SlideShare a Scribd company logo
1 of 84
Download to read offline
Structural Analysis - III
Structural Dynamics
Dr. Rajesh K. N.
Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE Kannur Dr.RajeshKN
1
Module IVModule IV
Structural dynamics
• Introduction – degree of freedom – single degree of freedom
li t ti f ti D’Al b t’ i i llinear systems – equation of motion – D’Alembert’s principle –
damping – free response of damped and undamped systems –
logarithmic decrement – response to harmonic and periodic
excitation – vibration isolation.
Dept. of CE, GCE Kannur Dr.RajeshKN
2
IntroductionIntroduction
Dynamic LOAD
• Load whose magnitude, direction or position changes with time
P ib d l d Ti i ti f th l d i f ll kPrescribed load: Time-variation of the load is fully known
Analysis of response: Deterministic
Random load: Time-variation of the load is NOT fully known
Analysis of response: Non-deterministic
Dept. of CE, GCE Kannur Dr.RajeshKN
3
Dynamic RESPONSEDynamic RESPONSE
• Deflections and stresses are time-variant
Normally, dynamic load/displacement causes dynamic response.
P bl i d i l h h i d iProblem is dynamic only when the response is dynamic.
Dept. of CE, GCE Kannur Dr.RajeshKN
4
Classification of vibratory systemsClassification of vibratory systems
I Type of load/excitation Prescribed systemsI. Type of load/excitation Prescribed systems
Random systems
II. Linearity Linear – Linear differential equations of motion
Non-Linear – Non-linear differential equations
III. Type of mathematical model
Di t (L d) t d lDiscrete (Lumped) parameter model
– ordinary differential equations
Distributed (Continuous) parameter model
Dept. of CE, GCE Kannur Dr.RajeshKN
5
( ) p
– partial differential equations
Types of prescribed loadingsyp p g
Periodic Non-periodic
• E g Sinusoidal simple harmonicE.g. Sinusoidal, simple harmonic
• E.g. Impact
• Any periodic load can be represented
by a sum of simple harmonic componentsby a sum of simple harmonic components
Dept. of CE, GCE Kannur Dr.RajeshKN
6
Characteristics of a dynamic problemC a acte st cs o a dy a c p ob e
Ti i• Time-varying response
– Non-unique solutions
• Presence of inertia forces
– If motion is slow, inertia is neglected – problem is static
Dept. of CE, GCE Kannur Dr.RajeshKN
7
Degrees of freedomDegrees of freedom
• Number of independent coordinates required to specify the
configuration of the system at any given time
• Single Degree of Freedom SDOFg g
• Multiple Degrees of Freedom MDOF
Types of Vibrations
F F dFree Forced
Damped Undamped
Dept. of CE, GCE Kannur Dr.RajeshKN
8
Damped Undamped
Structures that can be modelled as SDOF systems
Dept. of CE, GCE Kannur Dr.RajeshKN
9
Structures that can be modelled as SDOF systems
Components of the basic dynamic systemp y y
(Mass-Spring-Dashpot model of an SDOF system)
Dashpot Mass
Spring Smooth surface
• Damping
• Energy dissipating mechanism
• Friction, viscosity etc.
Dept. of CE, GCE Kannur Dr.RajeshKN
10
Dynamic equilibrium - SDOF systemy q y
F
S i tiffk
y
Spring stiffness
Damping constant
M
k
c
m
my
cy Damping force
Inertial force
y
k
cy
my F
Massm
( )
ky
F t
Spring force
p g
Force of excitation
ky
y
( ) displacement at any timey t t→( ) p y
velocity at any time
dy
y t
dt
= →
( )k F t+ +
Eqn. of dynamic equilibrium
Dept. of CE, GCE Kannur Dr.RajeshKN
2
2
acceleration at any time
d y
y t
dt
= →
( )my cy ky F t+ + =
Springs
Springs in series Springs in parallel
Dept. of CE, GCE Kannur Dr.RajeshKN
12
Free vibration
Undamped free vibration
Free vibration
One DOF, no damping, no external forces (only initial displacement
condition) y
• Formulation using Newton’s law
F ma=
i k
Newton’s law:
D’Alembert’s principle: 0my ky+ =
i.e., ky my− =
ky my
D Alembert s principle: 0my ky+ =
Differential equation
f
Dept. of CE, GCE Kannur Dr.RajeshKN
13
of motion
• Effect of gravity
ky
k
0ky
0y
0y y+
( )0k y y+
W
W
W
W
my
Static deflection
( )W k
W
0W ky= W
Static deflection
Vibration
( )0W k y y my− + =
S ti b
0 0ky ky ky my− + =
Dept. of CE, GCE Kannur Dr.RajeshKN
14
0my ky⇒ + =• Same equation as above
• Hence, gravity has no effect in vibration
Solution of differential equation of motion
0my ky+ =
S l ti
cosLe st iny A t B tω ω= +
Solution:
and.cos .siny A t y B tω ω= = will satisfy the eqn.
.cosLe st . iny A t B tω ω= +
Substituting in the above eqn.,
( )( )2
.cos .sin 0m k A t B tω ω ω− + + =
2
0m kω⇒ − + =
g q ,
2 k
m
ω =
Natural frequency
( Angular /circular natural frequency)
ω → (denoted as a o)lsnω
Dept. of CE, GCE Kannur Dr.RajeshKN
15
( g / q y)
Units: radians/second
To find y:y
.cos .siny A t B tω ω= +
.sin .cosy A t B tω ω ω ω= − +
Initial conditions: 0 at 0y y t= =
at 0t0 at 0y v t= =
y A⇒ = ( )
0
tan
y
v
α
ω
=
0
0
,y A
v Bω
⇒ =
=
0
i
v
t t
( )0v ω
0
0 cos siny y t tω ω
ω
∴ = +
( )siny C tω α+The above solution can also be written as ( ).siny C tω α= +The above solution can also be written as,
2
2 0v
C
⎛ ⎞
⎜ ⎟Wh called the amplitude of vibration
Dept. of CE, GCE Kannur Dr.RajeshKN
16
2 0
0C y
ω
⎛ ⎞
= + ⎜ ⎟
⎝ ⎠
Where , called the amplitude of vibration
y
2
2 0
0
v
C y
⎛ ⎞
= + ⎜ ⎟
⎝ ⎠
0v
y
0C y
ω
+ ⎜ ⎟
⎝ ⎠0y
α
t
α
ω 2
T
π
ω
=
Undamped free vibration response
To find time when y=0 : ( ) ( )0 .sin sin 0C t tω α ω α= + ⇒ + =To find time when y 0 : ( ) ( )0 .sin sin 0
0
C t t
t t
ω α ω α
ω α α ω
+ ⇒ +
⇒ + = ⇒ = −
Dept. of CE, GCE Kannur Dr.RajeshKN
Note:
2
⎛ ⎞ β
( ).siny C tω α= +
Note:
0y
2
2 0
0
v
C y
ω
⎛ ⎞
= +⎜ ⎟
⎝ ⎠
α
β
( )
0 0
cos .sin sin .cos
cos sin
C t t
y v
C t t
ω α ω α
ω
ω ω
= +
⎛ ⎞
= +⎜ ⎟
0v ω
y
0
0
cos . sin .
cos sin
C t t
C C
v
y t t
ω ω
ω ω
= +⎜ ⎟
⎝ ⎠
= +
( )
0
0
tan
y
v
α
ω
=
0y
ω
Dept. of CE, GCE Kannur Dr.RajeshKN
18
2
f
ω
π
=Cyclic frequency Units: cycles/second
1 2
T
f
π
= =Time period Units: seconds
f ω
Dept. of CE, GCE Kannur Dr.RajeshKN
19
Problem 1: Determine the natural frequency of the system shown in
figure, consisting of a weight of 50 N attached to a cantilever through
the coil spring k2=20 N/m. The cantilever cross-section is 200x300
mm, Young’s modulus of elasticity E=2.5x104 MPa, L=2m.g y
3
Pl
L
3
Pl
EI
Δ =
50 N
3
4 200 300⎛ ⎞×
50 N
1 3
3P EI
k
l
= =
Δ
4
3
200 300
3 2.5 10
12
4218.75N mm 4218750N m
2000
⎛ ⎞×
× × ×⎜ ⎟
⎝ ⎠= = =
1 1 1
4218750 20k
= + 2
19.9kg s
= 1.98 rad sek
ω = =
Dept. of CE, GCE Kannur Dr.RajeshKN
4218750 20
19.9N m
e
e
k
k∴ =
( )50 / 9.
1.98 ra
8 g
d s
1 km
ω
Problem 2: Calculate the natural frequency in side sway and natural
period of vibration for the frame in figure If the initial displacement isperiod of vibration for the frame in figure. If the initial displacement is
25 mm and the initial velocity is 25 mm/sec, what is the amplitude and
displacement at t = 1 sec? Weight of the beam =
12
6
30 10 N×
SDOF, Undamped free vibration
12
30 10 MPaAB CDEI EI= = ×
6 2
5
2
30 10 kg.m s
30.58 10 kg
9.81 m s
m
×
= = ×
12 12EI EI 12 1 1
12 30 10
⎛ ⎞
3 3
12 12AB CD
AB CD
EI EI
k
l l
= +
12
3 3
1 1
12 30 10
1000 800
⎛ ⎞
= × × × +⎜ ⎟
⎝ ⎠
1063125 N/mm=
2
3 kg m/s
Dept. of CE, GCE Kannur Dr.RajeshKN
3 kg.m/s
1063125 10
m
= ×
3 2
5
1063125 10 kg s
=
30.58 10 k
18.645 r d
g
a s
k
m
ω
×
= =
×30.58 10 kgm ×
2 2
0.337
18.645
Time period T s
π π
ω
= = =
( ).siny C tω α= +Displacement of SDOF, undamped free vibration ( )
2
2 v⎛ ⎞ ( )
0
0
tan
y
v
α
ω
=
2 0
0
v
C y
ω
⎛ ⎞
= + ⎜ ⎟
⎝ ⎠
Where amplitude
( )0v ω
( )
25
18.645
25 18 645
= =
Dept. of CE, GCE Kannur Dr.RajeshKN
( )25 18.645
0
86.93 1.517radα∴ = =
2 22 2
2 20
0
25
25
18.645
25.036 mm
v
C y
ω
⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
Hence, amplitude
( ).siny C tω α= +Displacement at t = 1 sec
( )25.036sin 18.645 1 24.207 m7 m1.51= × =+( )25.036sin 18.645 1 24.207 m7 m1.51+
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 3: A particle of mass 2g is making simple harmonic motion
l i A di 6 d 10 f h ilib ialong x-axis. At distances 6cm and 10cm from the equilibrium
position, the velocities of the particle are 5 cm/s and 4cm/s
respectively. Find the time period of vibration, the amplitude and
maximum kinetic energy.
( ).siny C tω α= +( )
( ).cosy C tω ω α= + maxy Cω=
( ) ( )1 16 sinC tω α+ →=
( ) ( )10 2iC
( ) ( )15 c 3osC tω ω α+ →=
( ) ( )4 4C( ) ( )210 s 2inC tω α+ →= ( ) ( )24 c 4osC tω ω α+ →=
( ) ( )( ) ( )16 sin1 C tω α=→ +
( )4 4 4⎡ ⎤
Dept. of CE, GCE Kannur Dr.RajeshKN
24
( )
( )
( ) ( )2 1
4
3
4
cos cos
5
t tω α ω α+ = +→ ( ) ( )1
2 1
4
cos cos
5
t tω α ω α− ⎡ ⎤
⇒ + = +⎢ ⎥⎣ ⎦
6 4⎛ ⎞⎡ ⎤
( )
( )
( )1
1
1
6 4
10 sin cos cos
s
2
in 5
t
t
ω α
ω α
−
→
⎛ ⎞⎡ ⎤
= +⎜ ⎟⎢ ⎥+ ⎣ ⎦⎝ ⎠
0
1 0.4228 24.24t radω α+ = =With trial and error,
14 6229C cm∴ =Amplitude
1,
14.6229C cm∴ =Amplitude,
0.3749rad sω =Natural frequency,q y
2 16.749T sπ ω= =Time period of vibration,
( )
221 1
30 06C NM i Ki ti E
p
Dept. of CE, GCE Kannur Dr.RajeshKN
25
( )2
max 30.06
2 2
my m C Nmω= = =Maximum Kinetic Energy,
Damped free vibrationp
One DOF, with damping, no external forces (only initial displacement
condition)
0my cy ky+ + =
y
2
0pt pt pt
C C kC
pt
y Ce=Solution is of the form
2
0pt pt pt
mCp e cCpe kCe∴ + + =
2
0mp cp k⇒ + + =
In general, the roots of the above equation are 2
1 2,
c c k
p p
⎛ ⎞
= − ± −⎜ ⎟
⎝ ⎠
General solution is:
1 2,
2 2
p p
m m m
⎜ ⎟
⎝ ⎠
1 2
1 2
p t p t
y C e C e= +
Dept. of CE, GCE Kannur Dr.RajeshKN
1 2,C C To be determined from initial conditions
2
k⎛ ⎞
2
c k
m m
⎛ ⎞
−⎜ ⎟
⎝ ⎠
Final form of the solution depends on the sign of
Case 1:
2
c k⎛ ⎞
0
2
c k
m m
⎛ ⎞
− =⎜ ⎟
⎝ ⎠
2c km⇒ =
2 k
m
ω =
i e 2 2 2c km m kω ω= = =
This is defined as critical damping, ccr
i.e., 2 2 2crc km m kω ω
1 2,
2
crc
p p
m
⇒ = −
2
0
2
c k
m m
⎛ ⎞
− =⎜ ⎟
⎝ ⎠
Now, Equal roots
Dept. of CE, GCE Kannur Dr.RajeshKN
1 2
1 2
p t p t
C e C teTwo independent solutions and
2
crc
t− 2
crc
t
m
y C te
−
d
c
2
1 1
m
y C e∴ =
2
2 2
m
y C te=and
( ) 2
1 2
crc
t
m
y C C t e
−
= +Hence,
F ib ti ith iti l d i
Dept. of CE, GCE Kannur Dr.RajeshKN
Free vibration response with critical damping
Case 2:
2
0
c k⎛ ⎞
>⎜ ⎟
2 2
0crc c⎛ ⎞ ⎛ ⎞
⇒ > ⇒ >⎜ ⎟ ⎜ ⎟0
2m m
− >⎜ ⎟
⎝ ⎠
0
2 2
cr
crc c
m m
⇒ − > ⇒ >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
• i.e., Damping in the system is larger than critical damping
(Overdamped system)
• Non-oscillatory motion, exponentially decaying to zero
• Two real, distinct roots for the equation
Damping ratio,
2
c c
c m
ζ
ω
= = 1crc c ζ> ⇒ >
2crc mω
Dept. of CE, GCE Kannur Dr.RajeshKN
( )y t
t
Free vibration response of critically damped andFree vibration response of critically damped and
overdamped systems
Dept. of CE, GCE Kannur Dr.RajeshKN
30
Case 3: 2
0
c k⎛ ⎞
<⎜ ⎟
2 2
0crc c
c c
⎛ ⎞ ⎛ ⎞
⇒ < ⇒ <⎜ ⎟ ⎜ ⎟ 1ζ⇒ <0
2m m
− <⎜ ⎟
⎝ ⎠
0
2 2
cr
crc c
m m
⇒ − < ⇒ <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
1ζ⇒ <
• i.e., Damping in the system is smaller than critical damping
(Underdamped system)
• Oscillatory motiony
• Complex roots for the equation
2
c k c⎛ ⎞
1 2,
2 2
c k c
p p i
m m m
⎛ ⎞
= − ± − ⎜ ⎟
⎝ ⎠
iζ ±
nω ω=
2
c c
c m
ζ
ω
= =
n Diζω ω= − ±
2
k c⎛ ⎞
⎜ ⎟
2cr nc mω
Damped natural
2
D
m m
ω
⎛ ⎞
= − ⎜ ⎟
⎝ ⎠
2
i 1 ζ
Damped natural
frequency
Dept. of CE, GCE Kannur Dr.RajeshKN
2
i.e., 1D nω ω ζ= −
( ) ( )n D Dt i t i t
t A Aζω ω ω− −
+( ) ( )1 2
n D Di t i t
y t e Ae A eζ ω ω
= +
cos sinDi t
D De t i tω
ω ω= ±But
( ) ( ) ( )1 2 1 2cos sinnt
D Dy t e A A t i A A tζω
ω ω−
∴ = + + −⎡ ⎤⎣ ⎦
( ) [ ]i e cos sinnt
y t e A t B tζω
ω ω−
= +( ) [ ]i.e., cos sinn
D Dy t e A t B tζ
ω ω= +
Dept. of CE, GCE Kannur Dr.RajeshKN
Applying initial conditionsApplying initial conditions,
( ) 0 0
cos sinnt nv y
y t e y t tζω ζω
ω ω− ⎡ ⎤+
+⎢ ⎥( ) 0 0
0 cos sinn n
D D
D
y
y t e y t tζ ζ
ω ω
ω
= +⎢ ⎥
⎣ ⎦
0 0
0
tan n
D
v y
y
ζω
α
ω
+
=
( ) ( )cosnt
y t Ce tζω
ω α−
=
0D yω
( ) ( )cos Dy t Ce tω α= −Or,
2
2 0 0
0
nv y
C y
ζω
ω
⎛ ⎞+
= + ⎜ ⎟
⎝ ⎠
Where
Dept. of CE, GCE Kannur Dr.RajeshKN
33
Dω⎝ ⎠
( ) ( )cosnt
y t Ce tζω
ω α−
= −( ) ( )cos Dy t Ce tω α= −
Oscillatory motion, with an exponentially decaying amplitude ofy , p y y g p
nt
Ce ζω−
2π
2
T
π
ω
=
y
2
2
Damped natural period
1 D d i l t l f
d
T
p
π
ζ
= =
t
ny 1ny +
2
1 Damped circular natural frequencydp p ζ= − =
nt
y Ce ζω−
=
Dept. of CE, GCE Kannur Dr.RajeshKN
( )y t
t
Free vibration response of critically damped, overdamped and
underdamped systemsp y
Dept. of CE, GCE Kannur Dr.RajeshKN
35
2
D d t l i dT
π
Extremum point ( )( ) 0
cos( ) 1
y t
tω α
=
− =Point of tangency ( )
2
T
π
ω
=
y
2
Damped natural period
1 Damped circular natural frequency
d
d
T
p
p p ζ
= =
= − =
t
ny 1ny +
p q ydp p ζ
nt
y Ce ζω−
=
Dept. of CE, GCE Kannur Dr.RajeshKN
36
( )y t
0v nt
y Ce ζω−
=
( )0y( )0y
nt
y Ce ζω−
=y Ce
Effect of damping on free vibrationEffect of damping on free vibration
Dept. of CE, GCE Kannur Dr.RajeshKN
37
For structures, damping c ranges between 2 to 20% of ccr.
When c is 20% of ccr,% cr,
0.2ζ =
2
i.e., 1 0.98D n n nω ω ζ ω ω= − =
Hence, for structures, damped natural frequency is practically
same as undamped natural frequencysame as undamped natural frequency
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 3: A machine of mass 20kg is mounted on springs and
dampers. The total stiffness of the springs is 8kN/m and the totaldampers. The total stiffness of the springs is 8kN/m and the total
damping is 130 Ns/m. If the system is initially at rest and a velocity of
100mm/s is imparted to the mass, determine: 1) displacement and
velocity of the mass as a function of time 2) displacement at t=1svelocity of the mass as a function of time, 2) displacement at t=1s.
N t l f
k
Damped free vibration
8000N m
Natural frequency, n
m
ω =
k/2 k/2
8000N
20 kg
m
= 20 r= ad s
k/2 k/2
Damping ratio,
2 n
c
m
ζ
ω
=
130 N130
20 202
Ns m
kg rad s
=
× × 0.1625=
Dept. of CE, GCE Kannur Dr.RajeshKN
Damped natural frequency,
2
19.734 rad/s1D nω ω ζ= − =
( ) ( )cosnt
y t Ce tζω
ω α−
=We have ( ) ( )cos Dy t Ce tω α= −We have,
for damped free vibration.
2
2 0 0 nv y
C
ζω⎛ ⎞+
+ ⎜ ⎟h
0 0
tan nv y ζω
α
+
=and2 0 0
0
n
D
y
C y
ζ
ω
= + ⎜ ⎟
⎝ ⎠
where
0
tan
D y
α
ω
and
Initial conditions: 00 100 0.10,vy = == mm/s m/s
2
0.1 0
0
D
C
ω
⎛ ⎞+
∴ = + ⎜ ⎟
⎝ ⎠
0.005=
0.1 0
t
+ 0
90 1 571 dα⇒
D⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
40
tan
0
α = = ∞
0
90 1.571radα⇒ = =
( ) ( )0.1625 20
0.005 cos 19.734 1.571t
y t e t− ×
= −Hence,
( )3.25
0.005 cos 19.734 1.571t
e t−
= −
( ) ( ) ( )3.25
0 005 19 734sin 19 734 1 571 3 25cos 19 734 1 571t
y t e t t−
= ⎡ ⎤⎣ ⎦
and,
( ) ( ) ( )0.005 19.734sin 19.734 1.571 3.25cos 19.734 1.571y t e t t= − − − −⎡ ⎤⎣ ⎦
( )3.25
0 005 19 734 1 571−
Displacement at t=1s
( ) ( )3.25
1
0.005 cos 19.734 1.571t
y e=
= −
4
1 5 10 0 15m mm−
== ×
Dept. of CE, GCE Kannur Dr.RajeshKN
41
1.5 10 0.15m mm== ×
Problem 4:Problem 4:
SDOF, damped free vibration
d d l f d10Undamped natural fr radequ sency nω =
10% 0.1Damping ratio ζ = =p g ζ
0 00, 0.05Initial conditions m/sec: y v= =
2
1Damped natural fre uencyq D nω ω ζ∴ = −
Dept. of CE, GCE Kannur Dr.RajeshKN
2
10 1 0.1 9.9499 rad s= − =
0E i f i k 0Equation of motio :n my cy ky+ + =
0i.e.,
c k
y y y+ + = 2
2 0y y yξω ω⇒ + + = 2 100 0y y y⇒ + + =
Solution of the equation of motion
, y y y
m m
2 0n ny y yξω ω⇒ + + y y y
( ) ( )cos
Solution of the equation of motion
i.e., Displacement, nt
Dy t Ce tζω
ω α−
= −
2
2 0 0
0where, n
D
v y
C y
ζω
ω
⎛ ⎞+
= + ⎜ ⎟
⎝ ⎠
2
0.05 0
0 0.005
9.9499
+⎛ ⎞
= + =⎜ ⎟
⎝ ⎠Dω⎝ ⎠ ⎝ ⎠
1 0 0
tan nv y ζω
α − ⎛ ⎞+
= ⎜ ⎟
1 10.05 0
tan tan
0 2
π
α − −+⎛ ⎞
= = ∞ =⎜ ⎟
⎝ ⎠
( ) 0.005 cos 9.9499t
y t e t
π− ⎛ ⎞
∴ = −⎜ ⎟
0D yω⎜ ⎟
⎝ ⎠
0 2⎝ ⎠
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) 0.005 cos 9.9499
2
y t e t∴ ⎜ ⎟
⎝ ⎠
Logarithmic decrement
2
n
T
π
ω
=
y
Logarithmic decrement
( )1
11
cosnt
DCe ty
ζω
ω α−
−
2
2
Damped natural period
1 Damped circular natural frequency
d
d
T
p
p p
π
ζ
= =
= − =
t
ny 1ny +
nt
y Ce ζω−
=( )
( )2
11
2 2cosn
D
t
D
y
y Ce tζω
ω α−
=
−
( )1
11
cosnt
DCe ty
ζω
ω α−
−( )
( )
1
11
2
2
1cos 2
n
D
D
t
D
y
y
Ce t
π
ζω
ω
ω π α
⎛ ⎞
− +⎜ ⎟
⎝ ⎠
=
+ −( )1D
22 ππ ζ
2
2
1
nn
nD
e e
π ζωζω
ω ζω −
= =
Dept. of CE, GCE Kannur Dr.RajeshKN
⎛ ⎞ 2 ζ1
2
2
2
ln
1
n
n
y
y
π
ζω
ω ζ
⎛ ⎞
=⎜ ⎟
−⎝ ⎠
2
2
1
πζ
ζ
=
−
(say)δ=
2π
ζ
2
21
2
n
D
y
e e e
y
π
ζω
ω πζ δ
= = =
2πζ
2y
δ δ
2
2
1
πζ
ζ
δ=
− ( )
2 2 22
δ δ
ζ
ππ δ
⇒ =
+
2i e δ πζ (Logarithmic decrement)
( )
Dept. of CE, GCE Kannur Dr.RajeshKN
45
2. .,i e δ πζ= (Logarithmic decrement)
A practical way to determine dampingA practical way to determine damping
- Logarithmic decrement/ exponential decay method
1
2
y
e
y
δ
=
2y
1 1 2 3
1 2 3 4 1
ny y y y y
y y y y y
=After n cycles,
1 2 3 4 1n ny y y y y+ +
. . . n
e e e e eδ δ δ δ δ
= =
11
ln
y
δ
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∴
Dept. of CE, GCE Kannur Dr.RajeshKN
1nn y +
⎜ ⎟
⎝ ⎠
Problem 5:
SDOF damped free vibrationSDOF, damped free vibration
8000 kgm =
12 12EI EI
3 3
12 12AB CD
AB CD
EI EI
k
l l
= +
6
24 6 10× ×
Dept. of CE, GCE Kannur Dr.RajeshKN
6
3
24 6 10
5.332 10 N m
3
× ×
= = ×
Undamped natural frequency n
k
m
ω =
6
5.332 10
25.82
8000
rad s
×
= =
4% 0 04Damping ratio ζ = = 30 0Initial conditions: y v= =4% 0.04Damping ratio ζ 0 030, 0Initial conditions: y v= =
2
1D d t l f ζ 2
1Damped natural fre uencyq D nω ω ζ∴ = −
2
25 82 1 0 04 25 8 rad s= =25.82 1 0.04 25.8 rad s= − =
Dept. of CE, GCE Kannur Dr.RajeshKN
48
2Logarithmic decrement, δ πζ=
0
2 0.04 0.251 ln
y
y
δ π
⎛ ⎞
∴ = × = = ⎜ ⎟
⎝ ⎠1y⎝ ⎠
0 30y0
1 0.251
30
23.33 mm
y
y
e eδ
∴ = = =
0
3 3 3 0 251
30
14.12 mm
y
y δ
= = =
1
2 0.251
23.33
18.15 mm
y
y
e eδ
= = =
3 3 3 0.251
14.12 mmy
e eδ ×
0 30
10 98 mm
y
y = = =
0
2 2 0.251
30
18.15 mm
y
e eδ ×
= = =
4 4 4 0.251
10.98 mmy
e eδ ×
= = =
0 30
8 54 mm
y
y = = =5 5 5 0.251
8.54 mmy
e eδ ×
= = =
0 30
6 6 mm
y
y = = =
Dept. of CE, GCE Kannur Dr.RajeshKN
6 6 6 0.251
6.6 mmy
e eδ ×
= = =
Problem 6: A platform of weight 20kN is supported by four equal
l l d h f d i ll h l f A icolumns clamped to the foundation as well as to the platform. A static
force of 8kN applied horizontally to the platform produces a
displacement of 3mm. Damping in the structure is 5% of critical
damping. Find:
1. Undamped natural frequency
2. Logarithmic decrementg
3. Number of cycles and time required for the amplitude to
reduce from an initial value of 3mm to 0.3 mm.
F
k =
Δ
8000
2666.67
3
N
N mm
mm
= =Stiffness,
n
k
m
ω =1. Undamped natural frequency
m
3
2666.67 10
20000 9 81
N m
k
×
= 36.15= rad s
Dept. of CE, GCE Kannur Dr.RajeshKN
50
20000 9.81 kg
2δ πζ=2. Logarithmic decrement,
2 0.05 0.314π= × =
3. Number of cycles required for the amplitude to reduce3. Nu be o cyc es equ ed o t e a p tude to educe
from an initial value of 3mm to 0.3 mm
3y = mm 0 3y = mm1 3y = mm 1 0.3ny + = mm
11 y⎛ ⎞ 1 3⎛ ⎞1
1
1
ln
n
y
n y
δ
+
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
1 3
0.314 ln
0.3n
⎛ ⎞
⇒ = ⎜ ⎟
⎝ ⎠
7.333cy en cl s⇒ =
Dept. of CE, GCE Kannur Dr.RajeshKN
51
4 Ti i d f th lit d t d f i iti l4. Time required for the amplitude to reduce from an initial
value of 3mm to 0.3 mm
333 d f b7.333 Time period of vibration×=
2
7 333
π 2
7 333
π
7.333
nω
×= 7.333
36.15
= ×
1 2 4 d1.274 seconds=
Dept. of CE, GCE Kannur Dr.RajeshKN
52
Forced vibration
• External forces cause vibration
Forced vibration
Response of undamped system to harmonic excitation
y
0 sinF tω
ky my 0 sinF tω
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) sinF t F tω=Excitation (force): 0F Amplitude of excitation
( ) 0 sinF t F tω=Excitation (force):
sinmy ky F tω+ A
ω Frequency of excitation
( ) ( ) ( )y t y t y t= +Solution is
0 sinmy ky F tω+ = A
( ) ( ) ( )c py t y t y t= +Solution is
( )
( ) .cos .sinc n ny t A t B tω ω= +
( )
( )cy t Complimentary solution – Soln of homogeneous eqn 0my ky+ =
( )py t ( )my ky F t+ =Particular solution – Soln of non-homogeneous eqn
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) siny t Y tω=Let ( ) sinpy t Y tω
A
2
m Y kY Fω− + =
Let
A 0m Y kY Fω + =
F0
2
F
Y
k mω
=
−
0 0
2 2
F k F k
= =2 2
2
1 1
nk m
ω ω
ω
− −
η
ω
= Frequency ratio
n
η
ω Frequency ratio
( )0
2
1
sty
=
( )F k St ti d fl ti
Dept. of CE, GCE Kannur Dr.RajeshKN
2
1 η− ( )00 stF k y= Static deflection
( ) 0
cos sin sin
F k
y t A t B t tω ω ω= + +Hence total solution
L t i iti l diti ( ) ( )and0 0 0 0y y y v= = = =
( ) 2
.cos .sin sin
1
n ny t A t B t tω ω ω
η
= + +
−
Hence, total solution,
Let initial conditions are: ( ) ( )0 0and0 0 0 0y y y v= = = =
0
2
0,
1
F k
A B
η
η
−
∴ = =
−
( ) 0 0
sin sin
F k F k
y t t t
η
ω ω
−
= +( ) 2 2
sin sin
1 1
ny t t tω ω
η η
= +
− −
( ) ( )0
2
sin sin
1
i.e., n
F k
y t t tω η ω
η
= −
Dept. of CE, GCE Kannur Dr.RajeshKN
1 η−
( )
( )
( )
( )2
0
O sir, n sin
1
st
ny
y
t t tω η ω
η
= −
−
• The above represents a superposition of two harmonic
responses of different frequencies
• The result is NOT harmonic
Dept. of CE, GCE Kannur Dr.RajeshKN
57
( )
( )
y t
y( )0sty
( )0 0y = ( )0 00 nv y F kω= =
Dept. of CE, GCE Kannur Dr.RajeshKN
( )
( )
( )0
2
sin sin
s
n
t
y
y
t t tω η ω= −( ) ( )2
1
ny η
η−
( ),n y tω ω= = ∞ →When Resonance
Amplitude is , but structure will fail before displacement reaches ∞∞
Dept. of CE, GCE Kannur Dr.RajeshKN
59
Response of damped system to harmonic excitation
( )y t
0 sinmy cy ky F tω+ + =
B
0 sinF tω
( ) ( ) ( )
B
( ) ( ) ( )c py t y t y t= +Solution is
( )t C li t l ti S l f h( )cy t Complimentary solution – Soln of homogeneous eqn
0my cy ky+ + =
( ) [ ]cos sinnt
c D Dy t e A t B tζω
ω ω−
= +
Dept. of CE, GCE Kannur Dr.RajeshKN
• But damping will cause this part to die out -> Transient response
( )y t P ti l l ti S l f h( )py t
( )my cy ky F t+ + =
Particular solution – Soln of non-homogeneous eqn
Thi t i > St d t t
( ) 1 2sin cospy t C t C tω ω= +
•This part remains -> Steady state response
S b tit ti thi b k i th f ti d ti thSubstituting this back in the eqn of motion and equating the
coefficients of sin cos ,t tω ωand
2
C m C c C k Fω ω− − + =1 2 1 0C m C c C k Fω ω + =
2
0C m C c C kω ω+ +
Dept. of CE, GCE Kannur Dr.RajeshKN
2 1 2 0C m C c C kω ω− + + =
( )
( ) ( )
2
0
1 2 22
F k m
C
k
ω−
=
+ ( ) ( )
0
2 2 22
F c
C
k m c
ω
ω ω
−
=
+( ) ( )2
k m cω ω− + ( ) ( )k m cω ω− +
( )
( ) ( )
( )20
2 22
sin cosp
F
y t k m t c tω ω ω ω⎡ ⎤= − −⎣ ⎦( )
( ) ( )
( )2 22
p
k m cω ω
⎣ ⎦
− +
Dept. of CE, GCE Kannur Dr.RajeshKN
62
( )
( ) ( )
( ) ( )
[ ]
2 22
0
2 22
cos sin sin cosp
F k m c
y t t t
k
ω ω
φ ω φ ω
ω ω
− +
= −
+( ) ( )k m cω ω− +
22
k mω−
φ− 2
tan
c
k m
ω
φ
ω
=
−
( ) ( )
2 22
k m cω ω− +
cω−
( )
( ) ( )
( )0
2 22
sinp
F
y t t
k m c
ω φ
ω ω
= −
− +
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) ( )
( ) ( )0
sinp
F k
y t tω φ= −( )
( ) ( )
( )2 22
s
1 2
py t tω φ
η ζη− +
( )
( )2
0
sin
sty
tω φ= −
( ) ( )
( )2 22
1 2
φ
η ζη− +
( )( )
( ) ( ) ( )
( )2
0
22
1
sin
1 2t
p
s
y
y
t
tω φ
η ζη
= −
− +( ) ( )
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) ( ) ( )( ) ( ) ( ), c py t y t y t= +Total response
[ ]
( )
( )0
cos sin sinn stt
y
e A t B t tζω
ω ω ω φ−
+ +[ ]
( )
( ) ( )
( )0
2 22
cos sin sin
1 2
n
D De A t B t tζ
ω ω ω φ
η ζη
= + + −
− +Transient response
Steady state response
Dept. of CE, GCE Kannur Dr.RajeshKN
65
( )y t
( )0sty
( )0 00 nv y F kω= =( )0 0y =
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) ( )( ) ( )sinpy t Y tω φ= −
( )y( )
( ) ( )
0
2 22
,
1 2
Where, amplitude of steady-state vibration
sty
Y
η ζη
=
− +
( ) ( ) ( )
2 22
0
,
1
1 2
Dynamic amplification factor,
t
D
Y
y η ζη
=
+( ) ( ) ( )2
0 1 2sty η ζη− +
,nω ω=When resonance happens.
1Y Y Y= =
( )0F k
=
Hence, resonant amplitude,
Dept. of CE, GCE Kannur Dr.RajeshKN
1n
Y Y Yηω ω ==resonant 2ζ
tortionfactmplificatnamicamDyn
nη ω ω=Frequency ratio
Dynamic amplification factor as a function of frequency ratio
Dept. of CE, GCE Kannur Dr.RajeshKN
Dynamic amplification factor as a function of frequency ratio
for various amounts of damping
nη ω ω=
Phase angle as a function of frequency ratio
for various amounts of damping
2
tan
cω ζη
φ = =
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2
tan
1k m
φ
ω η
= =
− −
Problem 4:
SDOF, damped vibration with harmonic excitation
2
800 kg.m s
81 55 kgm = =
SDOF, damped vibration with harmonic excitation
2
81.55 kg
9.81 m s
m
5
48 48 2 10 6000EI × × ×
d/
3 3
48 48 2 10 6000
0.9 N mm
4000
EI
k
L
× × ×
= = =
Dept. of CE, GCE Kannur Dr.RajeshKN
15 rad/secω =0 sin 20sin15F t tω = 0 20F Newtons=
900 N/k 15900 N/m
3.32 rad/sec
81.55 kg
n
k
m
ω = = =
15
4.52
3.32n
ω
η
ω
= = =
5% 0.05ζ = =
Amplitude of steady state vibration,
( )
( ) ( )
0
max 2 22
1 2
F k
y Y
η ζη
= =
− +( ) ( )1 2η ζη− +
( )20 900( )
( ) ( )
2 22
20 900
1 4.52 2 0.05 4.52
=
− + × ×
3
1.143 10 m−
= ×
Dept. of CE, GCE Kannur Dr.RajeshKN
71
R t lit d f t d t t ib ti
( )20 900F k
Resonant amplitude of steady state vibration,
resonant 1y Yη== ( )20 900
0.222 m
2 0.05
= =
×
0
2
F k
ζ
=
Dept. of CE, GCE Kannur Dr.RajeshKN
72
Vibration isolationVibration isolation
A method for protecting equipment from vibrating foundation
O f f b hOR for protecting structure from vibrating machinery
2 Vib ti hi1. Vibrating foundation
iF t
2. Vibrating machinery
( )y t
( )y t
0 sinF tω
( )y t
( )y
( )sy t
Dept. of CE, GCE Kannur Dr.RajeshKN
1. Response to support motion (Vibrating foundation)p pp ( g )
( ) 0 sinsy t y tω= Support motion - harmonic
( )y t → Total displacement of the mass
including support motion
( )y t
including support motion
( ) ( )sy t y t− → Net displacement of the mass ( )y
Hence, equation of motion is:
( ) ( ) 0s smy c y y k y y+ − + − = ( )sy t
0 0sin cosmy cy ky ky t c y tω ω ω+ + = +
Dept. of CE, GCE Kannur Dr.RajeshKN
( )0 sinmy cy ky F tω β+ + = +
( ) ( )
2 22
( ) ( )
2 22
0 0 0, 1 2Where F y k c y kω ξη= + = +
tan 2
c
k
ω
β ζη= =
( )0 sinF tω β+
( )y t
( )
( )y t
Equivalent to
( )
q
( )sy t
Dept. of CE, GCE Kannur Dr.RajeshKN
75
F k
( )
( ) ( )
( ) ( )0
2 22
sin sin
1 2
F k
y t t Y tω β φ ω β φ
η ζη
∴ = + − = + −
− +
T
Amplitude of respo
Transmissibility
nse
=RT
Amplitude
Transmissibi
of support
l
d
ity
isplace
=
ment
( ) ( )
0
2 22
0
0 1 2
R
F kY
T
yy η ζη−
∴ =
+
=
( ) ( )0y η ζη
( )
2
( )
( ) ( )
2
2 220
1 2
1 2
i.e., R
Y
T
y
ζη
η ζη
+
= =
− +
( )
20
0 1 2
F
y
k
ζη= +∵
Dept. of CE, GCE Kannur Dr.RajeshKN
( ) ( )1 2η ζη+
1 RT= −Degree of isolation
TR
n
ω
η
ω
=Frequency ratio
Dept. of CE, GCE Kannur Dr.RajeshKN
Transmissibility versus frequency ratio for vibration isolation
2. Force transmitted to foundation (Vibrating machinery)
Excitation
(due to vibrating machine)
( )
0 sinF tω
( ) ( )siny t Y tω φ= −
0 sinmy cy ky F tω+ + =( )y t
( ) ( )siny t Y tω φ
( ) ( )
0
2 22
=
F k
Y
( )F t cy ky= +
Force transmitted to foundation, ( ) ( )
2 22
1 2η ζη− +
( ) ( ) ( )cos sinF t c Y t kY tω ω φ ω φ= − + −
( ) ( )
22
sinY k c tω ω φ β= + − + tan 2
c
k
ω
β ζη= =
Dept. of CE, GCE Kannur Dr.RajeshKN
( )
22
Y k cω= +Max. force transmitted
Max force transmittedMax. force transmitted
Force Transmissibility =
Max. force of excitation
Here excitation is due to vibrating machine
( )
22
0F
Y k cω
=
+
∴Force Transmissibility
( ) ( )
( )
22
0
2 22 01 2
=
k cF k
F
ω
η ζη
+
− +( ) ( )1 2η ζη+
2
1
cω⎛ ⎞
⎜ ⎟ 2
( ) ( )
2 22
1
1 2
=
k
η ζη
⎛ ⎞
+ ⎜ ⎟
⎝ ⎠
− +
( )
( ) ( )
2
2 22
1 2
1 2
= = RT
ζη
η ζη
+
− +( ) ( )1 2η ζη+ ( ) ( )η ζη
Same as Transmissibility
Dept. of CE, GCE Kannur Dr.RajeshKN
for vibrating foundation
Problem 5:
Max. force transmitted
Force Transmissibility =RT
300 N
=
( )
2
1 2ζη+
Force Transmissibility
Max. force of excitation
RT
3500 N
( )
( ) ( )
2 22
1 2
1 2
Also, RT
ζη
η ζη
+
=
− +
3 2
3
2
20 10 kg.m s
2.0387 10 kg
9.81 m s
m
×
= = ×
10 2 62.83 rad/sω π= × =
k
2
2
2 62.83 8047990.264
=
ω
η
⎛ ⎞
= =⎜ ⎟
n
k
m
ω =
Dept. of CE, GCE Kannur Dr.RajeshKN
3
=
2.0387 10n k k
η
ω
= =⎜ ⎟
×⎝ ⎠
10% 0.1ζ = =
( )
2 8047990.264
1 2 0 1+ × ×( )
( )
2
2
1 2 0.1
300
3500 8047990.264 8047990.264
1 2 0.1
R
kT
+ × ×
= =
⎛ ⎞
− + ×⎜ ⎟
⎝ ⎠
( )1 2 0.1
k k
+⎜ ⎟
⎝ ⎠
2
2 28047990.264 321919.61 321919.61
300 1 3500 1
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
2 2
300 1 3500 1
k k k
⎛ ⎞ ⎛ ⎞
× − + = × +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
( ) ( )
22 2
300 8047990.264 321919.61 3500 321919.61k k k⎡ ⎤× − + = × +
⎣ ⎦
( ) ( )
( )
2 2 2 2 2
2 2 2
300 2 300 8047990.264 300 321919.61 3500
300 8047990 264 3500 321919 61 0
k k+ − × × + × −
+ × × =( )300 8047990.264 3500 321919.61 0+ × − × =
2 12 18
90000 1 419 1 5 829 1 00 0k k− × + × =
Dept. of CE, GCE Kannur Dr.RajeshKN
7887098.515k∴ = N m
90000 1.419 1 5.829 1 00 0k k× + ×
SummarySummary
Structural dynamics
• Introduction – degree of freedom – single degree of freedom
li t ti f ti D’Al b t’ i i llinear systems – equation of motion – D’Alembert’s principle –
damping – free response of damped and undamped systems –
logarithmic decrement – response to harmonic and periodic
excitation – vibration isolation.
Dept. of CE, GCE Kannur Dr.RajeshKN
82
Reference Books
1 St t l D i M i P1. Structural Dynamics – Mario Paz
2. Fundamentals of Vibrations - Leonard Meirovitch
3 Th f Vib ti ith A li ti Willi T Th3. Theory of Vibration with Application – William T Thomson
4. Mechanical Vibrations - Tse, Morse Hinkle
5 St t l D i M i k S l5. Structural Dynamics – Manicka Selvam
6. Dynamics of Structures – Anil Chopra
Dept. of CE, GCE Kannur Dr.RajeshKN
83
Dept. of CE, GCE Kannur Dr.RajeshKN

More Related Content

What's hot

Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910
mullerasmare
 

What's hot (20)

Compatibility equation and Airy's stress function of theory of elasticity
Compatibility equation and Airy's stress function of theory of elasticityCompatibility equation and Airy's stress function of theory of elasticity
Compatibility equation and Airy's stress function of theory of elasticity
 
Fundamentals of structural analysis
Fundamentals of structural analysisFundamentals of structural analysis
Fundamentals of structural analysis
 
Lecture 2( Moment distribution method with sway)
Lecture  2( Moment distribution method with sway)Lecture  2( Moment distribution method with sway)
Lecture 2( Moment distribution method with sway)
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structures
 
Matrix methods
Matrix methodsMatrix methods
Matrix methods
 
Shear stresses on beam (MECHANICS OF SOLIDS)
Shear stresses on beam (MECHANICS OF SOLIDS)Shear stresses on beam (MECHANICS OF SOLIDS)
Shear stresses on beam (MECHANICS OF SOLIDS)
 
theory of elasticity
theory of elasticitytheory of elasticity
theory of elasticity
 
Response spectrum method
Response spectrum methodResponse spectrum method
Response spectrum method
 
Shear centre
Shear centreShear centre
Shear centre
 
Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.Static and Kinematic Indeterminacy of Structure.
Static and Kinematic Indeterminacy of Structure.
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
SOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONSSOIL DYNAMICS - THEORY OF VIBRATIONS
SOIL DYNAMICS - THEORY OF VIBRATIONS
 
Structural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringStructural dynamics and earthquake engineering
Structural dynamics and earthquake engineering
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910
 
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
Geotechnical Engineering-II [Lec #6: Stress Distribution in Soil]
 
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
 
Geotechnical vertical stress
Geotechnical vertical stressGeotechnical vertical stress
Geotechnical vertical stress
 
Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)Problems on simply supported beams (udl , uvl and couple)
Problems on simply supported beams (udl , uvl and couple)
 
Structural engineering ii
Structural engineering iiStructural engineering ii
Structural engineering ii
 
3.1 betti's law and maxwell's receprocal theorem
3.1 betti's law and maxwell's receprocal theorem3.1 betti's law and maxwell's receprocal theorem
3.1 betti's law and maxwell's receprocal theorem
 

Viewers also liked

Module1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sirModule1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sir
SHAMJITH KM
 
Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
SHAMJITH KM
 
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del sueloTarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
Ronny Duque
 
Basics mathematical modeling
Basics mathematical modelingBasics mathematical modeling
Basics mathematical modeling
cyndy
 
1987. problemario de hidrología. jaime ventura
1987. problemario de hidrología. jaime ventura1987. problemario de hidrología. jaime ventura
1987. problemario de hidrología. jaime ventura
Ronny Duque
 

Viewers also liked (20)

Brain Computer Interface (BCI) - seminar PPT
Brain Computer Interface (BCI) -  seminar PPTBrain Computer Interface (BCI) -  seminar PPT
Brain Computer Interface (BCI) - seminar PPT
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Control engineering
Control engineering Control engineering
Control engineering
 
Sd i-module4- rajesh sir
Sd i-module4- rajesh sirSd i-module4- rajesh sir
Sd i-module4- rajesh sir
 
Quick design check of multi storey building
Quick design check of multi storey building Quick design check of multi storey building
Quick design check of multi storey building
 
Design Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating MachinesDesign Procedure of Tabletop Foundations for Vibrating Machines
Design Procedure of Tabletop Foundations for Vibrating Machines
 
Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sir
 
Module1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sirModule1 flexibility-homework rajesh sir
Module1 flexibility-homework rajesh sir
 
Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
 
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del sueloTarea 1 suelos y rocas 2 capacidad de carga del suelo
Tarea 1 suelos y rocas 2 capacidad de carga del suelo
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sir
 
Modern Control System (BE)
Modern Control System (BE)Modern Control System (BE)
Modern Control System (BE)
 
Basics mathematical modeling
Basics mathematical modelingBasics mathematical modeling
Basics mathematical modeling
 
Control system lectures
Control system lectures Control system lectures
Control system lectures
 
Ge i-module2-rajesh sir
Ge i-module2-rajesh sirGe i-module2-rajesh sir
Ge i-module2-rajesh sir
 
1987. problemario de hidrología. jaime ventura
1987. problemario de hidrología. jaime ventura1987. problemario de hidrología. jaime ventura
1987. problemario de hidrología. jaime ventura
 
some tests on steel
some tests on steel some tests on steel
some tests on steel
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525
 
Maths 3 ppt
Maths 3 pptMaths 3 ppt
Maths 3 ppt
 

Similar to Module4 s dynamics- rajesh sir

Mechanics of structures module4
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4
SHAMJITH KM
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
SHAMJITH KM
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
SHAMJITH KM
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
Abdul Rahman
 
(S.h.m & waves).(reflection & refrection).(interferenc) prove s & important ...
(S.h.m & waves).(reflection & refrection).(interferenc)  prove s & important ...(S.h.m & waves).(reflection & refrection).(interferenc)  prove s & important ...
(S.h.m & waves).(reflection & refrection).(interferenc) prove s & important ...
last4ever
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
Rohan Jain
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
Sohar Carr
 

Similar to Module4 s dynamics- rajesh sir (20)

Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
intro to plastic analysis. pptxplastic analysis
intro to plastic analysis. pptxplastic analysisintro to plastic analysis. pptxplastic analysis
intro to plastic analysis. pptxplastic analysis
 
Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2
 
Module3 rajesh sir
Module3 rajesh sirModule3 rajesh sir
Module3 rajesh sir
 
Mechanics of structures module4
Mechanics of structures  module4Mechanics of structures  module4
Mechanics of structures module4
 
Module2 rajesh sir
Module2 rajesh sirModule2 rajesh sir
Module2 rajesh sir
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
 
Module1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sirModule1 1 introduction-tomatrixms - rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sir
 
Sism ejr
Sism ejrSism ejr
Sism ejr
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
 
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
 
(S.h.m & waves).(reflection & refrection).(interferenc) prove s & important ...
(S.h.m & waves).(reflection & refrection).(interferenc)  prove s & important ...(S.h.m & waves).(reflection & refrection).(interferenc)  prove s & important ...
(S.h.m & waves).(reflection & refrection).(interferenc) prove s & important ...
 
Solution a ph o 1
Solution a ph o 1Solution a ph o 1
Solution a ph o 1
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 
Module2 stiffness- rajesh sir
Module2 stiffness- rajesh sirModule2 stiffness- rajesh sir
Module2 stiffness- rajesh sir
 
Lecture19
Lecture19Lecture19
Lecture19
 
Lecture19
Lecture19Lecture19
Lecture19
 

More from SHAMJITH KM

നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
SHAMJITH KM
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only note
SHAMJITH KM
 

More from SHAMJITH KM (20)

Salah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdfSalah of the Prophet (ﷺ).pdf
Salah of the Prophet (ﷺ).pdf
 
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture NotesConstruction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module IV - Lecture Notes
 
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture NotesConstruction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module III - Lecture Notes
 
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture NotesConstruction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module II - Lecture Notes
 
Construction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture NotesConstruction Materials and Engineering - Module I - Lecture Notes
Construction Materials and Engineering - Module I - Lecture Notes
 
Computing fundamentals lab record - Polytechnics
Computing fundamentals lab record - PolytechnicsComputing fundamentals lab record - Polytechnics
Computing fundamentals lab record - Polytechnics
 
Concrete lab manual - Polytechnics
Concrete lab manual - PolytechnicsConcrete lab manual - Polytechnics
Concrete lab manual - Polytechnics
 
Concrete Technology Study Notes
Concrete Technology Study NotesConcrete Technology Study Notes
Concrete Technology Study Notes
 
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളുംനബി(സ)യുടെ നമസ്കാരം -  രൂപവും പ്രാര്ത്ഥനകളും
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
 
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc fileDesign of simple beam using staad pro - doc file
Design of simple beam using staad pro - doc file
 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad pro
 
Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)Python programs - PPT file (Polytechnics)
Python programs - PPT file (Polytechnics)
 
Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)Python programs - first semester computer lab manual (polytechnics)
Python programs - first semester computer lab manual (polytechnics)
 
Python programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - KalamasseryPython programming Workshop SITTTR - Kalamassery
Python programming Workshop SITTTR - Kalamassery
 
Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)Analysis of simple beam using STAAD Pro (Exp No 1)
Analysis of simple beam using STAAD Pro (Exp No 1)
 
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
 
CAD Lab model viva questions
CAD Lab model viva questions CAD Lab model viva questions
CAD Lab model viva questions
 
Surveying - Module iii-levelling only note
Surveying - Module  iii-levelling only noteSurveying - Module  iii-levelling only note
Surveying - Module iii-levelling only note
 
Surveying - Module II - compass surveying
Surveying - Module  II - compass surveyingSurveying - Module  II - compass surveying
Surveying - Module II - compass surveying
 

Recently uploaded

Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 

Recently uploaded (20)

Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 

Module4 s dynamics- rajesh sir

  • 1. Structural Analysis - III Structural Dynamics Dr. Rajesh K. N. Assistant Professor in Civil EngineeringAssistant Professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN 1
  • 2. Module IVModule IV Structural dynamics • Introduction – degree of freedom – single degree of freedom li t ti f ti D’Al b t’ i i llinear systems – equation of motion – D’Alembert’s principle – damping – free response of damped and undamped systems – logarithmic decrement – response to harmonic and periodic excitation – vibration isolation. Dept. of CE, GCE Kannur Dr.RajeshKN 2
  • 3. IntroductionIntroduction Dynamic LOAD • Load whose magnitude, direction or position changes with time P ib d l d Ti i ti f th l d i f ll kPrescribed load: Time-variation of the load is fully known Analysis of response: Deterministic Random load: Time-variation of the load is NOT fully known Analysis of response: Non-deterministic Dept. of CE, GCE Kannur Dr.RajeshKN 3
  • 4. Dynamic RESPONSEDynamic RESPONSE • Deflections and stresses are time-variant Normally, dynamic load/displacement causes dynamic response. P bl i d i l h h i d iProblem is dynamic only when the response is dynamic. Dept. of CE, GCE Kannur Dr.RajeshKN 4
  • 5. Classification of vibratory systemsClassification of vibratory systems I Type of load/excitation Prescribed systemsI. Type of load/excitation Prescribed systems Random systems II. Linearity Linear – Linear differential equations of motion Non-Linear – Non-linear differential equations III. Type of mathematical model Di t (L d) t d lDiscrete (Lumped) parameter model – ordinary differential equations Distributed (Continuous) parameter model Dept. of CE, GCE Kannur Dr.RajeshKN 5 ( ) p – partial differential equations
  • 6. Types of prescribed loadingsyp p g Periodic Non-periodic • E g Sinusoidal simple harmonicE.g. Sinusoidal, simple harmonic • E.g. Impact • Any periodic load can be represented by a sum of simple harmonic componentsby a sum of simple harmonic components Dept. of CE, GCE Kannur Dr.RajeshKN 6
  • 7. Characteristics of a dynamic problemC a acte st cs o a dy a c p ob e Ti i• Time-varying response – Non-unique solutions • Presence of inertia forces – If motion is slow, inertia is neglected – problem is static Dept. of CE, GCE Kannur Dr.RajeshKN 7
  • 8. Degrees of freedomDegrees of freedom • Number of independent coordinates required to specify the configuration of the system at any given time • Single Degree of Freedom SDOFg g • Multiple Degrees of Freedom MDOF Types of Vibrations F F dFree Forced Damped Undamped Dept. of CE, GCE Kannur Dr.RajeshKN 8 Damped Undamped
  • 9. Structures that can be modelled as SDOF systems Dept. of CE, GCE Kannur Dr.RajeshKN 9 Structures that can be modelled as SDOF systems
  • 10. Components of the basic dynamic systemp y y (Mass-Spring-Dashpot model of an SDOF system) Dashpot Mass Spring Smooth surface • Damping • Energy dissipating mechanism • Friction, viscosity etc. Dept. of CE, GCE Kannur Dr.RajeshKN 10
  • 11. Dynamic equilibrium - SDOF systemy q y F S i tiffk y Spring stiffness Damping constant M k c m my cy Damping force Inertial force y k cy my F Massm ( ) ky F t Spring force p g Force of excitation ky y ( ) displacement at any timey t t→( ) p y velocity at any time dy y t dt = → ( )k F t+ + Eqn. of dynamic equilibrium Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 acceleration at any time d y y t dt = → ( )my cy ky F t+ + =
  • 12. Springs Springs in series Springs in parallel Dept. of CE, GCE Kannur Dr.RajeshKN 12
  • 13. Free vibration Undamped free vibration Free vibration One DOF, no damping, no external forces (only initial displacement condition) y • Formulation using Newton’s law F ma= i k Newton’s law: D’Alembert’s principle: 0my ky+ = i.e., ky my− = ky my D Alembert s principle: 0my ky+ = Differential equation f Dept. of CE, GCE Kannur Dr.RajeshKN 13 of motion
  • 14. • Effect of gravity ky k 0ky 0y 0y y+ ( )0k y y+ W W W W my Static deflection ( )W k W 0W ky= W Static deflection Vibration ( )0W k y y my− + = S ti b 0 0ky ky ky my− + = Dept. of CE, GCE Kannur Dr.RajeshKN 14 0my ky⇒ + =• Same equation as above • Hence, gravity has no effect in vibration
  • 15. Solution of differential equation of motion 0my ky+ = S l ti cosLe st iny A t B tω ω= + Solution: and.cos .siny A t y B tω ω= = will satisfy the eqn. .cosLe st . iny A t B tω ω= + Substituting in the above eqn., ( )( )2 .cos .sin 0m k A t B tω ω ω− + + = 2 0m kω⇒ − + = g q , 2 k m ω = Natural frequency ( Angular /circular natural frequency) ω → (denoted as a o)lsnω Dept. of CE, GCE Kannur Dr.RajeshKN 15 ( g / q y) Units: radians/second
  • 16. To find y:y .cos .siny A t B tω ω= + .sin .cosy A t B tω ω ω ω= − + Initial conditions: 0 at 0y y t= = at 0t0 at 0y v t= = y A⇒ = ( ) 0 tan y v α ω = 0 0 ,y A v Bω ⇒ = = 0 i v t t ( )0v ω 0 0 cos siny y t tω ω ω ∴ = + ( )siny C tω α+The above solution can also be written as ( ).siny C tω α= +The above solution can also be written as, 2 2 0v C ⎛ ⎞ ⎜ ⎟Wh called the amplitude of vibration Dept. of CE, GCE Kannur Dr.RajeshKN 16 2 0 0C y ω ⎛ ⎞ = + ⎜ ⎟ ⎝ ⎠ Where , called the amplitude of vibration
  • 17. y 2 2 0 0 v C y ⎛ ⎞ = + ⎜ ⎟ ⎝ ⎠ 0v y 0C y ω + ⎜ ⎟ ⎝ ⎠0y α t α ω 2 T π ω = Undamped free vibration response To find time when y=0 : ( ) ( )0 .sin sin 0C t tω α ω α= + ⇒ + =To find time when y 0 : ( ) ( )0 .sin sin 0 0 C t t t t ω α ω α ω α α ω + ⇒ + ⇒ + = ⇒ = − Dept. of CE, GCE Kannur Dr.RajeshKN
  • 18. Note: 2 ⎛ ⎞ β ( ).siny C tω α= + Note: 0y 2 2 0 0 v C y ω ⎛ ⎞ = +⎜ ⎟ ⎝ ⎠ α β ( ) 0 0 cos .sin sin .cos cos sin C t t y v C t t ω α ω α ω ω ω = + ⎛ ⎞ = +⎜ ⎟ 0v ω y 0 0 cos . sin . cos sin C t t C C v y t t ω ω ω ω = +⎜ ⎟ ⎝ ⎠ = + ( ) 0 0 tan y v α ω = 0y ω Dept. of CE, GCE Kannur Dr.RajeshKN 18
  • 19. 2 f ω π =Cyclic frequency Units: cycles/second 1 2 T f π = =Time period Units: seconds f ω Dept. of CE, GCE Kannur Dr.RajeshKN 19
  • 20. Problem 1: Determine the natural frequency of the system shown in figure, consisting of a weight of 50 N attached to a cantilever through the coil spring k2=20 N/m. The cantilever cross-section is 200x300 mm, Young’s modulus of elasticity E=2.5x104 MPa, L=2m.g y 3 Pl L 3 Pl EI Δ = 50 N 3 4 200 300⎛ ⎞× 50 N 1 3 3P EI k l = = Δ 4 3 200 300 3 2.5 10 12 4218.75N mm 4218750N m 2000 ⎛ ⎞× × × ×⎜ ⎟ ⎝ ⎠= = = 1 1 1 4218750 20k = + 2 19.9kg s = 1.98 rad sek ω = = Dept. of CE, GCE Kannur Dr.RajeshKN 4218750 20 19.9N m e e k k∴ = ( )50 / 9. 1.98 ra 8 g d s 1 km ω
  • 21. Problem 2: Calculate the natural frequency in side sway and natural period of vibration for the frame in figure If the initial displacement isperiod of vibration for the frame in figure. If the initial displacement is 25 mm and the initial velocity is 25 mm/sec, what is the amplitude and displacement at t = 1 sec? Weight of the beam = 12 6 30 10 N× SDOF, Undamped free vibration 12 30 10 MPaAB CDEI EI= = × 6 2 5 2 30 10 kg.m s 30.58 10 kg 9.81 m s m × = = × 12 12EI EI 12 1 1 12 30 10 ⎛ ⎞ 3 3 12 12AB CD AB CD EI EI k l l = + 12 3 3 1 1 12 30 10 1000 800 ⎛ ⎞ = × × × +⎜ ⎟ ⎝ ⎠ 1063125 N/mm= 2 3 kg m/s Dept. of CE, GCE Kannur Dr.RajeshKN 3 kg.m/s 1063125 10 m = ×
  • 22. 3 2 5 1063125 10 kg s = 30.58 10 k 18.645 r d g a s k m ω × = = ×30.58 10 kgm × 2 2 0.337 18.645 Time period T s π π ω = = = ( ).siny C tω α= +Displacement of SDOF, undamped free vibration ( ) 2 2 v⎛ ⎞ ( ) 0 0 tan y v α ω = 2 0 0 v C y ω ⎛ ⎞ = + ⎜ ⎟ ⎝ ⎠ Where amplitude ( )0v ω ( ) 25 18.645 25 18 645 = = Dept. of CE, GCE Kannur Dr.RajeshKN ( )25 18.645 0 86.93 1.517radα∴ = =
  • 23. 2 22 2 2 20 0 25 25 18.645 25.036 mm v C y ω ⎛ ⎞ ⎛ ⎞ = + = + =⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ Hence, amplitude ( ).siny C tω α= +Displacement at t = 1 sec ( )25.036sin 18.645 1 24.207 m7 m1.51= × =+( )25.036sin 18.645 1 24.207 m7 m1.51+ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 24. Problem 3: A particle of mass 2g is making simple harmonic motion l i A di 6 d 10 f h ilib ialong x-axis. At distances 6cm and 10cm from the equilibrium position, the velocities of the particle are 5 cm/s and 4cm/s respectively. Find the time period of vibration, the amplitude and maximum kinetic energy. ( ).siny C tω α= +( ) ( ).cosy C tω ω α= + maxy Cω= ( ) ( )1 16 sinC tω α+ →= ( ) ( )10 2iC ( ) ( )15 c 3osC tω ω α+ →= ( ) ( )4 4C( ) ( )210 s 2inC tω α+ →= ( ) ( )24 c 4osC tω ω α+ →= ( ) ( )( ) ( )16 sin1 C tω α=→ + ( )4 4 4⎡ ⎤ Dept. of CE, GCE Kannur Dr.RajeshKN 24 ( ) ( ) ( ) ( )2 1 4 3 4 cos cos 5 t tω α ω α+ = +→ ( ) ( )1 2 1 4 cos cos 5 t tω α ω α− ⎡ ⎤ ⇒ + = +⎢ ⎥⎣ ⎦
  • 25. 6 4⎛ ⎞⎡ ⎤ ( ) ( ) ( )1 1 1 6 4 10 sin cos cos s 2 in 5 t t ω α ω α − → ⎛ ⎞⎡ ⎤ = +⎜ ⎟⎢ ⎥+ ⎣ ⎦⎝ ⎠ 0 1 0.4228 24.24t radω α+ = =With trial and error, 14 6229C cm∴ =Amplitude 1, 14.6229C cm∴ =Amplitude, 0.3749rad sω =Natural frequency,q y 2 16.749T sπ ω= =Time period of vibration, ( ) 221 1 30 06C NM i Ki ti E p Dept. of CE, GCE Kannur Dr.RajeshKN 25 ( )2 max 30.06 2 2 my m C Nmω= = =Maximum Kinetic Energy,
  • 26. Damped free vibrationp One DOF, with damping, no external forces (only initial displacement condition) 0my cy ky+ + = y 2 0pt pt pt C C kC pt y Ce=Solution is of the form 2 0pt pt pt mCp e cCpe kCe∴ + + = 2 0mp cp k⇒ + + = In general, the roots of the above equation are 2 1 2, c c k p p ⎛ ⎞ = − ± −⎜ ⎟ ⎝ ⎠ General solution is: 1 2, 2 2 p p m m m ⎜ ⎟ ⎝ ⎠ 1 2 1 2 p t p t y C e C e= + Dept. of CE, GCE Kannur Dr.RajeshKN 1 2,C C To be determined from initial conditions
  • 27. 2 k⎛ ⎞ 2 c k m m ⎛ ⎞ −⎜ ⎟ ⎝ ⎠ Final form of the solution depends on the sign of Case 1: 2 c k⎛ ⎞ 0 2 c k m m ⎛ ⎞ − =⎜ ⎟ ⎝ ⎠ 2c km⇒ = 2 k m ω = i e 2 2 2c km m kω ω= = = This is defined as critical damping, ccr i.e., 2 2 2crc km m kω ω 1 2, 2 crc p p m ⇒ = − 2 0 2 c k m m ⎛ ⎞ − =⎜ ⎟ ⎝ ⎠ Now, Equal roots Dept. of CE, GCE Kannur Dr.RajeshKN
  • 28. 1 2 1 2 p t p t C e C teTwo independent solutions and 2 crc t− 2 crc t m y C te − d c 2 1 1 m y C e∴ = 2 2 2 m y C te=and ( ) 2 1 2 crc t m y C C t e − = +Hence, F ib ti ith iti l d i Dept. of CE, GCE Kannur Dr.RajeshKN Free vibration response with critical damping
  • 29. Case 2: 2 0 c k⎛ ⎞ >⎜ ⎟ 2 2 0crc c⎛ ⎞ ⎛ ⎞ ⇒ > ⇒ >⎜ ⎟ ⎜ ⎟0 2m m − >⎜ ⎟ ⎝ ⎠ 0 2 2 cr crc c m m ⇒ − > ⇒ >⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ • i.e., Damping in the system is larger than critical damping (Overdamped system) • Non-oscillatory motion, exponentially decaying to zero • Two real, distinct roots for the equation Damping ratio, 2 c c c m ζ ω = = 1crc c ζ> ⇒ > 2crc mω Dept. of CE, GCE Kannur Dr.RajeshKN
  • 30. ( )y t t Free vibration response of critically damped andFree vibration response of critically damped and overdamped systems Dept. of CE, GCE Kannur Dr.RajeshKN 30
  • 31. Case 3: 2 0 c k⎛ ⎞ <⎜ ⎟ 2 2 0crc c c c ⎛ ⎞ ⎛ ⎞ ⇒ < ⇒ <⎜ ⎟ ⎜ ⎟ 1ζ⇒ <0 2m m − <⎜ ⎟ ⎝ ⎠ 0 2 2 cr crc c m m ⇒ − < ⇒ <⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 1ζ⇒ < • i.e., Damping in the system is smaller than critical damping (Underdamped system) • Oscillatory motiony • Complex roots for the equation 2 c k c⎛ ⎞ 1 2, 2 2 c k c p p i m m m ⎛ ⎞ = − ± − ⎜ ⎟ ⎝ ⎠ iζ ± nω ω= 2 c c c m ζ ω = = n Diζω ω= − ± 2 k c⎛ ⎞ ⎜ ⎟ 2cr nc mω Damped natural 2 D m m ω ⎛ ⎞ = − ⎜ ⎟ ⎝ ⎠ 2 i 1 ζ Damped natural frequency Dept. of CE, GCE Kannur Dr.RajeshKN 2 i.e., 1D nω ω ζ= −
  • 32. ( ) ( )n D Dt i t i t t A Aζω ω ω− − +( ) ( )1 2 n D Di t i t y t e Ae A eζ ω ω = + cos sinDi t D De t i tω ω ω= ±But ( ) ( ) ( )1 2 1 2cos sinnt D Dy t e A A t i A A tζω ω ω− ∴ = + + −⎡ ⎤⎣ ⎦ ( ) [ ]i e cos sinnt y t e A t B tζω ω ω− = +( ) [ ]i.e., cos sinn D Dy t e A t B tζ ω ω= + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 33. Applying initial conditionsApplying initial conditions, ( ) 0 0 cos sinnt nv y y t e y t tζω ζω ω ω− ⎡ ⎤+ +⎢ ⎥( ) 0 0 0 cos sinn n D D D y y t e y t tζ ζ ω ω ω = +⎢ ⎥ ⎣ ⎦ 0 0 0 tan n D v y y ζω α ω + = ( ) ( )cosnt y t Ce tζω ω α− = 0D yω ( ) ( )cos Dy t Ce tω α= −Or, 2 2 0 0 0 nv y C y ζω ω ⎛ ⎞+ = + ⎜ ⎟ ⎝ ⎠ Where Dept. of CE, GCE Kannur Dr.RajeshKN 33 Dω⎝ ⎠
  • 34. ( ) ( )cosnt y t Ce tζω ω α− = −( ) ( )cos Dy t Ce tω α= − Oscillatory motion, with an exponentially decaying amplitude ofy , p y y g p nt Ce ζω− 2π 2 T π ω = y 2 2 Damped natural period 1 D d i l t l f d T p π ζ = = t ny 1ny + 2 1 Damped circular natural frequencydp p ζ= − = nt y Ce ζω− = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 35. ( )y t t Free vibration response of critically damped, overdamped and underdamped systemsp y Dept. of CE, GCE Kannur Dr.RajeshKN 35
  • 36. 2 D d t l i dT π Extremum point ( )( ) 0 cos( ) 1 y t tω α = − =Point of tangency ( ) 2 T π ω = y 2 Damped natural period 1 Damped circular natural frequency d d T p p p ζ = = = − = t ny 1ny + p q ydp p ζ nt y Ce ζω− = Dept. of CE, GCE Kannur Dr.RajeshKN 36
  • 37. ( )y t 0v nt y Ce ζω− = ( )0y( )0y nt y Ce ζω− =y Ce Effect of damping on free vibrationEffect of damping on free vibration Dept. of CE, GCE Kannur Dr.RajeshKN 37
  • 38. For structures, damping c ranges between 2 to 20% of ccr. When c is 20% of ccr,% cr, 0.2ζ = 2 i.e., 1 0.98D n n nω ω ζ ω ω= − = Hence, for structures, damped natural frequency is practically same as undamped natural frequencysame as undamped natural frequency Dept. of CE, GCE Kannur Dr.RajeshKN
  • 39. Problem 3: A machine of mass 20kg is mounted on springs and dampers. The total stiffness of the springs is 8kN/m and the totaldampers. The total stiffness of the springs is 8kN/m and the total damping is 130 Ns/m. If the system is initially at rest and a velocity of 100mm/s is imparted to the mass, determine: 1) displacement and velocity of the mass as a function of time 2) displacement at t=1svelocity of the mass as a function of time, 2) displacement at t=1s. N t l f k Damped free vibration 8000N m Natural frequency, n m ω = k/2 k/2 8000N 20 kg m = 20 r= ad s k/2 k/2 Damping ratio, 2 n c m ζ ω = 130 N130 20 202 Ns m kg rad s = × × 0.1625= Dept. of CE, GCE Kannur Dr.RajeshKN Damped natural frequency, 2 19.734 rad/s1D nω ω ζ= − =
  • 40. ( ) ( )cosnt y t Ce tζω ω α− =We have ( ) ( )cos Dy t Ce tω α= −We have, for damped free vibration. 2 2 0 0 nv y C ζω⎛ ⎞+ + ⎜ ⎟h 0 0 tan nv y ζω α + =and2 0 0 0 n D y C y ζ ω = + ⎜ ⎟ ⎝ ⎠ where 0 tan D y α ω and Initial conditions: 00 100 0.10,vy = == mm/s m/s 2 0.1 0 0 D C ω ⎛ ⎞+ ∴ = + ⎜ ⎟ ⎝ ⎠ 0.005= 0.1 0 t + 0 90 1 571 dα⇒ D⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN 40 tan 0 α = = ∞ 0 90 1.571radα⇒ = =
  • 41. ( ) ( )0.1625 20 0.005 cos 19.734 1.571t y t e t− × = −Hence, ( )3.25 0.005 cos 19.734 1.571t e t− = − ( ) ( ) ( )3.25 0 005 19 734sin 19 734 1 571 3 25cos 19 734 1 571t y t e t t− = ⎡ ⎤⎣ ⎦ and, ( ) ( ) ( )0.005 19.734sin 19.734 1.571 3.25cos 19.734 1.571y t e t t= − − − −⎡ ⎤⎣ ⎦ ( )3.25 0 005 19 734 1 571− Displacement at t=1s ( ) ( )3.25 1 0.005 cos 19.734 1.571t y e= = − 4 1 5 10 0 15m mm− == × Dept. of CE, GCE Kannur Dr.RajeshKN 41 1.5 10 0.15m mm== ×
  • 42. Problem 4:Problem 4: SDOF, damped free vibration d d l f d10Undamped natural fr radequ sency nω = 10% 0.1Damping ratio ζ = =p g ζ 0 00, 0.05Initial conditions m/sec: y v= = 2 1Damped natural fre uencyq D nω ω ζ∴ = − Dept. of CE, GCE Kannur Dr.RajeshKN 2 10 1 0.1 9.9499 rad s= − =
  • 43. 0E i f i k 0Equation of motio :n my cy ky+ + = 0i.e., c k y y y+ + = 2 2 0y y yξω ω⇒ + + = 2 100 0y y y⇒ + + = Solution of the equation of motion , y y y m m 2 0n ny y yξω ω⇒ + + y y y ( ) ( )cos Solution of the equation of motion i.e., Displacement, nt Dy t Ce tζω ω α− = − 2 2 0 0 0where, n D v y C y ζω ω ⎛ ⎞+ = + ⎜ ⎟ ⎝ ⎠ 2 0.05 0 0 0.005 9.9499 +⎛ ⎞ = + =⎜ ⎟ ⎝ ⎠Dω⎝ ⎠ ⎝ ⎠ 1 0 0 tan nv y ζω α − ⎛ ⎞+ = ⎜ ⎟ 1 10.05 0 tan tan 0 2 π α − −+⎛ ⎞ = = ∞ =⎜ ⎟ ⎝ ⎠ ( ) 0.005 cos 9.9499t y t e t π− ⎛ ⎞ ∴ = −⎜ ⎟ 0D yω⎜ ⎟ ⎝ ⎠ 0 2⎝ ⎠ Dept. of CE, GCE Kannur Dr.RajeshKN ( ) 0.005 cos 9.9499 2 y t e t∴ ⎜ ⎟ ⎝ ⎠
  • 44. Logarithmic decrement 2 n T π ω = y Logarithmic decrement ( )1 11 cosnt DCe ty ζω ω α− − 2 2 Damped natural period 1 Damped circular natural frequency d d T p p p π ζ = = = − = t ny 1ny + nt y Ce ζω− =( ) ( )2 11 2 2cosn D t D y y Ce tζω ω α− = − ( )1 11 cosnt DCe ty ζω ω α− −( ) ( ) 1 11 2 2 1cos 2 n D D t D y y Ce t π ζω ω ω π α ⎛ ⎞ − +⎜ ⎟ ⎝ ⎠ = + −( )1D 22 ππ ζ 2 2 1 nn nD e e π ζωζω ω ζω − = = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 45. ⎛ ⎞ 2 ζ1 2 2 2 ln 1 n n y y π ζω ω ζ ⎛ ⎞ =⎜ ⎟ −⎝ ⎠ 2 2 1 πζ ζ = − (say)δ= 2π ζ 2 21 2 n D y e e e y π ζω ω πζ δ = = = 2πζ 2y δ δ 2 2 1 πζ ζ δ= − ( ) 2 2 22 δ δ ζ ππ δ ⇒ = + 2i e δ πζ (Logarithmic decrement) ( ) Dept. of CE, GCE Kannur Dr.RajeshKN 45 2. .,i e δ πζ= (Logarithmic decrement)
  • 46. A practical way to determine dampingA practical way to determine damping - Logarithmic decrement/ exponential decay method 1 2 y e y δ = 2y 1 1 2 3 1 2 3 4 1 ny y y y y y y y y y =After n cycles, 1 2 3 4 1n ny y y y y+ + . . . n e e e e eδ δ δ δ δ = = 11 ln y δ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ ∴ Dept. of CE, GCE Kannur Dr.RajeshKN 1nn y + ⎜ ⎟ ⎝ ⎠
  • 47. Problem 5: SDOF damped free vibrationSDOF, damped free vibration 8000 kgm = 12 12EI EI 3 3 12 12AB CD AB CD EI EI k l l = + 6 24 6 10× × Dept. of CE, GCE Kannur Dr.RajeshKN 6 3 24 6 10 5.332 10 N m 3 × × = = ×
  • 48. Undamped natural frequency n k m ω = 6 5.332 10 25.82 8000 rad s × = = 4% 0 04Damping ratio ζ = = 30 0Initial conditions: y v= =4% 0.04Damping ratio ζ 0 030, 0Initial conditions: y v= = 2 1D d t l f ζ 2 1Damped natural fre uencyq D nω ω ζ∴ = − 2 25 82 1 0 04 25 8 rad s= =25.82 1 0.04 25.8 rad s= − = Dept. of CE, GCE Kannur Dr.RajeshKN 48
  • 49. 2Logarithmic decrement, δ πζ= 0 2 0.04 0.251 ln y y δ π ⎛ ⎞ ∴ = × = = ⎜ ⎟ ⎝ ⎠1y⎝ ⎠ 0 30y0 1 0.251 30 23.33 mm y y e eδ ∴ = = = 0 3 3 3 0 251 30 14.12 mm y y δ = = = 1 2 0.251 23.33 18.15 mm y y e eδ = = = 3 3 3 0.251 14.12 mmy e eδ × 0 30 10 98 mm y y = = = 0 2 2 0.251 30 18.15 mm y e eδ × = = = 4 4 4 0.251 10.98 mmy e eδ × = = = 0 30 8 54 mm y y = = =5 5 5 0.251 8.54 mmy e eδ × = = = 0 30 6 6 mm y y = = = Dept. of CE, GCE Kannur Dr.RajeshKN 6 6 6 0.251 6.6 mmy e eδ × = = =
  • 50. Problem 6: A platform of weight 20kN is supported by four equal l l d h f d i ll h l f A icolumns clamped to the foundation as well as to the platform. A static force of 8kN applied horizontally to the platform produces a displacement of 3mm. Damping in the structure is 5% of critical damping. Find: 1. Undamped natural frequency 2. Logarithmic decrementg 3. Number of cycles and time required for the amplitude to reduce from an initial value of 3mm to 0.3 mm. F k = Δ 8000 2666.67 3 N N mm mm = =Stiffness, n k m ω =1. Undamped natural frequency m 3 2666.67 10 20000 9 81 N m k × = 36.15= rad s Dept. of CE, GCE Kannur Dr.RajeshKN 50 20000 9.81 kg
  • 51. 2δ πζ=2. Logarithmic decrement, 2 0.05 0.314π= × = 3. Number of cycles required for the amplitude to reduce3. Nu be o cyc es equ ed o t e a p tude to educe from an initial value of 3mm to 0.3 mm 3y = mm 0 3y = mm1 3y = mm 1 0.3ny + = mm 11 y⎛ ⎞ 1 3⎛ ⎞1 1 1 ln n y n y δ + ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ 1 3 0.314 ln 0.3n ⎛ ⎞ ⇒ = ⎜ ⎟ ⎝ ⎠ 7.333cy en cl s⇒ = Dept. of CE, GCE Kannur Dr.RajeshKN 51
  • 52. 4 Ti i d f th lit d t d f i iti l4. Time required for the amplitude to reduce from an initial value of 3mm to 0.3 mm 333 d f b7.333 Time period of vibration×= 2 7 333 π 2 7 333 π 7.333 nω ×= 7.333 36.15 = × 1 2 4 d1.274 seconds= Dept. of CE, GCE Kannur Dr.RajeshKN 52
  • 53. Forced vibration • External forces cause vibration Forced vibration Response of undamped system to harmonic excitation y 0 sinF tω ky my 0 sinF tω Dept. of CE, GCE Kannur Dr.RajeshKN
  • 54. ( ) sinF t F tω=Excitation (force): 0F Amplitude of excitation ( ) 0 sinF t F tω=Excitation (force): sinmy ky F tω+ A ω Frequency of excitation ( ) ( ) ( )y t y t y t= +Solution is 0 sinmy ky F tω+ = A ( ) ( ) ( )c py t y t y t= +Solution is ( ) ( ) .cos .sinc n ny t A t B tω ω= + ( ) ( )cy t Complimentary solution – Soln of homogeneous eqn 0my ky+ = ( )py t ( )my ky F t+ =Particular solution – Soln of non-homogeneous eqn Dept. of CE, GCE Kannur Dr.RajeshKN
  • 55. ( ) siny t Y tω=Let ( ) sinpy t Y tω A 2 m Y kY Fω− + = Let A 0m Y kY Fω + = F0 2 F Y k mω = − 0 0 2 2 F k F k = =2 2 2 1 1 nk m ω ω ω − − η ω = Frequency ratio n η ω Frequency ratio ( )0 2 1 sty = ( )F k St ti d fl ti Dept. of CE, GCE Kannur Dr.RajeshKN 2 1 η− ( )00 stF k y= Static deflection
  • 56. ( ) 0 cos sin sin F k y t A t B t tω ω ω= + +Hence total solution L t i iti l diti ( ) ( )and0 0 0 0y y y v= = = = ( ) 2 .cos .sin sin 1 n ny t A t B t tω ω ω η = + + − Hence, total solution, Let initial conditions are: ( ) ( )0 0and0 0 0 0y y y v= = = = 0 2 0, 1 F k A B η η − ∴ = = − ( ) 0 0 sin sin F k F k y t t t η ω ω − = +( ) 2 2 sin sin 1 1 ny t t tω ω η η = + − − ( ) ( )0 2 sin sin 1 i.e., n F k y t t tω η ω η = − Dept. of CE, GCE Kannur Dr.RajeshKN 1 η−
  • 57. ( ) ( ) ( ) ( )2 0 O sir, n sin 1 st ny y t t tω η ω η = − − • The above represents a superposition of two harmonic responses of different frequencies • The result is NOT harmonic Dept. of CE, GCE Kannur Dr.RajeshKN 57
  • 58. ( ) ( ) y t y( )0sty ( )0 0y = ( )0 00 nv y F kω= = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 59. ( ) ( ) ( )0 2 sin sin s n t y y t t tω η ω= −( ) ( )2 1 ny η η− ( ),n y tω ω= = ∞ →When Resonance Amplitude is , but structure will fail before displacement reaches ∞∞ Dept. of CE, GCE Kannur Dr.RajeshKN 59
  • 60. Response of damped system to harmonic excitation ( )y t 0 sinmy cy ky F tω+ + = B 0 sinF tω ( ) ( ) ( ) B ( ) ( ) ( )c py t y t y t= +Solution is ( )t C li t l ti S l f h( )cy t Complimentary solution – Soln of homogeneous eqn 0my cy ky+ + = ( ) [ ]cos sinnt c D Dy t e A t B tζω ω ω− = + Dept. of CE, GCE Kannur Dr.RajeshKN • But damping will cause this part to die out -> Transient response
  • 61. ( )y t P ti l l ti S l f h( )py t ( )my cy ky F t+ + = Particular solution – Soln of non-homogeneous eqn Thi t i > St d t t ( ) 1 2sin cospy t C t C tω ω= + •This part remains -> Steady state response S b tit ti thi b k i th f ti d ti thSubstituting this back in the eqn of motion and equating the coefficients of sin cos ,t tω ωand 2 C m C c C k Fω ω− − + =1 2 1 0C m C c C k Fω ω + = 2 0C m C c C kω ω+ + Dept. of CE, GCE Kannur Dr.RajeshKN 2 1 2 0C m C c C kω ω− + + =
  • 62. ( ) ( ) ( ) 2 0 1 2 22 F k m C k ω− = + ( ) ( ) 0 2 2 22 F c C k m c ω ω ω − = +( ) ( )2 k m cω ω− + ( ) ( )k m cω ω− + ( ) ( ) ( ) ( )20 2 22 sin cosp F y t k m t c tω ω ω ω⎡ ⎤= − −⎣ ⎦( ) ( ) ( ) ( )2 22 p k m cω ω ⎣ ⎦ − + Dept. of CE, GCE Kannur Dr.RajeshKN 62
  • 63. ( ) ( ) ( ) ( ) ( ) [ ] 2 22 0 2 22 cos sin sin cosp F k m c y t t t k ω ω φ ω φ ω ω ω − + = − +( ) ( )k m cω ω− + 22 k mω− φ− 2 tan c k m ω φ ω = − ( ) ( ) 2 22 k m cω ω− + cω− ( ) ( ) ( ) ( )0 2 22 sinp F y t t k m c ω φ ω ω = − − + Dept. of CE, GCE Kannur Dr.RajeshKN ( ) ( )
  • 64. ( ) ( )0 sinp F k y t tω φ= −( ) ( ) ( ) ( )2 22 s 1 2 py t tω φ η ζη− + ( ) ( )2 0 sin sty tω φ= − ( ) ( ) ( )2 22 1 2 φ η ζη− + ( )( ) ( ) ( ) ( ) ( )2 0 22 1 sin 1 2t p s y y t tω φ η ζη = − − +( ) ( ) Dept. of CE, GCE Kannur Dr.RajeshKN
  • 65. ( ) ( ) ( )( ) ( ) ( ), c py t y t y t= +Total response [ ] ( ) ( )0 cos sin sinn stt y e A t B t tζω ω ω ω φ− + +[ ] ( ) ( ) ( ) ( )0 2 22 cos sin sin 1 2 n D De A t B t tζ ω ω ω φ η ζη = + + − − +Transient response Steady state response Dept. of CE, GCE Kannur Dr.RajeshKN 65
  • 66. ( )y t ( )0sty ( )0 00 nv y F kω= =( )0 0y = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 67. ( ) ( )( ) ( )sinpy t Y tω φ= − ( )y( ) ( ) ( ) 0 2 22 , 1 2 Where, amplitude of steady-state vibration sty Y η ζη = − + ( ) ( ) ( ) 2 22 0 , 1 1 2 Dynamic amplification factor, t D Y y η ζη = +( ) ( ) ( )2 0 1 2sty η ζη− + ,nω ω=When resonance happens. 1Y Y Y= = ( )0F k = Hence, resonant amplitude, Dept. of CE, GCE Kannur Dr.RajeshKN 1n Y Y Yηω ω ==resonant 2ζ
  • 68. tortionfactmplificatnamicamDyn nη ω ω=Frequency ratio Dynamic amplification factor as a function of frequency ratio Dept. of CE, GCE Kannur Dr.RajeshKN Dynamic amplification factor as a function of frequency ratio for various amounts of damping
  • 69. nη ω ω= Phase angle as a function of frequency ratio for various amounts of damping 2 tan cω ζη φ = = Dept. of CE, GCE Kannur Dr.RajeshKN 2 2 tan 1k m φ ω η = = − −
  • 70. Problem 4: SDOF, damped vibration with harmonic excitation 2 800 kg.m s 81 55 kgm = = SDOF, damped vibration with harmonic excitation 2 81.55 kg 9.81 m s m 5 48 48 2 10 6000EI × × × d/ 3 3 48 48 2 10 6000 0.9 N mm 4000 EI k L × × × = = = Dept. of CE, GCE Kannur Dr.RajeshKN 15 rad/secω =0 sin 20sin15F t tω = 0 20F Newtons=
  • 71. 900 N/k 15900 N/m 3.32 rad/sec 81.55 kg n k m ω = = = 15 4.52 3.32n ω η ω = = = 5% 0.05ζ = = Amplitude of steady state vibration, ( ) ( ) ( ) 0 max 2 22 1 2 F k y Y η ζη = = − +( ) ( )1 2η ζη− + ( )20 900( ) ( ) ( ) 2 22 20 900 1 4.52 2 0.05 4.52 = − + × × 3 1.143 10 m− = × Dept. of CE, GCE Kannur Dr.RajeshKN 71
  • 72. R t lit d f t d t t ib ti ( )20 900F k Resonant amplitude of steady state vibration, resonant 1y Yη== ( )20 900 0.222 m 2 0.05 = = × 0 2 F k ζ = Dept. of CE, GCE Kannur Dr.RajeshKN 72
  • 73. Vibration isolationVibration isolation A method for protecting equipment from vibrating foundation O f f b hOR for protecting structure from vibrating machinery 2 Vib ti hi1. Vibrating foundation iF t 2. Vibrating machinery ( )y t ( )y t 0 sinF tω ( )y t ( )y ( )sy t Dept. of CE, GCE Kannur Dr.RajeshKN
  • 74. 1. Response to support motion (Vibrating foundation)p pp ( g ) ( ) 0 sinsy t y tω= Support motion - harmonic ( )y t → Total displacement of the mass including support motion ( )y t including support motion ( ) ( )sy t y t− → Net displacement of the mass ( )y Hence, equation of motion is: ( ) ( ) 0s smy c y y k y y+ − + − = ( )sy t 0 0sin cosmy cy ky ky t c y tω ω ω+ + = + Dept. of CE, GCE Kannur Dr.RajeshKN ( )0 sinmy cy ky F tω β+ + = +
  • 75. ( ) ( ) 2 22 ( ) ( ) 2 22 0 0 0, 1 2Where F y k c y kω ξη= + = + tan 2 c k ω β ζη= = ( )0 sinF tω β+ ( )y t ( ) ( )y t Equivalent to ( ) q ( )sy t Dept. of CE, GCE Kannur Dr.RajeshKN 75
  • 76. F k ( ) ( ) ( ) ( ) ( )0 2 22 sin sin 1 2 F k y t t Y tω β φ ω β φ η ζη ∴ = + − = + − − + T Amplitude of respo Transmissibility nse =RT Amplitude Transmissibi of support l d ity isplace = ment ( ) ( ) 0 2 22 0 0 1 2 R F kY T yy η ζη− ∴ = + = ( ) ( )0y η ζη ( ) 2 ( ) ( ) ( ) 2 2 220 1 2 1 2 i.e., R Y T y ζη η ζη + = = − + ( ) 20 0 1 2 F y k ζη= +∵ Dept. of CE, GCE Kannur Dr.RajeshKN ( ) ( )1 2η ζη+ 1 RT= −Degree of isolation
  • 77. TR n ω η ω =Frequency ratio Dept. of CE, GCE Kannur Dr.RajeshKN Transmissibility versus frequency ratio for vibration isolation
  • 78. 2. Force transmitted to foundation (Vibrating machinery) Excitation (due to vibrating machine) ( ) 0 sinF tω ( ) ( )siny t Y tω φ= − 0 sinmy cy ky F tω+ + =( )y t ( ) ( )siny t Y tω φ ( ) ( ) 0 2 22 = F k Y ( )F t cy ky= + Force transmitted to foundation, ( ) ( ) 2 22 1 2η ζη− + ( ) ( ) ( )cos sinF t c Y t kY tω ω φ ω φ= − + − ( ) ( ) 22 sinY k c tω ω φ β= + − + tan 2 c k ω β ζη= = Dept. of CE, GCE Kannur Dr.RajeshKN ( ) 22 Y k cω= +Max. force transmitted
  • 79. Max force transmittedMax. force transmitted Force Transmissibility = Max. force of excitation Here excitation is due to vibrating machine ( ) 22 0F Y k cω = + ∴Force Transmissibility ( ) ( ) ( ) 22 0 2 22 01 2 = k cF k F ω η ζη + − +( ) ( )1 2η ζη+ 2 1 cω⎛ ⎞ ⎜ ⎟ 2 ( ) ( ) 2 22 1 1 2 = k η ζη ⎛ ⎞ + ⎜ ⎟ ⎝ ⎠ − + ( ) ( ) ( ) 2 2 22 1 2 1 2 = = RT ζη η ζη + − +( ) ( )1 2η ζη+ ( ) ( )η ζη Same as Transmissibility Dept. of CE, GCE Kannur Dr.RajeshKN for vibrating foundation
  • 80. Problem 5: Max. force transmitted Force Transmissibility =RT 300 N = ( ) 2 1 2ζη+ Force Transmissibility Max. force of excitation RT 3500 N ( ) ( ) ( ) 2 22 1 2 1 2 Also, RT ζη η ζη + = − + 3 2 3 2 20 10 kg.m s 2.0387 10 kg 9.81 m s m × = = × 10 2 62.83 rad/sω π= × = k 2 2 2 62.83 8047990.264 = ω η ⎛ ⎞ = =⎜ ⎟ n k m ω = Dept. of CE, GCE Kannur Dr.RajeshKN 3 = 2.0387 10n k k η ω = =⎜ ⎟ ×⎝ ⎠ 10% 0.1ζ = =
  • 81. ( ) 2 8047990.264 1 2 0 1+ × ×( ) ( ) 2 2 1 2 0.1 300 3500 8047990.264 8047990.264 1 2 0.1 R kT + × × = = ⎛ ⎞ − + ×⎜ ⎟ ⎝ ⎠ ( )1 2 0.1 k k +⎜ ⎟ ⎝ ⎠ 2 2 28047990.264 321919.61 321919.61 300 1 3500 1 ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎜ ⎟ 2 2 300 1 3500 1 k k k ⎛ ⎞ ⎛ ⎞ × − + = × +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ( ) ( ) 22 2 300 8047990.264 321919.61 3500 321919.61k k k⎡ ⎤× − + = × + ⎣ ⎦ ( ) ( ) ( ) 2 2 2 2 2 2 2 2 300 2 300 8047990.264 300 321919.61 3500 300 8047990 264 3500 321919 61 0 k k+ − × × + × − + × × =( )300 8047990.264 3500 321919.61 0+ × − × = 2 12 18 90000 1 419 1 5 829 1 00 0k k− × + × = Dept. of CE, GCE Kannur Dr.RajeshKN 7887098.515k∴ = N m 90000 1.419 1 5.829 1 00 0k k× + ×
  • 82. SummarySummary Structural dynamics • Introduction – degree of freedom – single degree of freedom li t ti f ti D’Al b t’ i i llinear systems – equation of motion – D’Alembert’s principle – damping – free response of damped and undamped systems – logarithmic decrement – response to harmonic and periodic excitation – vibration isolation. Dept. of CE, GCE Kannur Dr.RajeshKN 82
  • 83. Reference Books 1 St t l D i M i P1. Structural Dynamics – Mario Paz 2. Fundamentals of Vibrations - Leonard Meirovitch 3 Th f Vib ti ith A li ti Willi T Th3. Theory of Vibration with Application – William T Thomson 4. Mechanical Vibrations - Tse, Morse Hinkle 5 St t l D i M i k S l5. Structural Dynamics – Manicka Selvam 6. Dynamics of Structures – Anil Chopra Dept. of CE, GCE Kannur Dr.RajeshKN 83
  • 84. Dept. of CE, GCE Kannur Dr.RajeshKN