Precalculus
Chapter 9 Study Guide

Define:
Absolute Value of a Complex number
Complex Conjugates
Imaginary Number
Modulus
Polar Axis/Plane
Polar Coordinates
Polar Form of a Complex number
Rectangular Form of a Complex number

Find the rectangular coordinates of the following polar coordinates:
1.     (6, 45° )                              2.     (2, 330°)
        æ    3p ö                                     π
3.      ç −2, ÷
        è
                                              4.      1, 
                                                      2
              4 ø

Find the polar coordinates of the following rectangular coordinates:
5.      ( − 3, - 3)                           6.     (5, 5)
7.     (-3, 1)                               8.     (4, 2)

Write the equation in polar form. Round φ to the nearest degree.
9.      2x + ψ= −3                          10.     y = −3ξ − 4
11.      2x − 2 ψ= 6

Write each equation in rectangular form.
                    π                                          π
12.    3 = ρχοσ θ −                        13.     4 = ρχοσ θ + 
                    3                                          2

Simplify the complex numbers.
14.    i10 + ι25                             15.     ( 2 + 3ι) − ( 4 − 4 ι)
16.    ( 2 + 7ι) + ( −3 − ι)                 17.     i 3 ( 4 − 3ι)
                                                     4 + 2ι
18.    (i − 7 ) ( −ι + 7 )                   19.
                                                     5 − 2ι
         5+ι
20.
       1 − 2ι

Convert the complex number into polar form.
21.    2 + 2ι                             22.        −6 - 4i
23.    4                                  24.        3i
Find each product or quotient. Express the result in rectangular form.
             π        π       π        π
25.    4  cos + ι σ  ⋅ 3  χοσ + ι σ 
                    ιν                 ιν
             3        3       3        3
             π        π      π        π
26.    8  cos + ι σ  ⋅ 4  χοσ + ι σ 
                    ιν                ιν
             4        4      2        2
              7π       7π        5π      5π 
27.    8  cos    + ισιν  ÷ 2  χοσ + ι σιν 
               6        6         3       3

Find the power. Express the result in rectangular form.
                    8                                           7
28.    ( 2 + 2ι)                             29.    ( 3 − ι)
       ( −1 + i )                                   ( −2 - 2i )
                    4                                               3
30.                                          31.
32.    i1/ 4                                 33.     3
                                                          3+ι

P cch9 sg

  • 1.
    Precalculus Chapter 9 StudyGuide Define: Absolute Value of a Complex number Complex Conjugates Imaginary Number Modulus Polar Axis/Plane Polar Coordinates Polar Form of a Complex number Rectangular Form of a Complex number Find the rectangular coordinates of the following polar coordinates: 1. (6, 45° ) 2. (2, 330°) æ 3p ö  π 3. ç −2, ÷ è 4.  1,   2 4 ø Find the polar coordinates of the following rectangular coordinates: 5. ( − 3, - 3) 6. (5, 5) 7. (-3, 1) 8. (4, 2) Write the equation in polar form. Round φ to the nearest degree. 9. 2x + ψ= −3 10. y = −3ξ − 4 11. 2x − 2 ψ= 6 Write each equation in rectangular form.  π  π 12. 3 = ρχοσ θ −  13. 4 = ρχοσ θ +   3  2 Simplify the complex numbers. 14. i10 + ι25 15. ( 2 + 3ι) − ( 4 − 4 ι) 16. ( 2 + 7ι) + ( −3 − ι) 17. i 3 ( 4 − 3ι) 4 + 2ι 18. (i − 7 ) ( −ι + 7 ) 19. 5 − 2ι 5+ι 20. 1 − 2ι Convert the complex number into polar form. 21. 2 + 2ι 22. −6 - 4i 23. 4 24. 3i
  • 2.
    Find each productor quotient. Express the result in rectangular form.  π π  π π 25. 4  cos + ι σ  ⋅ 3  χοσ + ι σ  ιν ιν  3 3  3 3  π π  π π 26. 8  cos + ι σ  ⋅ 4  χοσ + ι σ  ιν ιν  4 4  2 2  7π 7π   5π 5π  27. 8  cos + ισιν  ÷ 2  χοσ + ι σιν   6 6   3 3 Find the power. Express the result in rectangular form. 8 7 28. ( 2 + 2ι) 29. ( 3 − ι) ( −1 + i ) ( −2 - 2i ) 4 3 30. 31. 32. i1/ 4 33. 3 3+ι