SlideShare a Scribd company logo
Exponential Growth & Decay
Exponential Growth & Decay
Growth and decay is proportional to population.
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt   1
             
          dP kP
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt    1
             
          dP kP
               1 dP
           t 
               k P
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k
          kt  log P  c
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k
          kt  log P  c
       log P  kt  c
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k
          kt  log P  c
       log P  kt  c
          P  e kt c
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k
          kt  log P  c
       log P  kt  c
          P  e kt c
          P  e kt  e c
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k                          P  Ae kt
          kt  log P  c
       log P  kt  c
          P  e kt c
          P  e kt  e c
Exponential Growth & Decay
Growth and decay is proportional to population.
          dP
              kP
          dt
          dt     1
             
          dP kP
               1 dP
           t 
               k P
               1
              log P  c
               k                          P  Ae kt
          kt  log P  c
                                   P = population at time t
       log P  kt  c
          P  e kt c              A = initial population
          P  e kt  e c          k = growth(or decay) constant
                                   t = time
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
a) Show that P  Ae 0.1t is a solution t o the differential equation.
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
                           dP
                               0.1Ae 0.1t
                           dt
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
                           dP
                               0.1Ae 0.1t
                           dt
                               0.1P
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
                           dP
                               0.1Ae 0.1t
                           dt
                               0.1P
                                   1
b) Determine the population after 3 hours correct to 4 significant figures.
                                   2
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
                            dP
                                0.1Ae 0.1t
                            dt
                                0.1P
                                   1
b) Determine the population after 3 hours correct to 4 significant figures.
                                   2
   when t  0, P  1000000
         A  1000000
       P  1000000 e 0.1t
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
                            dP
                                0.1Ae 0.1t
                            dt
                                0.1P
                                   1
b) Determine the population after 3 hours correct to 4 significant figures.
                                   2
   when t  0, P  1000000      when t  3 .5, P  1000000 e 0.13.5 
        A  1000000                              1 4 19 000
       P  1000000 e 0.1t
e.g.(i) The growth rate per hour of a population of bacteria is 10% of
        the population. The initial population is 1000000
 a) Show that P  Ae 0.1t is a solution t o the differential equation.
                             P  Ae 0.1t
                            dP
                                0.1Ae 0.1t
                            dt
                                0.1P
                                   1
b) Determine the population after 3 hours correct to 4 significant figures.
                                   2
   when t  0, P  1000000      when t  3 .5, P  1000000 e 0.13.5 
        A  1 000000                             1 4 19 000
       P  1000000 e 0.1t
                        1
                after 3 hours there is 1419000 bacteria
                        2
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP
          kP
      dt
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP
          kP
      dt
        P  Ae kt
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP
          kP
      dt
        P  Ae kt
 when t  0, P  1732
      A  1732
     P  1732e kt
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP                         when t  10, P  1260
          kP
      dt
                                 i.e. 1260  1732e10 k
        P  Ae kt
 when t  0, P  1732
      A  1732
     P  1732e kt
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP                         when t  10, P  1260
          kP
      dt
                                 i.e. 1260  1732e10 k
        P  Ae kt                              1260
                                       e10 k 
 when t  0, P  1732                          1732
      A  1732
     P  1732e kt
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP                         when t  10, P  1260
          kP
      dt
                                 i.e. 1260  1732e10 k
        P  Ae kt                              1260
                                       e10 k 
 when t  0, P  1732                          1732
      A  1732                                    1260 
                                       10k  log        
     P  1732e kt                                  1732 
                                                1
                                           k  log   1260 
                                                            
                                               10  1732 
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP                         when t  10, P  1260
          kP
      dt
                                 i.e. 1260  1732e10 k
        P  Ae kt                              1260
                                       e10 k 
 when t  0, P  1732                          1732
     A  1732                                     1260 
                                       10k  log        
     P  1732e kt                                  1732 
                                                1
                                           k  log   1260 
                                                            
                                               10  1732 
                                         k  0.0318165
(ii) On an island, the population in 1960 was 1732 and in 1970 it was
     1260.
 a) Find the annual growth rate to the nearest %, assuming it is
     proportional to population.
      dP                           when t  10, P  1260
          kP
      dt
                                  i.e. 1260  1732e10 k
        P  Ae kt                               1260
                                        e10 k 
 when t  0, P  1732                           1732
     A  1732                                      1260 
                                        10k  log        
     P  1732e kt                                   1732 
                                                 1
                                            k  log   1260 
                                                             
                                                10  1732 
                                          k  0.0318165
                         growth rate is - 3%
b) In how many years will the population be half that in 1960?
b) In how many years will the population be half that in 1960?
  when P  866, 866  1732e kt
b) In how many years will the population be half that in 1960?
  when P  866, 866  1732e kt
                       1
                 e 
                  kt

                       2
                           1
                  kt  log
                           2
                       1     1
                   t  log
                       k     2
b) In how many years will the population be half that in 1960?
  when P  866, 866  1732e kt
                       1
                 e 
                  kt

                       2
                           1
                  kt  log
                           2
                       1     1
                   t  log
                       k     2
                     t  21.786
b) In how many years will the population be half that in 1960?
  when P  866, 866  1732e kt
                       1
                 e 
                  kt

                       2
                           1
                  kt  log
                           2
                       1     1
                   t  log
                       k     2
                    t  21.786
          In 22 years the population has halved
b) In how many years will the population be half that in 1960?
  when P  866, 866  1732e kt
                       1
                 e 
                  kt

                       2
                           1
                  kt  log
                           2
                       1     1
                   t  log
                       k     2
                    t  21.786
          In 22 years the population has halved



                   Exercise 7G; 2, 3, 7, 9, 11, 12

More Related Content

Viewers also liked

X2 T08 01 circle geometry
X2 T08 01 circle geometryX2 T08 01 circle geometry
X2 T08 01 circle geometryNigel Simmons
 
11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)Nigel Simmons
 
11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)Nigel Simmons
 
11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)Nigel Simmons
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)Nigel Simmons
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]Nigel Simmons
 
X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)Nigel Simmons
 
11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)Nigel Simmons
 
11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)Nigel Simmons
 
11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)Nigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)Nigel Simmons
 
X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)Nigel Simmons
 
X2 T01 12 locus & complex nos 3 (2011)
X2 T01 12  locus & complex nos 3 (2011)X2 T01 12  locus & complex nos 3 (2011)
X2 T01 12 locus & complex nos 3 (2011)Nigel Simmons
 
11X1 T09 04 chain rule (2010)
11X1 T09 04 chain rule (2010)11X1 T09 04 chain rule (2010)
11X1 T09 04 chain rule (2010)Nigel Simmons
 
11X1 T14 05 sum of an arithmetic series
11X1 T14 05 sum of an arithmetic series11X1 T14 05 sum of an arithmetic series
11X1 T14 05 sum of an arithmetic seriesNigel Simmons
 
11X1 T12 02 critical points (2010)
11X1 T12 02 critical points (2010)11X1 T12 02 critical points (2010)
11X1 T12 02 critical points (2010)Nigel Simmons
 
11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles11 x1 t08 05 similar triangles
11 x1 t08 05 similar trianglesNigel Simmons
 
11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)Nigel Simmons
 

Viewers also liked (20)

X2 T08 01 circle geometry
X2 T08 01 circle geometryX2 T08 01 circle geometry
X2 T08 01 circle geometry
 
11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)
 
11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)
 
11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]
 
X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)
 
11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)
 
11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)11X1 T09 06 quotient & reciprocal rules (2011)
11X1 T09 06 quotient & reciprocal rules (2011)
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)
 
X2 T01 12 locus & complex nos 3 (2011)
X2 T01 12  locus & complex nos 3 (2011)X2 T01 12  locus & complex nos 3 (2011)
X2 T01 12 locus & complex nos 3 (2011)
 
11X1 T09 04 chain rule (2010)
11X1 T09 04 chain rule (2010)11X1 T09 04 chain rule (2010)
11X1 T09 04 chain rule (2010)
 
11X1 T14 05 sum of an arithmetic series
11X1 T14 05 sum of an arithmetic series11X1 T14 05 sum of an arithmetic series
11X1 T14 05 sum of an arithmetic series
 
11X1 T12 02 critical points (2010)
11X1 T12 02 critical points (2010)11X1 T12 02 critical points (2010)
11X1 T12 02 critical points (2010)
 
11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles11 x1 t08 05 similar triangles
11 x1 t08 05 similar triangles
 
11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)11X1 T11 03 parametric coordinates (2010)
11X1 T11 03 parametric coordinates (2010)
 

Similar to 12X1 T04 02 growth & decay (2011)

12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)Nigel Simmons
 
Module 5 exponential functions
Module 5   exponential functionsModule 5   exponential functions
Module 5 exponential functionsAya Chavez
 
4.6 Exponential Growth and Decay
4.6 Exponential Growth and Decay4.6 Exponential Growth and Decay
4.6 Exponential Growth and Decay
smiller5
 
Pre-Cal 40S Slides April 12, 2007
Pre-Cal 40S Slides April 12, 2007Pre-Cal 40S Slides April 12, 2007
Pre-Cal 40S Slides April 12, 2007
Darren Kuropatwa
 
The population of a community is known to increase at a rate proport.pdf
The population of a community is known to increase at a rate proport.pdfThe population of a community is known to increase at a rate proport.pdf
The population of a community is known to increase at a rate proport.pdf
amitcbd
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)
anil7nayak
 
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van Noordwijk
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van NoordwijkWorkshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van Noordwijk
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van NoordwijkLotteKlapwijk
 
Exponential growth and decay
Exponential growth and decayExponential growth and decay
Exponential growth and decay
Simon Borgert
 
Pre-Cal 40S April 29, 2009
Pre-Cal 40S April 29, 2009Pre-Cal 40S April 29, 2009
Pre-Cal 40S April 29, 2009
Darren Kuropatwa
 

Similar to 12X1 T04 02 growth & decay (2011) (10)

12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)
 
Module 5 exponential functions
Module 5   exponential functionsModule 5   exponential functions
Module 5 exponential functions
 
4.6 Exponential Growth and Decay
4.6 Exponential Growth and Decay4.6 Exponential Growth and Decay
4.6 Exponential Growth and Decay
 
Pre-Cal 40S Slides April 12, 2007
Pre-Cal 40S Slides April 12, 2007Pre-Cal 40S Slides April 12, 2007
Pre-Cal 40S Slides April 12, 2007
 
The population of a community is known to increase at a rate proport.pdf
The population of a community is known to increase at a rate proport.pdfThe population of a community is known to increase at a rate proport.pdf
The population of a community is known to increase at a rate proport.pdf
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)
 
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van Noordwijk
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van NoordwijkWorkshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van Noordwijk
Workshop Trade-off Analysis - CGIAR_19 Feb 2013_CRP 6_Meine van Noordwijk
 
Exponential growth and decay
Exponential growth and decayExponential growth and decay
Exponential growth and decay
 
Population Dynamics
Population DynamicsPopulation Dynamics
Population Dynamics
 
Pre-Cal 40S April 29, 2009
Pre-Cal 40S April 29, 2009Pre-Cal 40S April 29, 2009
Pre-Cal 40S April 29, 2009
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 

Recently uploaded (20)

Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 

12X1 T04 02 growth & decay (2011)

  • 2. Exponential Growth & Decay Growth and decay is proportional to population.
  • 3. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt
  • 4. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP
  • 5. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P
  • 6. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k
  • 7. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k kt  log P  c
  • 8. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k kt  log P  c log P  kt  c
  • 9. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k kt  log P  c log P  kt  c P  e kt c
  • 10. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k kt  log P  c log P  kt  c P  e kt c P  e kt  e c
  • 11. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k P  Ae kt kt  log P  c log P  kt  c P  e kt c P  e kt  e c
  • 12. Exponential Growth & Decay Growth and decay is proportional to population. dP  kP dt dt 1  dP kP 1 dP t  k P 1  log P  c k P  Ae kt kt  log P  c P = population at time t log P  kt  c P  e kt c A = initial population P  e kt  e c k = growth(or decay) constant t = time
  • 13. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000
  • 14. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation.
  • 15. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t
  • 16. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t dP  0.1Ae 0.1t dt
  • 17. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t dP  0.1Ae 0.1t dt  0.1P
  • 18. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t dP  0.1Ae 0.1t dt  0.1P 1 b) Determine the population after 3 hours correct to 4 significant figures. 2
  • 19. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t dP  0.1Ae 0.1t dt  0.1P 1 b) Determine the population after 3 hours correct to 4 significant figures. 2 when t  0, P  1000000  A  1000000 P  1000000 e 0.1t
  • 20. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t dP  0.1Ae 0.1t dt  0.1P 1 b) Determine the population after 3 hours correct to 4 significant figures. 2 when t  0, P  1000000 when t  3 .5, P  1000000 e 0.13.5   A  1000000  1 4 19 000 P  1000000 e 0.1t
  • 21. e.g.(i) The growth rate per hour of a population of bacteria is 10% of the population. The initial population is 1000000 a) Show that P  Ae 0.1t is a solution t o the differential equation. P  Ae 0.1t dP  0.1Ae 0.1t dt  0.1P 1 b) Determine the population after 3 hours correct to 4 significant figures. 2 when t  0, P  1000000 when t  3 .5, P  1000000 e 0.13.5   A  1 000000  1 4 19 000 P  1000000 e 0.1t 1  after 3 hours there is 1419000 bacteria 2
  • 22. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population.
  • 23. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP  kP dt
  • 24. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP  kP dt P  Ae kt
  • 25. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP  kP dt P  Ae kt when t  0, P  1732  A  1732 P  1732e kt
  • 26. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP when t  10, P  1260  kP dt i.e. 1260  1732e10 k P  Ae kt when t  0, P  1732  A  1732 P  1732e kt
  • 27. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP when t  10, P  1260  kP dt i.e. 1260  1732e10 k P  Ae kt 1260 e10 k  when t  0, P  1732 1732  A  1732 P  1732e kt
  • 28. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP when t  10, P  1260  kP dt i.e. 1260  1732e10 k P  Ae kt 1260 e10 k  when t  0, P  1732 1732  A  1732  1260  10k  log  P  1732e kt  1732  1 k  log  1260   10  1732 
  • 29. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP when t  10, P  1260  kP dt i.e. 1260  1732e10 k P  Ae kt 1260 e10 k  when t  0, P  1732 1732  A  1732  1260  10k  log  P  1732e kt  1732  1 k  log  1260   10  1732  k  0.0318165
  • 30. (ii) On an island, the population in 1960 was 1732 and in 1970 it was 1260. a) Find the annual growth rate to the nearest %, assuming it is proportional to population. dP when t  10, P  1260  kP dt i.e. 1260  1732e10 k P  Ae kt 1260 e10 k  when t  0, P  1732 1732  A  1732  1260  10k  log  P  1732e kt  1732  1 k  log  1260   10  1732  k  0.0318165  growth rate is - 3%
  • 31. b) In how many years will the population be half that in 1960?
  • 32. b) In how many years will the population be half that in 1960? when P  866, 866  1732e kt
  • 33. b) In how many years will the population be half that in 1960? when P  866, 866  1732e kt 1 e  kt 2 1 kt  log 2 1 1 t  log k 2
  • 34. b) In how many years will the population be half that in 1960? when P  866, 866  1732e kt 1 e  kt 2 1 kt  log 2 1 1 t  log k 2 t  21.786
  • 35. b) In how many years will the population be half that in 1960? when P  866, 866  1732e kt 1 e  kt 2 1 kt  log 2 1 1 t  log k 2 t  21.786  In 22 years the population has halved
  • 36. b) In how many years will the population be half that in 1960? when P  866, 866  1732e kt 1 e  kt 2 1 kt  log 2 1 1 t  log k 2 t  21.786  In 22 years the population has halved Exercise 7G; 2, 3, 7, 9, 11, 12