


   
    

  

  
(b) The catenoid
Sample Assignment For Reference Only
cosh cos , cosh sin ,
sinh cos ,sinh sin ,1
cosh sin , cosh cos ,0
u
v
u u
x a v y a v z u
a a
u u
r v v
a a
u u
r a v a v
a a
  
 
  
 
 
  
 


Tutorial 3
1. Calculate the first fundamental form for
(a) The sphere of radius, R ,
(solution) ( cos cos , cos sin , sin )r R u v R u v R u

,

 
 
sin cos , sin sin , cos
cos sin , cos cos ,0
u
v
r
r R u v R u v R u
u
r
r R u v R u v
v

   


   





2 22 2 2
11 12 22, 0, cosu u v vg r R g r r g r R u     
  
.
Therefor the first fundamental form is the following:
2 2 2 2 2
cosR du R udv .
(b) The torus with inner radius, r and outer radius, R
(solution) the equation
( cos )cos
( cos )sin
sin
x a b u v
y a b u v
z b u
  

  
 
Where ,
2 2
R r R r
a b
 
  . Therefor
cos cos
2 2
cos sin
2 2
sin
2
R r R r
x u v
R r R r
y u v
R r
z u
  
   
  
   
   
  

 

.
i.e.
Sample Assignment For Reference Only
sin cos , sin sin , cos
2 2 2
cos sin , cos cos , 0
2 2 2 2
u u u
v v v
r R r R R r
x u v y u v z u
R r R r R r R r
x u v y u v z
  
  
      
        
   
  
  
2
2 2 2
11 22 12
( ) 1
, [( ) ( )cos ], 0
4 4
u u u
R r
g x y z g R r R r u g

           
Therefor the first fundamental form is  2 2 2 21
( ) [( ) ( )cos ]
4
R r du R r R r u dv     .
2. Use your answers to the previous question to find the length of
(a) A curve from the north pole of the sphere that winds twice around the sphere before
ending up at the south pole
(b) A curve that winds three times around the small randius for each time around the
major radius
3. In lectures we calculated 1E and shows that for the inertial frame
1 1 2
1 2 2 1 2
1 2
( , )
( , ) ( , )
( , )
x r x x
X x x x s x x
q x x
 
 
  
 
 
then 11(0,0) 0r  . By calculating 2 1 2 1, , ,E F F G , and 2G , show that all the second
derivatives of r and s are zero at (0,0).
4. Show that 2
12 22 11 11 22 12
1 1
2 2
F F G q q q    .
Tutorial 4
1. Construct an atlas for
(a) The torus
(b) the cylinder
from the charts for the circle from the lectures.
(solution) (a) Let
1
S be the circumference and
1 1
M S S  .
1 1
,U S V S 
: [ 1,1] ( , )U U  
: [ 1,1] ( , )V V  
Sample Assignment For Reference Only
 the atlas is {( , )}U V    .
(b) Let
1
S be the circumference and I be the open interval,
1 1
M S S  .
1
,
: [ 1,1]
: ( , )
U S V I
U
V a b


 
 

{( , )}U V    
2. Show that the function on the sphere that outputs the z  coordinate of the point is
differentiable.
(proof) the spherical co-ordinates
cos cos
cos sin
sin
x a u v
y a u v
z a u
 

 
 
cos
dz
a u
du
 . Therefor the function is differentiable.
3. Show that function on the real projective plane given by the angle the line makes with the
xy  plane is differentiable.
(proof)
2 2 2
:( , , ) arcsin ( 0)
a
f x y z xyz
x y z
 
 
2 2 2 2 2
2 2 2 2 2
2 2
2 2 2
( )
( )
f xz
x x y x y z
f yz
y x y x y z
x yf
z x y z

 
   

 
   

 
  
Because 0xyz  , the function is differentiable.
Tutorial 5
1. Write the coordinate vector-fields for cartesian coordinates on 2
 ,
x


and
y


in terms of the polar coordinate vector fields
Sample Assignment For Reference Only
r


and



(solution) 2 2( , ) cos
, , , tan , arctan
( , ) sin
x x r x r y y
r x y
y y r y r x x
 
 
 
  
    
  
2 2
cos
cos , sin
sin cos
,
r x r r
x r yx y
x r y r

 
   
 
   
 
 
  
 
Therefor
sin
cos
cos
sin
r
x x r x r r
r
y y r y r r
 

 
 

 
      
      
      
      
      
      
2. Calculate the vector-field transformation between stereographic coordinates and the
angular coordinates on the sphere,
2
S
Tutorial 6
Let , ,A y z B x z C x y
z y z x y x
     
     
     
.
1. Calculate the Lie derivative of B with respect to A.
(solution)
Sample Assignment For Reference Only
2 2 2 2
2
2
[ , ]AL B A B AB BA
y z x z x z y z
z y z x z x z y
y x z z x z
z z x y z x
x y z z y z
z z y x z y
z
yx y yz zx z
z z x z x y z
  
             
           
             
        
       
        
        
      
        
     
     
       
2 2 2 2
2
2
y x
z
xy x xz zy z
z z y z y x z x y
y x
x y


     
     
        
 
 
 
2. Show Af Bf Cf  for
2 2 2
( , , )f x y z x y z   .
(proof)
2 2 2
( , , )f x y z x y z  
2 2 2
2 2 2
2 2 2
( ) ( 2 ) 2 0
( ) ( 2 ) 2 0
( ) 2 2 0
Af y z x y z y z z y
z y
Bf x z x y z x z z x
z x
Cf x y x y z x y y x
y x
  
         
  
  
         
  
  
         
  
3. Use that fact to sketch the curves of the one parameter groups associated with ,A B , and
C .
(solution) curve C :
( )
( )
x x z
y y z
 

 
(where z is auxiliary variable)
The one parameter groups are 1 2: , :f z y f y x  .
1 2 1 1 2( ), ( ( )) ( )y f z x f f z f f z   
2 2 2
( , , ) ( ) ( )f x y z x z y z z  
( 2 ) 2 0
f f dy
Af y z y z z y
z y dz
 
       
 
…………………………………..(1)
( 2 ) 2 0
dx
Bf x z z x
dz
      …………………………………..(2)
2 2 0
dy dx
Cf x y y x
dz dz
      …………………………………..(3)
Sample Assignment For Reference Only
From (3),
dy dx
dx dz
 .
(1), (2) 1
dy dx
dx dy dz
dz dz
     
The tangent vector of the curve
( )
( )
x t
y y
z t





 
, (1,1,1) 

1
2
1
1
dy
y z c
dz
dx
x z c
dz
   
   
1
2
x t c
y t c
z t
 

  
 
When 1 2 0c c  , the curve C is the line parallel to 

and passing (0,0,0).
In general, the curve C is the line parallel to 

and passing 1 2( , ,0)c c .
Tutorial 7
Let M be a two-dimensional manifold with coordinates 1x and 2x . The Christoffel symbols for a
connection  are identically zero except for
1 1 2
12 21 2 11 2 2tan , cos sinx x x      
1. Calculate XY for
1 2 1
1
,
cos
X Y
x x x
 
 
 
.
(solution) j i
X i j
Y Y x
x

  

1 2 1 2
2
1
1, 0, , 0
cos
X X Y Y
x
   
j
j j k
i iki
Y
Y Y
x

   

Sample Assignment For Reference Only
1
1 1 1 1 2
1 11 12 21
2
2 2 1 2 2
1 11 12 2 2 21
2
1
1 1 1 1 2
2 21 22 22 2
2 2
2
2 2 1 2 2
2 21 222
0 0 tan 0 0
1
0 cos sin 0 sin
cos
1 1
( tan ) 0 0
cos cos
0 0 0 0
Y
Y Y Y x
x
Y
Y Y Y x x x
x x
Y
Y Y Y x
x x x x
Y
Y Y Y
x

          


          

  
            
   

         

1 2
1 2 22 2 2
1 sin sini j
X i j
Y X Y X Y x x
x x x x
   
       
   
.
2. Write down the equations for parallel transport for this connection.
(solution) for parallel transport, 2 2
0 sin 0X Y x
x

   

Assume that the vector field ( )Y t parallel transport according to the curve r .
:r 1 1
2 2
( )
( )
x x t
x x t
 

 
!
2 2
2
2 22
1 11
2
sin
0
( )cos
( )
sin 0
x dx
x t cx dt
x t cdx
x
dt

    
 
 

3. Combine them into a single equation and write down the solution.
(solution)
4. Pick a starting point and vector and solve for the coefficients in the solution.
5. Calculate the torsion of this connection.
(solution) k k k
ij ij jiT     : torsion tensor
0k
ij  . torsion=0
Tutorial 8
1. Write the standard metric for the sphere in terms of the coordinates  and  .
(solution)
cos cos
cos sin
sin
x
y
z
 
 

 

 
 
the standard metric:
( sin cos , sin sin ,cos )
( cos sin ,cos cos ,0)
r
r


    
   
  
 


2 2 2 2 2
11 12 221, 0, cos , cosg g g dS d d       
2. Write the standard metric for the torus in terms of the toroidal and poloidal angles.
Sample Assignment For Reference Only
(solution)
2 2 2
11 12 22
2 2 2 2 2 2
( cos )cos
( cos )sin
sin
(sinh cos ,sinh sin ,1)
( cosh sin , cosh cos ,0)
sinh 1, 0, cosh
(sinh 1) ( cosh )
u
v
x a b u v
y a b u v
z b u
u u
r u v
a a
u u
r a u a v
a a
u u
g g g a
a a
u u
dS du a dv
a a
  

  
 

 
   
  


3. Consider the metric
3 2 2
g dw dt dz   and the coordinate transformations
( , ) cosh( )cos( )
( , ) cosh( )sin( )
( , ) sinh( )
z x y x y
t x y x y
w x y x
 
 




(a) Calculate
2 2 2
z t w 
(b) Express g in the new coordinates
(solution)
cosh( )sin( )sinh( )cos( )
sinh( )sin( ) , cosh( )cos( )
cosh( ) 0
yx
x y
x y
z x yz x y
t x y t x y
w x w
    
     
 
    

   
     
(a)
2 2 2
cosh(2 )z t w x   
(b)
x y
x y
x y
dz z dx z dy
dw w dx w dy
dt t dx t dy
   

   
   
2 2 2
2 2 2 22 2 2 2
2 22 2
2 2 2 2 2 22 2
2 2 2 2
2 ( 2 )
( 2 )
( ) 2( ) ( )
(cosh ( ) sinh ( ))
x x y y x x y y
x x y y
x x x x y x y x y y y y
g dw dt dz
w dx w w dxdy w dy t dx t t dxdy t dy
z dx z z dxdy z dy
w t z dx w w t t z z dxdy w t z dy
x x dx  
   
            
      
                    
  
 
2 2 2
2 2 2 2 2 2
cosh ( )
[cosh ( ) sinh ( )] cosh ( )
x dy
x x dx x dy
 
   

  
4. Express the metric for Minkowski space
2 2 2 2
0 0 0 0g cdt dx dy dz    in terms of new
coordinates
Sample Assignment For Reference Only
0
0
0
cos( )
sin( )
t t
x r t
y r t
z z
 
 

 
 

(solution)
2 2 2 2
0 0 0 0g cdt dx dy dz   
0 00
00 0
0 0 0
0 00
0 10
sin( )0 sin( )
, ,
0 cos( ) cos( )
1 00
tz
z t
z t
z t
t tt
x r tx x r t
y y r t y r t
z zz




    
    
    
           
  
        
      
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
sin( ) sin( ) sin( )( )
cos( ) cos( ) cos( )( )
t z
t z
t z
t z
dt t d t dt t dz dt
dx x d x dt x dz r t d r t dt r t d dt
dy y d y dt y dz r t d r t dt r t d dt
dz z d z dt z dz dz





          
          

     
             
           
     
2 2 2 2
0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2 2
sin ( )( 2 ) cos ( )( 2 )
( 2 )
( ) 2
g cdt dx dy dz
cdt r t d d dt dt r t d d dt dt dz
cdt r d d dt dt dz
c r dt r d r d dt dz
           
   
   
    
         
    
    

More Related Content

What's hot

3rd Semester (June; July-2014) Mechanical Engineering Question Papers
3rd Semester (June; July-2014) Mechanical  Engineering Question Papers3rd Semester (June; July-2014) Mechanical  Engineering Question Papers
3rd Semester (June; July-2014) Mechanical Engineering Question Papers
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
3rd Semester (June; July-2015) Civil Engineering Question Paper
3rd Semester (June; July-2015) Civil Engineering Question Paper3rd Semester (June; July-2015) Civil Engineering Question Paper
3rd Semester (June; July-2015) Civil Engineering Question Paper
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Conic sections
Conic sectionsConic sections
Conic sections
faizy8622
 
IME 2014 - fechada
IME 2014 - fechadaIME 2014 - fechada
IME 2014 - fechada
KalculosOnline
 
An analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological BilliardsAn analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological Billiards
Orchidea Maria Lecian
 
(New) Borders for Quantum Cosmology
(New) Borders for Quantum Cosmology(New) Borders for Quantum Cosmology
(New) Borders for Quantum Cosmology
Paulo Vargas Moniz
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
Shankar Gangaju
 
Afa 2013
Afa 2013Afa 2013
Afa 2013
KalculosOnline
 
3rd Semester (July-2016) Civil Engineering Question Paper
3rd Semester (July-2016) Civil Engineering Question Paper3rd Semester (July-2016) Civil Engineering Question Paper
3rd Semester (July-2016) Civil Engineering Question Paper
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Computer Science and Information Science 3rd semester (2011-July) Question Pa...
Computer Science and Information Science 3rd semester (2011-July) Question Pa...Computer Science and Information Science 3rd semester (2011-July) Question Pa...
Computer Science and Information Science 3rd semester (2011-July) Question Pa...B G S Institute of Technolgy
 
4th Semester (June; July-2015) Computer Science and Information Science Engin...
4th Semester (June; July-2015) Computer Science and Information Science Engin...4th Semester (June; July-2015) Computer Science and Information Science Engin...
4th Semester (June; July-2015) Computer Science and Information Science Engin...
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
3rd Semester (June-2014) Computer Science and Information Science Engineering...
3rd Semester (June-2014) Computer Science and Information Science Engineering...3rd Semester (June-2014) Computer Science and Information Science Engineering...
3rd Semester (June-2014) Computer Science and Information Science Engineering...
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
P2 Solid Geometry
P2  Solid GeometryP2  Solid Geometry
P2 Solid Geometryguestcc333c
 
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Cone questões resolvidas - fundamentos de matemática elementar
Cone   questões resolvidas - fundamentos de matemática elementarCone   questões resolvidas - fundamentos de matemática elementar
Cone questões resolvidas - fundamentos de matemática elementar
CelsodoRozrioBrasilG
 

What's hot (20)

3rd Semester (June; July-2014) Mechanical Engineering Question Papers
3rd Semester (June; July-2014) Mechanical  Engineering Question Papers3rd Semester (June; July-2014) Mechanical  Engineering Question Papers
3rd Semester (June; July-2014) Mechanical Engineering Question Papers
 
3rd Semester Civil Engineering (2013-December) Question Papers
3rd Semester Civil Engineering (2013-December) Question Papers3rd Semester Civil Engineering (2013-December) Question Papers
3rd Semester Civil Engineering (2013-December) Question Papers
 
4th Semester CS / IS (2013-June) Question Papers
4th Semester CS / IS (2013-June) Question Papers 4th Semester CS / IS (2013-June) Question Papers
4th Semester CS / IS (2013-June) Question Papers
 
3rd Semester (June; July-2015) Civil Engineering Question Paper
3rd Semester (June; July-2015) Civil Engineering Question Paper3rd Semester (June; July-2015) Civil Engineering Question Paper
3rd Semester (June; July-2015) Civil Engineering Question Paper
 
3rd Semester Electronic and Communication Engineering (2013-December) Questio...
3rd Semester Electronic and Communication Engineering (2013-December) Questio...3rd Semester Electronic and Communication Engineering (2013-December) Questio...
3rd Semester Electronic and Communication Engineering (2013-December) Questio...
 
Conic sections
Conic sectionsConic sections
Conic sections
 
IME 2014 - fechada
IME 2014 - fechadaIME 2014 - fechada
IME 2014 - fechada
 
An analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological BilliardsAn analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological Billiards
 
(New) Borders for Quantum Cosmology
(New) Borders for Quantum Cosmology(New) Borders for Quantum Cosmology
(New) Borders for Quantum Cosmology
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
Afa 2013
Afa 2013Afa 2013
Afa 2013
 
3rd Semester (July-2016) Civil Engineering Question Paper
3rd Semester (July-2016) Civil Engineering Question Paper3rd Semester (July-2016) Civil Engineering Question Paper
3rd Semester (July-2016) Civil Engineering Question Paper
 
Report
ReportReport
Report
 
Computer Science and Information Science 3rd semester (2011-July) Question Pa...
Computer Science and Information Science 3rd semester (2011-July) Question Pa...Computer Science and Information Science 3rd semester (2011-July) Question Pa...
Computer Science and Information Science 3rd semester (2011-July) Question Pa...
 
4th Semester (June; July-2015) Computer Science and Information Science Engin...
4th Semester (June; July-2015) Computer Science and Information Science Engin...4th Semester (June; July-2015) Computer Science and Information Science Engin...
4th Semester (June; July-2015) Computer Science and Information Science Engin...
 
3rd Semester (June-2014) Computer Science and Information Science Engineering...
3rd Semester (June-2014) Computer Science and Information Science Engineering...3rd Semester (June-2014) Computer Science and Information Science Engineering...
3rd Semester (June-2014) Computer Science and Information Science Engineering...
 
P2 Solid Geometry
P2  Solid GeometryP2  Solid Geometry
P2 Solid Geometry
 
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
4th Semester (Dec-2015; Jan-2016) Computer Science and Information Science En...
 
Cone questões resolvidas - fundamentos de matemática elementar
Cone   questões resolvidas - fundamentos de matemática elementarCone   questões resolvidas - fundamentos de matemática elementar
Cone questões resolvidas - fundamentos de matemática elementar
 
1st and 2and Semester Physics Stream (2014-December) Question Papers
1st and 2and Semester Physics Stream (2014-December) Question Papers1st and 2and Semester Physics Stream (2014-December) Question Papers
1st and 2and Semester Physics Stream (2014-December) Question Papers
 

Similar to Mathematics sample assignment

The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
International Journal of Innovation Engineering and Science Research
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Carlon Baird
 
J1066069
J1066069J1066069
J1066069
IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Premier Publishers
 
M.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum MechanicsM.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum Mechanics
Pankaj Nagpure, Shri Shivaji Science College, Amravati
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
Dev Singh
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
IJERA Editor
 
Question 5 Math 1
Question 5 Math 1Question 5 Math 1
Question 5 Math 1
M.T.H Group
 
Lec 06 12 Jan 2018 - Pt 2.pptx
Lec 06 12 Jan 2018 - Pt 2.pptxLec 06 12 Jan 2018 - Pt 2.pptx
Lec 06 12 Jan 2018 - Pt 2.pptx
GovindSharma606333
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
garghanish
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
MohdNajibAliMokhtar
 
Notes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxNotes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptx
gajjesatheesh59
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
habtamu292245
 
2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf
NoorYassinHJamel
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3
Sunaina Rawat
 
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
IJERDJOURNAL
 
Test yourself for JEE(Main)TP-2
Test yourself for JEE(Main)TP-2Test yourself for JEE(Main)TP-2
Test yourself for JEE(Main)TP-2
Vijay Joglekar
 

Similar to Mathematics sample assignment (20)

The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
J1066069
J1066069J1066069
J1066069
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)Some aspects of the oldest nearby moving cluster (Ruprecht 147)
Some aspects of the oldest nearby moving cluster (Ruprecht 147)
 
M.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum MechanicsM.Sc. Phy SII UIII Quantum Mechanics
M.Sc. Phy SII UIII Quantum Mechanics
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Question 5 Math 1
Question 5 Math 1Question 5 Math 1
Question 5 Math 1
 
Lec 06 12 Jan 2018 - Pt 2.pptx
Lec 06 12 Jan 2018 - Pt 2.pptxLec 06 12 Jan 2018 - Pt 2.pptx
Lec 06 12 Jan 2018 - Pt 2.pptx
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
State Space Realizations_new.pptx
State Space Realizations_new.pptxState Space Realizations_new.pptx
State Space Realizations_new.pptx
 
Notes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptxNotes 10 6382 Residue Theorem.pptx
Notes 10 6382 Residue Theorem.pptx
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3
 
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
 
Test yourself for JEE(Main)TP-2
Test yourself for JEE(Main)TP-2Test yourself for JEE(Main)TP-2
Test yourself for JEE(Main)TP-2
 

More from All Assignment Experts

ENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTION
ENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTIONENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTION
ENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTION
All Assignment Experts
 
Business strategy Assignment Help
Business strategy Assignment HelpBusiness strategy Assignment Help
Business strategy Assignment Help
All Assignment Experts
 
Business laws sample assignment
Business laws sample assignmentBusiness laws sample assignment
Business laws sample assignment
All Assignment Experts
 
Essay writing sample_assignment
Essay writing sample_assignmentEssay writing sample_assignment
Essay writing sample_assignment
All Assignment Experts
 
Civil Engineering Sample Assignment Solution
Civil Engineering Sample Assignment Solution Civil Engineering Sample Assignment Solution
Civil Engineering Sample Assignment Solution
All Assignment Experts
 
Electrical Engineering Sample Assignment
Electrical Engineering Sample AssignmentElectrical Engineering Sample Assignment
Electrical Engineering Sample Assignment
All Assignment Experts
 
Matlab Sample Assignment Solution
Matlab Sample Assignment SolutionMatlab Sample Assignment Solution
Matlab Sample Assignment Solution
All Assignment Experts
 
Matlab Sample Assignment Solution
Matlab Sample Assignment SolutionMatlab Sample Assignment Solution
Matlab Sample Assignment Solution
All Assignment Experts
 

More from All Assignment Experts (8)

ENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTION
ENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTIONENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTION
ENGINEERING PROJECT – CONVEYOR BLOCKAGE DETECTION
 
Business strategy Assignment Help
Business strategy Assignment HelpBusiness strategy Assignment Help
Business strategy Assignment Help
 
Business laws sample assignment
Business laws sample assignmentBusiness laws sample assignment
Business laws sample assignment
 
Essay writing sample_assignment
Essay writing sample_assignmentEssay writing sample_assignment
Essay writing sample_assignment
 
Civil Engineering Sample Assignment Solution
Civil Engineering Sample Assignment Solution Civil Engineering Sample Assignment Solution
Civil Engineering Sample Assignment Solution
 
Electrical Engineering Sample Assignment
Electrical Engineering Sample AssignmentElectrical Engineering Sample Assignment
Electrical Engineering Sample Assignment
 
Matlab Sample Assignment Solution
Matlab Sample Assignment SolutionMatlab Sample Assignment Solution
Matlab Sample Assignment Solution
 
Matlab Sample Assignment Solution
Matlab Sample Assignment SolutionMatlab Sample Assignment Solution
Matlab Sample Assignment Solution
 

Recently uploaded

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 

Recently uploaded (20)

How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 

Mathematics sample assignment

  • 1. Sample Assignment For Reference Only Tutorial 1 1. Show that the differential pdG of a function G , from a surface S to 3  is linear. (proof) Let be , ( )G F C S  . It is sufficient that for any ,   , ( )d F G dF dG      . Assume that , p pp S X T S  . Then ( ) ( ) ( ) p p p p p p p p p p d F G X X F G X F X G dF X dG X dF dG X                     (end) 2. Calculate the Gauss map, the Wiengarten map and the principal curvatures for (a) A sphere of radius, R , (solution) cos cos , cos sin , sinx R u v y R u v z R u   ! sin cos , sin sin , cos cos sin , cos cos , 0 u u u v v v x R u v y R u v z R u x R u v y R u v z                 2 2 2 , 0, cosE R F G R u   2 2 cosH EG F R u         2 2 cos cos , cos sin , sin sin sin , sin cos ,0 cos cos , cos sin ,0 u uv v r R u v R u v R u r R u v R u v r R u v R u v             2 2 3 3 3 ( , , ) cos , ( , , ) 0, ( , , ) cosu v u v uv u vu v r r r R u r r r r r r R u             2 2 3 2 3 3 2 2 1 cos ( , , ) cos 1 ( , , ) 0 1 cos ( , , ) cos cos u v u u v uv u v v R u L r r r R H R u M r r r H R u N r r r R u H R u                         -weingarten map: 3 2 2 4 2 3 2 1 0 cos 01 1 1cos 0 cos 0 GL FM GM FN R u R FL EM FM ENEG F R u R u R                              A -Gauss map:
  • 2. Sample Assignment For Reference Only 2 2 2 2 2 2 2 (cos cos ,cos sin ,sin cos ), (cos cos ,cos sin ,sin cos ) cos u v u v u u r r R u v u v u v r r R n u v u v u v R ur r                -principle curvature: 1 2 1 k k R    . (b) A surface of revolution given by the curve ( )x f z rotated about the z axis, and (solution) ( )cos ( )sin x f z y f z z z        ( ( )cos , ( )sin , )r f z f z z   2 2 2 2 2 2 2 2 ( ( )cos , ( )sin ,1) ( ( )sin , ( )cos ,0) ( ) 1, 0, ( ) , ( ) ( ) 1 ( ( )cos , ( )sin ,0) ( ( )sin , ( )cos ,0) ( ( z z z z r f z f z r f z f z E r f z F G r f z H EG F f z f z r f z f z r f z f z r f z                                                       )cos , ( )sin ,0)f z  2 2 2 ( , , ) ( ) ( ), ( , , ) 0, ( , , ) ( )z z z zz r r r f z f z r r r r r r f z                  2 2 2 2 2 2 ( ) ( ) ( ) , ( ) ( ) 1 ( ) 1 0 ( ) ( ) 0, ( ) ( ) 1 ( ) ( ) 1 ( ) 1 f z f z f z L f z f z f z f z f z M N f z f z f z f z f z                       -weingarten map: 2 2 2 2 2 2 2 3/ 2 2 1/ 2 ( ) ( ) 0 ( ) 11 ( )( )( ( ) 1) 0 ( ( ) 1) ( ) 1 ( ) 0 ( ( ) 1) 0 ( ( ) 1) ( ) f z f z f z f zf z f z f z f z f z f z f z f z                                A -Gauss map:
  • 3. Sample Assignment For Reference Only  2 1 ( )cos , ( )sin , ( ) 9 ) ( ) ( ) 1 n f z f z f z f z f z f z         -principle curvature: 1 22 3/ 2 ( ) , ( ) ( ) 1 ( ( ) 1) f z k k f z f z f z          (c) The surface of revolution about the z  axis of a circle in the xz  plane with center ( ,0,0)d with radius r d . (solution)     2 22 2 2 ( cos )cos ( cos )sin sin sin cos , sin sin , cos ( cos )sin ,( cos )cos ,0 , 0, ( cos ) , ( cos ) ( cos )cos cos , ( cos u v u v u v x d r u v y d r u v z r u r r u v r u v r u r d r u v d r u v E r r F G r d r u H EG F r d r u r r r d r u u v r d r                                       2 2 2 )cos sin , ( cos )sin ( cos cos , cos sin , sin ) ( sin sin , sin cos ,0) ( ( cos )cos , ( cos )sin ,0) ( cos ) ( cos )cos , 0, cos ( cos ) ( cos ) u uv v u u v r d r u u r r u v r u v r u r r u v r u v r d r u v d r u v r d r u r d r u u L r M N u r d r u r d r u                              -weingarten map: 2 2 2 2 2 1 0 ( cos ) ( ) 01 cos( cos ) 0 cos 0 ( cos ) d r u r r ur d r u r u d r u                   A -Gauss map: (cos sin ,cos sin ,sin )n u v u v u   -principle curvature: 1 2 2 1 cos , ( cos ) u k k r d r u    (d) The surface parametrized by  3 2 3 2 2 2 ( , ) /3 , /3 ,r u v u u uv v v vu u v      . (solution)
  • 4. Sample Assignment For Reference Only   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (1 ,2 ,2 ) (2 ,1 , 2 ) (1 ) , 0, (1 ) , (1 ) ( 2 ,2 ,2), (2 ,2 ,0), (2 , 2 , 2) 2 ( 1),2 ( 1),1 ( ) 4(1 u v u uvu v u v r u v uv u r uv v u v E r u v F G u v H u v r u v r v u r u v r r u u v v u v u v u v L                                              2 2 2 2 2 2 2 2 2 2 2 2 2 ) 4 , 0, (1 ) 1 4(1 ) 4 (1 ) 1 M u v u v u v N u v u v                  -weingarten map: 2 2 32 2 2 2 4 2 2 2 2 3 4 0 (1 )4(1 ) 01 4(1 ) 0 4(1 ) 0 (1 ) u vu v u v u v u v                        A -Gauss map: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 ( 2 (1 ),2 (1 ),1 ( )) (1 ) 2 2 1 , , 1 1 1 n u u v v u v u v u v u v u v u v u v u v                         -principle curvature: 1 22 2 3 2 2 3 4 4 , (1 ) (1 ) k k u v u v        Tutorial 2 1. Show that the second fundamental form II p is symmetric. (proof) we take two arbitrary tangent vectors , pT S   and two arbitrary real number ,   . Then we have, first of all: 1 2 1 1 1 2 self-adjoint symmetrical ( , ) ( ( ), ) ( , ( )) ( ( ), ) ( , ) A A A A                       , which means that 2 is symmetrical. (end)
  • 5. Sample Assignment For Reference Only 2. Show that the elementary symmetric functions 1 1( , , )i nS k k  are the coefficient of i x in the expansion of 1 1(1 ) (1 )nk x k x  . (proof) When 2n  , 2 2 1 2 1 2 1 2 1 2(1 )(1 ) 1 ( ) 1k x k x k k x k k x S x S x         . Therefor 0 1 1 2 1 2 2 1 2 1 21, ( , ) , ( , )S S k k k k S k k k k    . When 3n  , 1 2 3 1 2 3 2 3 1 2 2 3 1 3 1 2 3 (1 )(1 )(1 ) 1 ( ) ( ) k x k x k x k k k x k k k k k k x k k k x             So 0 1 1 2 3 2 1 2 2 3 1 3 3 1 2 31, , ,S S k k k S k k k k k k S k k k        . … 1 2 1 2 2 1 2 1 1 2 (1 )(1 ) (1 ) 1 n n i i i i i i n n k x k x k x x k x k k x k k k                so 1 2 1 2 0 1 2 1 1 1 1, , , , n i i i n n i i i S S k S k k S k k          . 3. Calculate the frames for the sphere based on (a) the standard parameterization (solution) (cos cos , cos sin , sin ) ( sin cos , sin sin , cos ) ( cos sin , cos cos , 0) u v r u v u v u r u v u v u r u v u v          (b) stereographic projection 4. Calculate frames for (a) The torus (solution) the equation ( cos )cos ( cos )sin sin x a b u v y a b u v z b u          . ( , , ) ( sin cos , sin sin , cos ) ( , , ) ( ( cos )sin ,( cos )cos ,0) u u u u v v v v r x y z b u v b u v b u r x y z a b u v a b u v                    (b) The catenoid
  • 6. Sample Assignment For Reference Only cosh cos , cosh sin , sinh cos ,sinh sin ,1 cosh sin , cosh cos ,0 u v u u x a v y a v z u a a u u r v v a a u u r a v a v a a                    Tutorial 3 1. Calculate the first fundamental form for (a) The sphere of radius, R , (solution) ( cos cos , cos sin , sin )r R u v R u v R u  ,      sin cos , sin sin , cos cos sin , cos cos ,0 u v r r R u v R u v R u u r r R u v R u v v                 2 22 2 2 11 12 22, 0, cosu u v vg r R g r r g r R u         . Therefor the first fundamental form is the following: 2 2 2 2 2 cosR du R udv . (b) The torus with inner radius, r and outer radius, R (solution) the equation ( cos )cos ( cos )sin sin x a b u v y a b u v z b u          Where , 2 2 R r R r a b     . Therefor cos cos 2 2 cos sin 2 2 sin 2 R r R r x u v R r R r y u v R r z u                          . i.e.
  • 7. Sample Assignment For Reference Only sin cos , sin sin , cos 2 2 2 cos sin , cos cos , 0 2 2 2 2 u u u v v v r R r R R r x u v y u v z u R r R r R r R r x u v y u v z                                 2 2 2 2 11 22 12 ( ) 1 , [( ) ( )cos ], 0 4 4 u u u R r g x y z g R r R r u g              Therefor the first fundamental form is  2 2 2 21 ( ) [( ) ( )cos ] 4 R r du R r R r u dv     . 2. Use your answers to the previous question to find the length of (a) A curve from the north pole of the sphere that winds twice around the sphere before ending up at the south pole (b) A curve that winds three times around the small randius for each time around the major radius 3. In lectures we calculated 1E and shows that for the inertial frame 1 1 2 1 2 2 1 2 1 2 ( , ) ( , ) ( , ) ( , ) x r x x X x x x s x x q x x            then 11(0,0) 0r  . By calculating 2 1 2 1, , ,E F F G , and 2G , show that all the second derivatives of r and s are zero at (0,0). 4. Show that 2 12 22 11 11 22 12 1 1 2 2 F F G q q q    . Tutorial 4 1. Construct an atlas for (a) The torus (b) the cylinder from the charts for the circle from the lectures. (solution) (a) Let 1 S be the circumference and 1 1 M S S  . 1 1 ,U S V S  : [ 1,1] ( , )U U   : [ 1,1] ( , )V V  
  • 8. Sample Assignment For Reference Only  the atlas is {( , )}U V    . (b) Let 1 S be the circumference and I be the open interval, 1 1 M S S  . 1 , : [ 1,1] : ( , ) U S V I U V a b        {( , )}U V     2. Show that the function on the sphere that outputs the z  coordinate of the point is differentiable. (proof) the spherical co-ordinates cos cos cos sin sin x a u v y a u v z a u        cos dz a u du  . Therefor the function is differentiable. 3. Show that function on the real projective plane given by the angle the line makes with the xy  plane is differentiable. (proof) 2 2 2 :( , , ) arcsin ( 0) a f x y z xyz x y z     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ( ) f xz x x y x y z f yz y x y x y z x yf z x y z                     Because 0xyz  , the function is differentiable. Tutorial 5 1. Write the coordinate vector-fields for cartesian coordinates on 2  , x   and y   in terms of the polar coordinate vector fields
  • 9. Sample Assignment For Reference Only r   and    (solution) 2 2( , ) cos , , , tan , arctan ( , ) sin x x r x r y y r x y y y r y r x x                  2 2 cos cos , sin sin cos , r x r r x r yx y x r y r                       Therefor sin cos cos sin r x x r x r r r y y r y r r                                                     2. Calculate the vector-field transformation between stereographic coordinates and the angular coordinates on the sphere, 2 S Tutorial 6 Let , ,A y z B x z C x y z y z x y x                   . 1. Calculate the Lie derivative of B with respect to A. (solution)
  • 10. Sample Assignment For Reference Only 2 2 2 2 2 2 [ , ]AL B A B AB BA y z x z x z y z z y z x z x z y y x z z x z z z x y z x x y z z y z z z y x z y z yx y yz zx z z z x z x y z                                                                                                                   2 2 2 2 2 2 y x z xy x xz zy z z z y z y x z x y y x x y                              2. Show Af Bf Cf  for 2 2 2 ( , , )f x y z x y z   . (proof) 2 2 2 ( , , )f x y z x y z   2 2 2 2 2 2 2 2 2 ( ) ( 2 ) 2 0 ( ) ( 2 ) 2 0 ( ) 2 2 0 Af y z x y z y z z y z y Bf x z x y z x z z x z x Cf x y x y z x y y x y x                                                 3. Use that fact to sketch the curves of the one parameter groups associated with ,A B , and C . (solution) curve C : ( ) ( ) x x z y y z      (where z is auxiliary variable) The one parameter groups are 1 2: , :f z y f y x  . 1 2 1 1 2( ), ( ( )) ( )y f z x f f z f f z    2 2 2 ( , , ) ( ) ( )f x y z x z y z z   ( 2 ) 2 0 f f dy Af y z y z z y z y dz             …………………………………..(1) ( 2 ) 2 0 dx Bf x z z x dz       …………………………………..(2) 2 2 0 dy dx Cf x y y x dz dz       …………………………………..(3)
  • 11. Sample Assignment For Reference Only From (3), dy dx dx dz  . (1), (2) 1 dy dx dx dy dz dz dz       The tangent vector of the curve ( ) ( ) x t y y z t        , (1,1,1)   1 2 1 1 dy y z c dz dx x z c dz         1 2 x t c y t c z t         When 1 2 0c c  , the curve C is the line parallel to   and passing (0,0,0). In general, the curve C is the line parallel to   and passing 1 2( , ,0)c c . Tutorial 7 Let M be a two-dimensional manifold with coordinates 1x and 2x . The Christoffel symbols for a connection  are identically zero except for 1 1 2 12 21 2 11 2 2tan , cos sinx x x       1. Calculate XY for 1 2 1 1 , cos X Y x x x       . (solution) j i X i j Y Y x x      1 2 1 2 2 1 1, 0, , 0 cos X X Y Y x     j j j k i iki Y Y Y x      
  • 12. Sample Assignment For Reference Only 1 1 1 1 1 2 1 11 12 21 2 2 2 1 2 2 1 11 12 2 2 21 2 1 1 1 1 1 2 2 21 22 22 2 2 2 2 2 2 1 2 2 2 21 222 0 0 tan 0 0 1 0 cos sin 0 sin cos 1 1 ( tan ) 0 0 cos cos 0 0 0 0 Y Y Y Y x x Y Y Y Y x x x x x Y Y Y Y x x x x x Y Y Y Y x                                                           1 2 1 2 22 2 2 1 sin sini j X i j Y X Y X Y x x x x x x                 . 2. Write down the equations for parallel transport for this connection. (solution) for parallel transport, 2 2 0 sin 0X Y x x       Assume that the vector field ( )Y t parallel transport according to the curve r . :r 1 1 2 2 ( ) ( ) x x t x x t      ! 2 2 2 2 22 1 11 2 sin 0 ( )cos ( ) sin 0 x dx x t cx dt x t cdx x dt            3. Combine them into a single equation and write down the solution. (solution) 4. Pick a starting point and vector and solve for the coefficients in the solution. 5. Calculate the torsion of this connection. (solution) k k k ij ij jiT     : torsion tensor 0k ij  . torsion=0 Tutorial 8 1. Write the standard metric for the sphere in terms of the coordinates  and  . (solution) cos cos cos sin sin x y z             the standard metric: ( sin cos , sin sin ,cos ) ( cos sin ,cos cos ,0) r r                   2 2 2 2 2 11 12 221, 0, cos , cosg g g dS d d        2. Write the standard metric for the torus in terms of the toroidal and poloidal angles.
  • 13. Sample Assignment For Reference Only (solution) 2 2 2 11 12 22 2 2 2 2 2 2 ( cos )cos ( cos )sin sin (sinh cos ,sinh sin ,1) ( cosh sin , cosh cos ,0) sinh 1, 0, cosh (sinh 1) ( cosh ) u v x a b u v y a b u v z b u u u r u v a a u u r a u a v a a u u g g g a a a u u dS du a dv a a                      3. Consider the metric 3 2 2 g dw dt dz   and the coordinate transformations ( , ) cosh( )cos( ) ( , ) cosh( )sin( ) ( , ) sinh( ) z x y x y t x y x y w x y x         (a) Calculate 2 2 2 z t w  (b) Express g in the new coordinates (solution) cosh( )sin( )sinh( )cos( ) sinh( )sin( ) , cosh( )cos( ) cosh( ) 0 yx x y x y z x yz x y t x y t x y w x w                              (a) 2 2 2 cosh(2 )z t w x    (b) x y x y x y dz z dx z dy dw w dx w dy dt t dx t dy              2 2 2 2 2 2 22 2 2 2 2 22 2 2 2 2 2 2 22 2 2 2 2 2 2 ( 2 ) ( 2 ) ( ) 2( ) ( ) (cosh ( ) sinh ( )) x x y y x x y y x x y y x x x x y x y x y y y y g dw dt dz w dx w w dxdy w dy t dx t t dxdy t dy z dx z z dxdy z dy w t z dx w w t t z z dxdy w t z dy x x dx                                                     2 2 2 2 2 2 2 2 2 cosh ( ) [cosh ( ) sinh ( )] cosh ( ) x dy x x dx x dy           4. Express the metric for Minkowski space 2 2 2 2 0 0 0 0g cdt dx dy dz    in terms of new coordinates
  • 14. Sample Assignment For Reference Only 0 0 0 cos( ) sin( ) t t x r t y r t z z           (solution) 2 2 2 2 0 0 0 0g cdt dx dy dz    0 00 00 0 0 0 0 0 00 0 10 sin( )0 sin( ) , , 0 cos( ) cos( ) 1 00 tz z t z t z t t tt x r tx x r t y y r t y r t z zz                                                   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin( ) sin( ) sin( )( ) cos( ) cos( ) cos( )( ) t z t z t z t z dt t d t dt t dz dt dx x d x dt x dz r t d r t dt r t d dt dy y d y dt y dz r t d r t dt r t d dt dz z d z dt z dz dz                                                                   2 2 2 2 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 sin ( )( 2 ) cos ( )( 2 ) ( 2 ) ( ) 2 g cdt dx dy dz cdt r t d d dt dt r t d d dt dt dz cdt r d d dt dt dz c r dt r d r d dt dz                                             