Complex Numbers
Solving Quadratics
x2 1  0
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
In order to solve this equation we define a new number
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
In order to solve this equation we define a new number
i  1

or

i 2  1

i is an imaginary number
Complex Numbers
Solving Quadratics
x2 1  0
x 2  1
no real solutions
In order to solve this equation we define a new number
i  1

or

i 2  1

i is an imaginary number

x 2  1
x   1
x  i
All complex numbers (z) can be written as; z = x + iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3

Im z   5
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
3
e.g . ,  , e,4
4
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
3
e.g . ,  , e,4
4
(4) Every complex number z = x + iy, has a complex conjugate
z  x  iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
Re z   x
Im z   y

e.g . z  3  5i
Re z   3
Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
3
e.g . ,  , e,4
4
(4) Every complex number z = x + iy, has a complex conjugate
z  x  iy
z  2  7i
e.g . z  2  7i
Complex Numbers
x + iy
Complex Numbers
x + iy

Real Numbers
y=0
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers
Fractions

Integers

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers
Fractions

Integers
Naturals
Zero

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers
Fractions

Integers
Naturals
Zero

Negatives

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers

Pure
Imaginary Numbers
x  0, y  0

Fractions

Integers
Naturals
Zero

Negatives

Irrational Numbers
Complex Numbers
x + iy

Imaginary Numbers
y0

Real Numbers
y=0
Rational Numbers

Pure
Imaginary Numbers
x  0, y  0

Fractions

Integers
Naturals
Zero

Negatives
NOTE: Imaginary numbers
cannot be ordered

Irrational Numbers
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
4  3i    8  2i 
 4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i

Division (Realising The Denominator)

4  3i 

 8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i

Division (Realising The Denominator)

4  3i 

 8  2i 

 8  2i   8  2i 
 32  8i  24i  6

64  4
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Subtraction
4  3i    8  2i 
4  3i    8  2i 
 4  i
 12  5i
Multiplication
4  3i  8  2i 
 32  8i  24i  6i 2
 32  32i  6
 26  32i

Division (Realising The Denominator)

4  3i 

 8  2i 

 8  2i   8  2i 
 32  8i  24i  6

64  4
 38  16i

68
 19 8

 i
34 34
Conjugate Basics
1

z1  z2  z1  z2
Conjugate Basics
1

z1  z2  z1  z2

 2

z1 z2  z1  z2

 z1  z1
 3   
 z2  z2
Conjugate Basics
1

z1  z2  z1  z2

 2

z1 z2  z1  z2

 z1  z1
 3   
 z2  z2

 4  zz  x 2  y 2
Conjugate Basics
1

z1  z2  z1  z2

 4  zz  x 2  y 2

 2

z1 z2  z1  z2

1 z
 5 
z zz

 z1  z1
 3   
 z2  z2
Conjugate Basics
1

z1  z2  z1  z2

 4  zz  x 2  y 2

 2

z1 z2  z1  z2

1 z
 5 
z zz

 z1  z1
 3   
 z2  z2
1
e.g.
 4  3i 
Conjugate Basics
1

z1  z2  z1  z2

 4  zz  x 2  y 2

 2

z1 z2  z1  z2

1 z
 5 
z zz

 z1  z1
 3   
 z2  z2
1
4  3i

e.g.
 4  3i  16  9
4
3

 i
25 25
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal

i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2

4x  6 y  8

9 x  6 y  6
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2

4x  6 y  8

9 x  6 y  6
5x
 14
14
x
5
Complex Equations
If two complex numbers are equal, then their real parts are equal and
their imaginary parts are equal
i.e. If a1  b1i  a2  b2i
then
a1  a2
b1  b2
e.g . (i)

 2  3i  x  iy    4  2i 

2 x  2iy  3ix  3 y  4  2i
 2 x  3 y  4 and 3 x  2 y  2
14
16
, y
x  
5
5

4x  6 y  8

9 x  6 y  6
5x
 14
14
x
5
ii  z  2iw  4  3i
2 z  iw  3  4i
ii  z  2iw  4  3i
2 z  iw  3  4i



z  2iw  4  3i
4 z  2iw  6  8i
ii  z  2iw  4  3i
2 z  iw  3  4i



z  2iw  4  3i
4 z  2iw  6  8i
 2  5i
3z

2 5
z  i
3 3
ii  z  2iw  4  3i
2 z  iw  3  4i

2 5
  i  2iw  4  3i
3 3
10 4
2iw   i
3 3
10 4
w 
6i 6
2 5
  i
3 3



z  2iw  4  3i
4 z  2iw  6  8i
 2  5i
3z

2 5
z  i
3 3
ii  z  2iw  4  3i
2 z  iw  3  4i



2 5
  i  2iw  4  3i
3 3
10 4
2iw   i
3 3
10 4
w 
6i 6
2 5
  i
3 3
2 5
2 5
w  i , z  i
3 3
3 3

z  2iw  4  3i
4 z  2iw  6  8i
 2  5i
3z

2 5
z  i
3 3
Cambridge: Exercise 1A; 1 to 10 ace etc, 11bd, 13 to 20
Patel: Exercise 4A; 28 ac

X2 t01 01 arithmetic of complex numbers (2013)

  • 1.
  • 2.
    Complex Numbers Solving Quadratics x21  0 x 2  1 no real solutions
  • 3.
    Complex Numbers Solving Quadratics x21  0 x 2  1 no real solutions In order to solve this equation we define a new number
  • 4.
    Complex Numbers Solving Quadratics x21  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number
  • 5.
    Complex Numbers Solving Quadratics x21  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  • 6.
    All complex numbers(z) can be written as; z = x + iy
  • 7.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  • 8.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  • 9.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  • 10.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  • 11.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  • 12.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  • 13.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  • 14.
    All complex numbers(z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy z  2  7i e.g . z  2  7i
  • 15.
  • 16.
    Complex Numbers x +iy Real Numbers y=0
  • 17.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0
  • 18.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Irrational Numbers
  • 19.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Irrational Numbers
  • 20.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  • 21.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 22.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Pure Imaginary Numbers x  0, y  0 Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 23.
    Complex Numbers x +iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Pure Imaginary Numbers x  0, y  0 Fractions Integers Naturals Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  • 24.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds
  • 25.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  • 26.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  • 27.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  • 28.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  • 29.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 30.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i 
  • 31.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i    8  2i   8  2i   32  8i  24i  6  64  4
  • 32.
    Basic Operations As ia surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i    8  2i   8  2i   32  8i  24i  6  64  4  38  16i  68  19 8   i 34 34
  • 33.
  • 34.
    Conjugate Basics 1 z1 z2  z1  z2  2 z1 z2  z1  z2  z1  z1  3     z2  z2
  • 35.
    Conjugate Basics 1 z1 z2  z1  z2  2 z1 z2  z1  z2  z1  z1  3     z2  z2  4  zz  x 2  y 2
  • 36.
    Conjugate Basics 1 z1 z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2
  • 37.
    Conjugate Basics 1 z1 z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2 1 e.g.  4  3i 
  • 38.
    Conjugate Basics 1 z1 z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2 1 4  3i  e.g.  4  3i  16  9 4 3   i 25 25
  • 39.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2
  • 40.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2
  • 41.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i 
  • 42.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i
  • 43.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2
  • 44.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 4x  6 y  8  9 x  6 y  6
  • 45.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 4x  6 y  8  9 x  6 y  6 5x  14 14 x 5
  • 46.
    Complex Equations If twocomplex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 14 16 , y x   5 5 4x  6 y  8  9 x  6 y  6 5x  14 14 x 5
  • 47.
    ii  z 2iw  4  3i 2 z  iw  3  4i
  • 48.
    ii  z 2iw  4  3i 2 z  iw  3  4i  z  2iw  4  3i 4 z  2iw  6  8i
  • 49.
    ii  z 2iw  4  3i 2 z  iw  3  4i  z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  • 50.
    ii  z 2iw  4  3i 2 z  iw  3  4i 2 5   i  2iw  4  3i 3 3 10 4 2iw   i 3 3 10 4 w  6i 6 2 5   i 3 3  z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  • 51.
    ii  z 2iw  4  3i 2 z  iw  3  4i  2 5   i  2iw  4  3i 3 3 10 4 2iw   i 3 3 10 4 w  6i 6 2 5   i 3 3 2 5 2 5 w  i , z  i 3 3 3 3 z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  • 52.
    Cambridge: Exercise 1A;1 to 10 ace etc, 11bd, 13 to 20 Patel: Exercise 4A; 28 ac