1.3 Complex Numbers
Chapter 1 Equations and Inequalities
Concepts and Objectives
⚫ Understand basic concepts of complex numbers
⚫ Perform operations on complex numbers
Imaginary Numbers
⚫ As you should recall from Algebra 2, there is no real
number solution of the equation x2 = ‒1, since ‒1 has no
real square root.
⚫ The number i is defined to have the following property:
i2 = ‒1
Thus, and it is called the imaginary unit.
⚫ For a positive real number a, .
1i = −
a i a− =
a. b. c.
Imaginary Numbers (cont.)
Examples: Simplify.
16− 70− 48−
a. b. c.
Imaginary Numbers (cont.)
Examples: Simplify.
16− 70− 48−
16 4i i= 70i=
a. b. c.
Imaginary Numbers (cont.)
Examples: Simplify.
16− 70− 48−
16 4i i= 70i= 48i
a. b. c.
Imaginary Numbers (cont.)
Examples: Simplify.
16− 70− 48−
16 4i i= 70i= 48i
16 3
4 4
a. b. c.
Imaginary Numbers (cont.)
Examples: Simplify.
16− 70− 48−
16 4i i= 70i= 48i
16 3
4 4
a. b. c.
Imaginary Numbers (cont.)
Examples: Simplify.
16− 70− 48−
16 4i i= 70i= 48i
16 3
4 4
34i=
Imaginary Numbers (cont.)
⚫ Products or quotients with negative radicands are
simplified by first rewriting . Then the
properties of real numbers are applied, together with
the fact that i2 = ‒1.
Use this definition before using other rules for
radicals. In particular, the rule is valid
only when c and d are not both negative. Example:
c d cd=
( )( )4 9 36 6− − = = ( )( ) 2
4 9 2 3 6 6i i i− − = = = −
a i a− =
Imaginary Numbers (cont.)
Examples: Simplify each answer
a) b)
c) d)
7 7− − 6 10− −
20
2
−
−
48
24
−
Imaginary Numbers (cont.)
Examples: Simplify each answer
a) b)
c) d)
( )
2
2
7 7 7 7
7
1 7 7
i i
i
− − =
=
= − = −
2
6 10 6 10
60
1 4 15
2 15
i i
i
− − =
=
= −
= −
20 20
2 2
20
10
2
i
i
−
=
−
= =
48 48
24 24
48
2
24
i
i i
−
=
= =
Complex Numbers
⚫ In the complex number a + bi, a is the real part and bi is
the imaginary part.
⚫ a + bi = c + di if and only if a = c and b = d.
⚫ All properties of real numbers can be extended to
complex numbers.
Complex numbers
a + bi,
a and b are real
Nonreal complex
numbers a + bi, b  0
Real numbers
a + bi, b = 0
Irrational numbers
Rational numbers
Integers
Non-integers
Complex Numbers (cont.)
Example: Re-write the expression in standard form a + bi
8 128
4
− + −
Complex Numbers (cont.)
Example: Re-write the expression in standard form a + bi
8 128 8 128
4 4
8 64 2
4
8 8 2
2 2 2
4
i
i
i
i
− + − − +
=
− +
=
− +
= = − +
Complex Numbers (cont.)
Examples: Perform the given operation.
⚫
⚫
( ) ( )4 3 6 7i i− + − −
( )( )2 3 3 4i i− +
Complex Numbers (cont.)
Examples: Perform the given operation.
⚫
⚫
( ) ( )4 3 6 7i i− + − − ( )4 6 3 7
10 10
i i
i
= − − + − −
= − +
( )( )2 3 3 4i i− + ( ) ( ) ( ) ( )
( )
2
2 3 2 4 3 3 3 4
6 8 9 12
6 12 1
18
i i i i
i i i
i
i
= + − −
= + − −
= − − −
= −
Complex Numbers (cont.)
Examples: Perform the given operation.
⚫
⚫
( )
2
4 3i+
( )( )6 5 6 5i i+ −
Complex Numbers (cont.)
Examples: Perform the given operation.
⚫
⚫
( )
2
4 3i+ 2
16 24 9
16 24 9 7 24
i i
i i
= + +
= + − = +
( )( )6 5 6 5i i+ −
( )
2
36 25
36 25
61, or 61 0
i
i
= −
= − −
= +
These numbers are
examples of complex
conjugates. Their
product is always a
real number.
Complex Numbers (still cont.)
⚫ Complex conjugates:
⚫ No more kittens need to die!
⚫ We can also use this property to divide
complex numbers by multiplying top
and bottom by the complex conjugate
of the denominator.
For real numbers a and b,
( )( ) 2 2
a bi a bi a b+ − = +
Complex Numbers (still cont.)
Example: Write each quotient in standard form a + bi
⚫
⚫
3 2
5
i
i
+
−
5 5
3
i
i
−
+
Complex Numbers (still cont.)
Example: Write each quotient in standard form a + bi
⚫
⚫
3 2
5
i
i
+
−
( )( )
( )( )
3 2 5
5 5
15 13 2 13 13 1 1
25 1 26 2 2
i i
i i
i i
i
+ +
=
− +
+ − +
= = = +
+
5 5
3
i
i
−
+
Complex Numbers (still cont.)
Example: Write each quotient in standard form a + bi
⚫
⚫
3 2
5
i
i
+
−
( )( )
( )( )
3 2 5
5 5
15 13 2 13 13 1 1
25 1 26 2 2
i i
i i
i i
i
+ +
=
− +
+ − +
= = = +
+
5 5
3
i
i
−
+
( )( )
( )( )
5 5 3
3 3
15 20 5 10 20
1 2
9 1 10
i i
i i
i i
i
− −
=
+ −
− − −
= = = −
+
Powers of i
⚫ An interesting pattern develops as we look beyond i2:
1
i i=
2
1i = −
3 2
ii i i= = −
4 2 2
1i i i=  =
5 4
ii i i=  =
6 4 2
1i i i=  = −
7 4 3
ii i i=  = −
8 4 4
1i i i=  =
Powers of i (cont.)
⚫ Since this pattern repeats every fourth power, divide the
exponent by 4 and find where the remainder is on this
list.
Example: Simplify i19
19 3
19 4 4 remainder 3
i i i
 =
= = −
Classwork
⚫ College Algebra
⚫ Page 109: 18-36, pg. 88: 26-42, pg. 41: 58-68 (all
even)

1.3 Complex Numbers

  • 1.
    1.3 Complex Numbers Chapter1 Equations and Inequalities
  • 2.
    Concepts and Objectives ⚫Understand basic concepts of complex numbers ⚫ Perform operations on complex numbers
  • 3.
    Imaginary Numbers ⚫ Asyou should recall from Algebra 2, there is no real number solution of the equation x2 = ‒1, since ‒1 has no real square root. ⚫ The number i is defined to have the following property: i2 = ‒1 Thus, and it is called the imaginary unit. ⚫ For a positive real number a, . 1i = − a i a− =
  • 4.
    a. b. c. ImaginaryNumbers (cont.) Examples: Simplify. 16− 70− 48−
  • 5.
    a. b. c. ImaginaryNumbers (cont.) Examples: Simplify. 16− 70− 48− 16 4i i= 70i=
  • 6.
    a. b. c. ImaginaryNumbers (cont.) Examples: Simplify. 16− 70− 48− 16 4i i= 70i= 48i
  • 7.
    a. b. c. ImaginaryNumbers (cont.) Examples: Simplify. 16− 70− 48− 16 4i i= 70i= 48i 16 3 4 4
  • 8.
    a. b. c. ImaginaryNumbers (cont.) Examples: Simplify. 16− 70− 48− 16 4i i= 70i= 48i 16 3 4 4
  • 9.
    a. b. c. ImaginaryNumbers (cont.) Examples: Simplify. 16− 70− 48− 16 4i i= 70i= 48i 16 3 4 4 34i=
  • 10.
    Imaginary Numbers (cont.) ⚫Products or quotients with negative radicands are simplified by first rewriting . Then the properties of real numbers are applied, together with the fact that i2 = ‒1. Use this definition before using other rules for radicals. In particular, the rule is valid only when c and d are not both negative. Example: c d cd= ( )( )4 9 36 6− − = = ( )( ) 2 4 9 2 3 6 6i i i− − = = = − a i a− =
  • 11.
    Imaginary Numbers (cont.) Examples:Simplify each answer a) b) c) d) 7 7− − 6 10− − 20 2 − − 48 24 −
  • 12.
    Imaginary Numbers (cont.) Examples:Simplify each answer a) b) c) d) ( ) 2 2 7 7 7 7 7 1 7 7 i i i − − = = = − = − 2 6 10 6 10 60 1 4 15 2 15 i i i − − = = = − = − 20 20 2 2 20 10 2 i i − = − = = 48 48 24 24 48 2 24 i i i − = = =
  • 13.
    Complex Numbers ⚫ Inthe complex number a + bi, a is the real part and bi is the imaginary part. ⚫ a + bi = c + di if and only if a = c and b = d. ⚫ All properties of real numbers can be extended to complex numbers. Complex numbers a + bi, a and b are real Nonreal complex numbers a + bi, b  0 Real numbers a + bi, b = 0 Irrational numbers Rational numbers Integers Non-integers
  • 14.
    Complex Numbers (cont.) Example:Re-write the expression in standard form a + bi 8 128 4 − + −
  • 15.
    Complex Numbers (cont.) Example:Re-write the expression in standard form a + bi 8 128 8 128 4 4 8 64 2 4 8 8 2 2 2 2 4 i i i i − + − − + = − + = − + = = − +
  • 16.
    Complex Numbers (cont.) Examples:Perform the given operation. ⚫ ⚫ ( ) ( )4 3 6 7i i− + − − ( )( )2 3 3 4i i− +
  • 17.
    Complex Numbers (cont.) Examples:Perform the given operation. ⚫ ⚫ ( ) ( )4 3 6 7i i− + − − ( )4 6 3 7 10 10 i i i = − − + − − = − + ( )( )2 3 3 4i i− + ( ) ( ) ( ) ( ) ( ) 2 2 3 2 4 3 3 3 4 6 8 9 12 6 12 1 18 i i i i i i i i i = + − − = + − − = − − − = −
  • 18.
    Complex Numbers (cont.) Examples:Perform the given operation. ⚫ ⚫ ( ) 2 4 3i+ ( )( )6 5 6 5i i+ −
  • 19.
    Complex Numbers (cont.) Examples:Perform the given operation. ⚫ ⚫ ( ) 2 4 3i+ 2 16 24 9 16 24 9 7 24 i i i i = + + = + − = + ( )( )6 5 6 5i i+ − ( ) 2 36 25 36 25 61, or 61 0 i i = − = − − = + These numbers are examples of complex conjugates. Their product is always a real number.
  • 20.
    Complex Numbers (stillcont.) ⚫ Complex conjugates: ⚫ No more kittens need to die! ⚫ We can also use this property to divide complex numbers by multiplying top and bottom by the complex conjugate of the denominator. For real numbers a and b, ( )( ) 2 2 a bi a bi a b+ − = +
  • 21.
    Complex Numbers (stillcont.) Example: Write each quotient in standard form a + bi ⚫ ⚫ 3 2 5 i i + − 5 5 3 i i − +
  • 22.
    Complex Numbers (stillcont.) Example: Write each quotient in standard form a + bi ⚫ ⚫ 3 2 5 i i + − ( )( ) ( )( ) 3 2 5 5 5 15 13 2 13 13 1 1 25 1 26 2 2 i i i i i i i + + = − + + − + = = = + + 5 5 3 i i − +
  • 23.
    Complex Numbers (stillcont.) Example: Write each quotient in standard form a + bi ⚫ ⚫ 3 2 5 i i + − ( )( ) ( )( ) 3 2 5 5 5 15 13 2 13 13 1 1 25 1 26 2 2 i i i i i i i + + = − + + − + = = = + + 5 5 3 i i − + ( )( ) ( )( ) 5 5 3 3 3 15 20 5 10 20 1 2 9 1 10 i i i i i i i − − = + − − − − = = = − +
  • 24.
    Powers of i ⚫An interesting pattern develops as we look beyond i2: 1 i i= 2 1i = − 3 2 ii i i= = − 4 2 2 1i i i=  = 5 4 ii i i=  = 6 4 2 1i i i=  = − 7 4 3 ii i i=  = − 8 4 4 1i i i=  =
  • 25.
    Powers of i(cont.) ⚫ Since this pattern repeats every fourth power, divide the exponent by 4 and find where the remainder is on this list. Example: Simplify i19 19 3 19 4 4 remainder 3 i i i  = = = −
  • 26.
    Classwork ⚫ College Algebra ⚫Page 109: 18-36, pg. 88: 26-42, pg. 41: 58-68 (all even)