SlideShare a Scribd company logo
1 of 53
Download to read offline
Chord of Contact         y
                                 b
                                              T  x0 , y0 
                      -a                    a x

                                -b

From an external point T, two tangents may be drawn.
Chord of Contact
                                y
                                 b
                                         P x1 , y1 
                                                   T  x0 , y0 
                      -a                     a x

                                -b

From an external point T, two tangents may be drawn.
                             xx yy
   tangent at P has equation 12  12  1
                             a    b
Chord of Contact
                                y
                                 b
                                         P x1 , y1 
                                                   T  x0 , y0 
                      -a                     a x
                                          Q  x2 , y 2 
                                -b

From an external point T, two tangents may be drawn.
                             xx yy
   tangent at P has equation 12  12  1
                             a    b
                             xx y y
   tangent at Q has equation 22  22  1
                             a     b
Chord of Contact
                                y
                                 b
                                         P x1 , y1 
                                                   T  x0 , y0 
                      -a                     a x
                                          Q  x2 , y 2 
                                -b

From an external point T, two tangents may be drawn.
                             xx yy
   tangent at P has equation 12  12  1
                             a    b
                             xx y y
   tangent at Q has equation 22  22  1
Now T lies on both lines,    a     b
Chord of Contact
                              y
                               b
                                       P x1 , y1 
                                                 T  x0 , y0 
                     -a                    a x
                                        Q  x2 , y 2 
                              -b

From an external point T, two tangents may be drawn.
                              xx yy
   tangent at P has equation 12  12  1
                              a     b
                              xx y y
   tangent at Q has equation 22  22  1
Now T lies on both lines,     a      b
                          xx yy                x2 x0 y2 y0
                        1 2 0  1 2 0  1 and    2
                                                     2 1
                           a     b              a     b
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
which must be the line PQ i.e. chord of contact
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
which must be the line PQ i.e. chord of contact

Similarly the chord of contact of the hyperbola has the equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
Rectangular Hyperbola             y
                                 c
                            P cp, 
                                 p     c
                                       Q cq, 
                                         q
                                             x
                 xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
Rectangular Hyperbola                y
                                    c
                            P cp, 
                                    p        c
                                             Q cq, 
                             T  x0 , y0      q
                                                   x
                 xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                 2cpq 2c 
 2) Show that T has coordinates       ,     
                                 p  q p  q
Rectangular Hyperbola                y
                                    c
                            P cp, 
                                    p        c
                                             Q cq, 
                             T  x0 , y0      q
                                                   x
                 xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                 2cpq 2c 
 2) Show that T has coordinates       ,     
                                 p  q p  q
         2cpq                  2c
   x0                  y0 
         pq                  pq
Rectangular Hyperbola                  y
                                      c
                              P cp, 
                                      p        c
                                               Q cq, 
                               T  x0 , y0      q
                                                     x
                   xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                    2cpq 2c 
 2) Show that T has coordinates           ,       
                                    p  q p  q
         2cpq                     2c
   x0                    y0 
         pq                     pq
   Substituting into (1); x   p  q x0 y  c p  q 
                                  2c
Rectangular Hyperbola                  y
                                      c
                              P cp, 
                                      p        c
                                               Q cq, 
                               T  x0 , y0      q
                                                     x
                   xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                    2cpq 2c 
 2) Show that T has coordinates           ,        
                                    p  q p  q
         2cpq                     2c
   x0                    y0 
         pq                     pq
   Substituting into (1); x   p  q x0 y  c p  q 
                                  2c
                                    2cx0       2c 2
                                x        y
                                    2cy0        y0
Rectangular Hyperbola                  y
                                      c
                              P cp, 
                                      p        c
                                               Q cq, 
                               T  x0 , y0      q
                                                     x
                   xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                    2cpq 2c 
 2) Show that T has coordinates           ,        
                                    p  q p  q
         2cpq                     2c
   x0                    y0 
         pq                     pq
   Substituting into (1); x   p  q x0 y  c p  q 
                                  2c
                                    2cx0       2c 2
                                x        y             xy0  x0 y  2c 2
                                    2cy0        y0
Geometric Properties
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0       0
                                             e               e
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0        0
                                             e                  e
 chord of contact will have the equation;            a
                                                    x 
                                                       e   yy0  1
                                                      a2       b2
                                                         x yy0
                                                             2 1
                                                        ae b
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0        0
                                             e                  e
 chord of contact will have the equation;            a
                                                    x 
                                                       e   yy0  1
                                                      a2       b2
                                                         x yy0
                                                             2 1
Substitute in focus (ae,0)                              ae b
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0        0
                                             e                  e
 chord of contact will have the equation;            a
                                                    x 
                                                       e   yy0  1
                                                      a2       b2
                                                         x yy0
                                                             2 1
Substitute in focus (ae,0)                              ae b
     ae
          0  1 0
     ae
             1
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
As T is on the directrix it has coordinates    a , y  i.e. x  a
                                                      0        0
                                                e                  e
 chord of contact will have the equation;               a
                                                       x 
                                                          e   yy0  1
                                                         a2       b2
                                                            x yy0
                                                                2 1
Substitute in focus (ae,0)                                 ae b
     ae
          0  1 0           focus lies on chord of contact
     ae
                                 i.e. it is a focal chord
             1
(2) That part of the tangent between the point of contact and the
    directrix subtends a right angle at the corresponding focus.
                                       y
                                           Pa cos , b sin  
                                                                  T
                                             S                        x

                                                                     a
                                                                  x
                                                                     e
(2) That part of the tangent between the point of contact and the
    directrix subtends a right angle at the corresponding focus.
                                       y
                                           Pa cos , b sin  
                                                                  T

Prove: PST  90                            S                        x

                                                                     a
                                                                  x
                                                                     e
(2) That part of the tangent between the point of contact and the
     directrix subtends a right angle at the corresponding focus.
                                        y
                                            Pa cos , b sin  
                                                                   T

Prove: PST  90                             S                        x
                       x cos y sin 
equation of tangent is               1                              a
             a            a       b                                x
               cos                                                   e
          a            y sin 
when x  , e                  1
          e     a         b
(2) That part of the tangent between the point of contact and the
     directrix subtends a right angle at the corresponding focus.
                                          y
                                                Pa cos , b sin  
                                                                       T

Prove: PST  90                                 S                        x
                       x cos y sin 
equation of tangent is                  1                               a
             a            a         b                                  x
               cos                                                       e
          a            y sin 
when x  , e                  1
          e     a         b
               cos y sin 
                              1
                 e        b
                       y sin  e  cos
                               
                          b          e
                                 be  cos 
                             y
                                   e sin 
(2) That part of the tangent between the point of contact and the
     directrix subtends a right angle at the corresponding focus.
                                          y
                                                Pa cos , b sin  
                                                                       T

Prove: PST  90                                 S                        x
                       x cos y sin 
equation of tangent is                  1                               a
             a            a         b                                  x
               cos                                                       e
          a            y sin 
when x  , e                  1
          e     a         b
               cos y sin 
                              1
                 e        b
                       y sin  e  cos                    a be  cos  
                                                     T  ,
                                                                         
                          b          e                   e    e sin  
                                 be  cos 
                             y
                                   e sin 
b sin   0
mPS 
     a cos  ae
        b sin 
   
     acos  e 
b sin   0         be  cos 
mPS                                   0
     a cos  ae    mTS  e sin 
        b sin                 a
                                  ae
   
     acos  e               e
                          be  cos       e
                                      
                            e sin       a  ae 2
b sin   0         be  cos 
mPS                                      0
     a cos  ae    mTS  e sin 
        b sin                  a
                                    ae
   
     acos  e                 e
                          be  cos          e
                                         
                              e sin        a  ae 2
                           be  cos 
                        
                          a 1  e 2 sin 
b sin   0         be  cos 
mPS                                      0
     a cos  ae    mTS  e sin 
        b sin                  a
                                    ae
   
     acos  e                 e
                          be  cos          e
                                         
                              e sin        a  ae 2
                           be  cos 
                        
                          a 1  e 2 sin 
                           be  cos 
                          2
                          a 1  e 2 
                                       sin 
                              a
b sin   0         be  cos 
mPS                                      0
     a cos  ae    mTS  e sin 
        b sin                  a
                                    ae
   
     acos  e                 e
                          be  cos          e
                                         
                              e sin        a  ae 2
                           be  cos 
                        
                          a 1  e 2 sin 
                            be  cos 
                          2
                           a 1  e 2 
                                        sin 
                               a
                           ae  cos 
                         
                             b sin 
b sin   0                    be  cos 
mPS                                                   0
       a cos  ae               mTS  e sin 
          b sin                             a
                                                 ae
     
       acos  e                            e
                                       be  cos          e
                                                      
                                           e sin        a  ae 2
                                        be  cos 
                                     
                                       a 1  e 2 sin 
                                        be  cos 
                                     2
                                      a 1  e 2 
                                                   sin 
                                           a
                                      ae  cos 
                                    
                                         b sin 
              b sin       ae  cos 
mPS  mTS               
            acos  e      b sin 
           1
b sin   0                  be  cos 
mPS                                                 0
       a cos  ae             mTS  e sin 
          b sin                           a
                                               ae
     
       acos  e                          e
                                     be  cos          e
                                                    
                                         e sin        a  ae 2
                                      be  cos 
                                   
                                     a 1  e 2 sin 
                                        be  cos 
                                     2
                                      a 1  e 2 
                                                   sin 
                                           a
                                      ae  cos 
                                    
                                         b sin 
              b sin       ae  cos 
mPS  mTS               
            acos  e      b sin                   PST  90
           1
(3) Reflection Property
    Tangent to an ellipse at a point P on it is equally inclined to
    the focal chords through P.
                       T                  y
                                               P
                                                                  T
                                      S        S                     x
(3) Reflection Property
      Tangent to an ellipse at a point P on it is equally inclined to
      the focal chords through P.
                         T                  y
                                                 P
                                                                    T
                                        S        S                     x


Prove: SPT  S PT 
(3) Reflection Property
       Tangent to an ellipse at a point P on it is equally inclined to
       the focal chords through P.
                          T                  y
                                                  P
                                                                     T
                                         S        S                     x


Prove: SPT  S PT 
  Construct a line || y axis passing through P
(3) Reflection Property
       Tangent to an ellipse at a point P on it is equally inclined to
       the focal chords through P.
                           T                  y
                                                      P
                      N                                             N
                                                                     T
                                          S          S                  x


Prove: SPT  S PT 
  Construct a line || y axis passing through P
   PT PN
                 (ratio of intercepts of || lines)
   PT  PN 
(3) Reflection Property
       Tangent to an ellipse at a point P on it is equally inclined to
       the focal chords through P.
                           T                  y
                                                      P
                      N                                             N
                                                                     T
                                          S          S                  x


Prove: SPT  S PT 
  Construct a line || y axis passing through P
  PT PN
                 (ratio of intercepts of || lines)
  PT  PN 
   PT PT 
      
   PN PN 
ePN  PS   and   ePN   PS 
ePN  PS    and ePN   PS 
         PT PT 
            
         PS PS 
          e    e
ePN  PS    and ePN   PS 
         PT PT 
            
         PS PS 
          e    e
         PT PT 
             
         PS PS 
ePN  PS    and ePN   PS 
         PT PT 
            
         PS PS 
          e    e
         PT PT 
             
         PS PS 
    PST  PS T   90   (proven in property (2))
ePN  PS      and ePN   PS 
           PT PT 
              
           PS PS 
            e    e
           PT PT 
               
           PS PS 
     PST  PS T   90   (proven in property (2))

 sec SPT  sec S PT 
ePN  PS      and ePN   PS 
           PT PT 
              
           PS PS 
            e    e
           PT PT 
               
           PS PS 
     PST  PS T   90   (proven in property (2))

 sec SPT  sec S PT 

     SPT  S PT 
ePN  PS      and ePN   PS 
           PT PT 
              
           PS PS 
            e    e
           PT PT 
               
           PS PS 
     PST  PS T   90   (proven in property (2))

 sec SPT  sec S PT 

     SPT  S PT 
e.g. Find the cartesian equation of z  2  z  2  8
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8
   a4
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2
   a4            4e  2
                        1
                   e
                        2
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2             b 2  a 2 1  e 2 
   a4            4e  2                       1
                                     b 2  16 1  
                   e
                        1                      4
                        2                 12
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2             b 2  a 2 1  e 2 
   a4            4e  2                       1
                                     b 2  16 1  
                   e
                        1                      4
                        2                 12

                                     x2 y2
               locus is the ellipse      1
                                     16 12
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2             b 2  a 2 1  e 2 
   a4            4e  2                       1
                                     b 2  16 1  
                   e
                        1                      4
                        2                 12

                                     x2 y2
               locus is the ellipse      1
                                     16 12




                      Exercise 6E; 1, 2, 4, 7, 8, 10

More Related Content

What's hot

Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_linephysics101
 
X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)Nigel Simmons
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppttuiye
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 
Unit iii
Unit iiiUnit iii
Unit iiimrecedu
 
Formulas optica
Formulas opticaFormulas optica
Formulas opticaFranklinz
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-noteotpeng
 
Naskah Murid Modul 2 Graph Of Functions Ii
Naskah Murid Modul 2 Graph Of Functions IiNaskah Murid Modul 2 Graph Of Functions Ii
Naskah Murid Modul 2 Graph Of Functions IiZURAIDA ADAM
 
Hsn course revision notes
Hsn course revision notesHsn course revision notes
Hsn course revision notesMissParker
 
Fractional Calculus
Fractional CalculusFractional Calculus
Fractional CalculusVRRITC
 
F3006 formulas final
F3006 formulas finalF3006 formulas final
F3006 formulas finalAbraham Prado
 
Naskah Murid Modul 3 Transformation Iii
Naskah Murid Modul 3 Transformation IiiNaskah Murid Modul 3 Transformation Iii
Naskah Murid Modul 3 Transformation IiiZURAIDA ADAM
 

What's hot (17)

01 plain
01 plain01 plain
01 plain
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Sol Purcell Ingles
Sol Purcell InglesSol Purcell Ingles
Sol Purcell Ingles
 
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_line
 
X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)X2 T03 02 hyperbola (2010)
X2 T03 02 hyperbola (2010)
 
กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Unit iii
Unit iiiUnit iii
Unit iii
 
Formulas optica
Formulas opticaFormulas optica
Formulas optica
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note
 
1001 ch 10 day 1
1001 ch 10 day 11001 ch 10 day 1
1001 ch 10 day 1
 
Naskah Murid Modul 2 Graph Of Functions Ii
Naskah Murid Modul 2 Graph Of Functions IiNaskah Murid Modul 2 Graph Of Functions Ii
Naskah Murid Modul 2 Graph Of Functions Ii
 
Hsn course revision notes
Hsn course revision notesHsn course revision notes
Hsn course revision notes
 
Fractional Calculus
Fractional CalculusFractional Calculus
Fractional Calculus
 
F3006 formulas final
F3006 formulas finalF3006 formulas final
F3006 formulas final
 
Naskah Murid Modul 3 Transformation Iii
Naskah Murid Modul 3 Transformation IiiNaskah Murid Modul 3 Transformation Iii
Naskah Murid Modul 3 Transformation Iii
 

Similar to X2 T03 06 chord of contact & properties [2011]

X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)Nigel Simmons
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)Nigel Simmons
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)Nigel Simmons
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5Ragulan Dev
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functionsTarun Gehlot
 
Application of laplace(find k)
Application of  laplace(find k)Application of  laplace(find k)
Application of laplace(find k)Hazirah Fiyra
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
Module 11 graph of functions PMR
Module 11 graph of functions PMRModule 11 graph of functions PMR
Module 11 graph of functions PMRroszelan
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mappingTarun Gehlot
 

Similar to X2 T03 06 chord of contact & properties [2011] (16)

X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Figures
FiguresFigures
Figures
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
Application of laplace(find k)
Application of  laplace(find k)Application of  laplace(find k)
Application of laplace(find k)
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
Em10 fl
Em10 flEm10 fl
Em10 fl
 
Module 11 graph of functions PMR
Module 11 graph of functions PMRModule 11 graph of functions PMR
Module 11 graph of functions PMR
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 

Recently uploaded (20)

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 

X2 T03 06 chord of contact & properties [2011]

  • 1. Chord of Contact y b T  x0 , y0  -a a x -b From an external point T, two tangents may be drawn.
  • 2. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b
  • 3. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x Q  x2 , y 2  -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b xx y y tangent at Q has equation 22  22  1 a b
  • 4. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x Q  x2 , y 2  -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b xx y y tangent at Q has equation 22  22  1 Now T lies on both lines, a b
  • 5. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x Q  x2 , y 2  -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b xx y y tangent at Q has equation 22  22  1 Now T lies on both lines, a b xx yy x2 x0 y2 y0  1 2 0  1 2 0  1 and 2  2 1 a b a b
  • 6. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation;
  • 7. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation; x0 x y0 y 2  2 1 a b
  • 8. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation; x0 x y0 y 2  2 1 a b which must be the line PQ i.e. chord of contact
  • 9. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation; x0 x y0 y 2  2 1 a b which must be the line PQ i.e. chord of contact Similarly the chord of contact of the hyperbola has the equation; x0 x y0 y 2  2 1 a b
  • 10. Rectangular Hyperbola y  c P cp,   p  c Q cq,   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)
  • 11. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q
  • 12. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq
  • 13. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq Substituting into (1); x   p  q x0 y  c p  q  2c
  • 14. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq Substituting into (1); x   p  q x0 y  c p  q  2c 2cx0 2c 2 x y 2cy0 y0
  • 15. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq Substituting into (1); x   p  q x0 y  c p  q  2c 2cx0 2c 2 x y xy0  x0 y  2c 2 2cy0 y0
  • 17. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord.
  • 18. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e
  • 19. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 ae b
  • 20. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 Substitute in focus (ae,0) ae b
  • 21. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 Substitute in focus (ae,0) ae b ae  0  1 0 ae 1
  • 22. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse As T is on the directrix it has coordinates   a , y  i.e. x  a 0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 Substitute in focus (ae,0) ae b ae  0  1 0  focus lies on chord of contact ae i.e. it is a focal chord 1
  • 23. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T S x a x e
  • 24. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x a x e
  • 25. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x x cos y sin  equation of tangent is  1 a a a b x cos e a y sin  when x  , e  1 e a b
  • 26. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x x cos y sin  equation of tangent is  1 a a a b x cos e a y sin  when x  , e  1 e a b cos y sin   1 e b y sin  e  cos  b e be  cos  y e sin 
  • 27. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x x cos y sin  equation of tangent is  1 a a a b x cos e a y sin  when x  , e  1 e a b cos y sin   1 e b y sin  e  cos a be  cos    T  ,   b e e e sin   be  cos  y e sin 
  • 28. b sin   0 mPS  a cos  ae b sin   acos  e 
  • 29. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2
  • 30. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin 
  • 31. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a
  • 32. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a ae  cos   b sin 
  • 33. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a ae  cos   b sin  b sin  ae  cos  mPS  mTS   acos  e  b sin   1
  • 34. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a ae  cos   b sin  b sin  ae  cos  mPS  mTS   acos  e  b sin   PST  90  1
  • 35. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P T S S x
  • 36. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P T S S x Prove: SPT  S PT 
  • 37. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P T S S x Prove: SPT  S PT  Construct a line || y axis passing through P
  • 38. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P N N T S S x Prove: SPT  S PT  Construct a line || y axis passing through P PT PN  (ratio of intercepts of || lines) PT  PN 
  • 39. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P N N T S S x Prove: SPT  S PT  Construct a line || y axis passing through P PT PN  (ratio of intercepts of || lines) PT  PN  PT PT    PN PN 
  • 40. ePN  PS and ePN   PS 
  • 41. ePN  PS and ePN   PS  PT PT    PS PS  e e
  • 42. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS 
  • 43. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))
  • 44. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))  sec SPT  sec S PT 
  • 45. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))  sec SPT  sec S PT  SPT  S PT 
  • 46. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))  sec SPT  sec S PT  SPT  S PT 
  • 47. e.g. Find the cartesian equation of z  2  z  2  8
  • 48. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant
  • 49. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 a4
  • 50. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 a4 4e  2 1 e 2
  • 51. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 b 2  a 2 1  e 2  a4 4e  2  1 b 2  16 1   e 1  4 2  12
  • 52. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 b 2  a 2 1  e 2  a4 4e  2  1 b 2  16 1   e 1  4 2  12 x2 y2  locus is the ellipse  1 16 12
  • 53. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 b 2  a 2 1  e 2  a4 4e  2  1 b 2  16 1   e 1  4 2  12 x2 y2  locus is the ellipse  1 16 12 Exercise 6E; 1, 2, 4, 7, 8, 10