Reduction Formula
Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
Reduction Formula
   Reduction (or recurrence) formulae expresses a given integral as
   the sum of a function and a known integral.
   Integration by parts often used to find the formula.


e.g. (i) (1987)      

                                                  n  1I
                     2
    Given that I n   cos xdx, prove that I n  
                          n
                                                         n2
                     0                            n 
                                                      
                                                      2
    where n is an integer and n  2, hence evaluate  cos 5 xdx
                                                      0

     2
I n   cos n xdx
     0

     2
I n   cos n xdx
     0
     
     2
    cos n 1 x cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                      u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx   du  n  1 cos n  2 x sin xdx dv  cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0
                                       
             2                          2
    n  1 cos n  2 xdx  n  1 cos n xdx
             0                          0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0
                                       
             2                          2
    n  1 cos n  2 xdx  n  1 cos n xdx
             0                          0

    n  1I n  2  n  1I n

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0
                                       
             2                          2
    n  1 cos n  2 xdx  n  1 cos n xdx
             0                          0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0
                                       
             2                          2
    n  1 cos n  2 xdx  n  1 cos n xdx
             0                          0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

      In   n  1I
                    n2
               n 

2


0
  cos 5 xdx  I 5

2


0
  cos 5 xdx  I 5
             4
             I3
             5

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
              8
             sin x 0
                      2
             15

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
               8
             sin x 0
                      2
              15
                   
              sin  sin 0 
               8
                           
              15   2       
               8
            
              15
ii  Given that I n   cot n xdx, find I 6
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x
                                                      du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx

            1 n 1
             u  I n2
          n 1
            1
             cot n 1 x  I n  2
          n 1
 cot 6 xdx  I 6
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  x  c
                 5       3
(iii) (2004 Question 8b)
                 
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                4 tan n x sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0

                                                         when x  0, u  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
                  1                       1
                    0               
                n 1                    n 1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                               2n  1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1
 1
                                        n

b) Deduce that J n  J n1                 for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                      n             n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n



                  1
                           n

               
                  2n  1
 1
                                        n
                         m
c) Show that J m        
                     4   n 1   2n  1
 1
                                               n
                               m
c) Show that J m             
                          4     n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
           1          1                 1
                  m             m 1                    1

                                                        J0
          2m  1         2m  3                     1
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1           
                         n
           m
                             4 dx
          n 1   2n  1          0
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1            
                         n
           m
                             4 dx
          n 1   2n  1          0


                  1
                         n
           m                          
                             x 04
          n 1   2n  1
                  1
                         n
           m
                                 
                           
          n 1   2n  1          4
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
                                                   when x  0, u  0
                                                                
                                                           x       ,u  1
                                                                4
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                                4
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                            4
                           1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                         n 1
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                              4
                             1
e) Deduce that 0  I n           and conclude that J n  0 as n  
                           n 1
    un
           0, for all u  0
   1 u 2
1  un
d ) Use the substitution u  tan x to show that I n           du
                                                       0 1 u 2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                            4
                              1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                            n 1
    un
            0, for all u  0
   1 u 2

              n
          1 u
 In           du  0, for all u  0
         0 1 u2
1
I n  I n 2   
                 n 1
1
I n  I n 2   
                 n 1
       1
In        I n 2
     n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
                   1
 0  In 
                 n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In                                  Exercise 2D; 1, 2, 3, 6, 8,
          n 1                                   9, 10, 12, 14
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n

X2 T04 04 reduction formula (2011)

  • 1.
  • 2.
    Reduction Formula Reduction (orrecurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula.
  • 3.
    Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula. e.g. (i) (1987)   n  1I 2 Given that I n   cos xdx, prove that I n   n  n2 0  n   2 where n is an integer and n  2, hence evaluate  cos 5 xdx 0
  • 4.
    2 I n   cos n xdx 0
  • 5.
    2 I n   cos n xdx 0  2   cos n 1 x cos xdx 0
  • 6.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx 0
  • 7.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0
  • 8.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0
  • 9.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n  2 xdx  n  1 cos n xdx 0 0
  • 10.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n  2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n
  • 11.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n  2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2
  • 12.
    2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n  2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2 In   n  1I  n2  n 
  • 13.
     2  0 cos5 xdx  I 5
  • 14.
     2  0 cos5 xdx  I 5 4  I3 5
  • 15.
     2  0 cos5 xdx  I 5 4  I3 5 4 2   I1 5 3
  • 16.
     2  0 cos5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0
  • 17.
     2  0 cos5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15
  • 18.
     2  0 cos5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15    sin  sin 0  8   15  2  8  15
  • 19.
    ii  Giventhat I n   cot n xdx, find I 6
  • 20.
    ii  Giventhat I n   cot n xdx, find I 6 I n   cot n xdx
  • 21.
    ii  Giventhat I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx
  • 22.
    ii  Giventhat I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx
  • 23.
    ii  Giventhat I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x du  cosec 2 xdx
  • 24.
    ii  Giventhat I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx
  • 25.
    ii  Giventhat I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx 1 n 1  u  I n2 n 1 1  cot n 1 x  I n  2 n 1
  • 26.
     cot 6xdx  I 6
  • 27.
     cot 6xdx  I 6 1 5   cot x  I 4 5
  • 28.
     cot 6xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3
  • 29.
     cot 6xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3
  • 30.
     cot 6xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3
  • 31.
     cot 6xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3 1 5 1 3   cot x  cot x  cot x  x  c 5 3
  • 32.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1
  • 33.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0
  • 34.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0    4 tan n x sec 2 xdx 0
  • 35.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0
  • 36.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 when x  0, u  0  x ,u  1 4
  • 37.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  x ,u  1 4
  • 38.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0 
  • 39.
    (iii) (2004 Question8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0  1 1  0  n 1 n 1
  • 40.
     1 n b) Deduce that J n  J n1  for n  1 2n  1
  • 41.
     1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1
  • 42.
     1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n
  • 43.
     1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n
  • 44.
     1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n  1 n  2n  1
  • 45.
     1 n  m c) Show that J m   4 n 1 2n  1
  • 46.
     1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1
  • 47.
     1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3
  • 48.
     1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1
  • 49.
     1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0
  • 50.
     1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0  1 n m     x 04 n 1 2n  1  1 n m    n 1 2n  1 4
  • 51.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2
  • 52.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0
  • 53.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2
  • 54.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2 when x  0, u  0  x ,u  1 4
  • 55.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4
  • 56.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1
  • 57.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2
  • 58.
    1 un d) Use the substitution u  tan x to show that I n   du 0 1 u 2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2 n 1 u  In   du  0, for all u  0 0 1 u2
  • 59.
    1 I n I n 2  n 1
  • 60.
    1 I n I n 2  n 1 1 In   I n 2 n 1
  • 61.
    1 In  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1
  • 62.
    1 In  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1
  • 63.
    1 In  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1
  • 64.
    1 In  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0
  • 65.
    1 In  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n
  • 66.
    1 In  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  Exercise 2D; 1, 2, 3, 6, 8, n 1 9, 10, 12, 14 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n