SlideShare a Scribd company logo
nth Roots Of Unity  z   n
                              1
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis 
                5           5        5          5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y
                5           5        5          5



                                                                        x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y
                5           5        5          5


                                                                      cis0
                                                                         x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y          2
                5           5        5          5         cis
                                                               5

                                                                      cis0
                                                                         x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y          2
                5           5        5          5         cis
                                                               5

                                                                      cis0
                                                                         x

                                                                      2
                                                                cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x

                                                                      2
                                                                cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1     If  is a solution then  5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1    If  is a solution then  5  1
                     15
                      5 5


                          1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1    If  is a solution then  5  1
                     15
                      5 5


                           1  is a solution
                                    5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1         If  is a solution then  5  1
                          15
                           5 5


                                1  is a solution
                                         5




      
     2 5        5 2
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2


            12
           1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2


            12
        1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5     5 3


            12
        1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3


            12                              13
        1                                  1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3


            12                              13
        1                                1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                               
                                                              4 5      5 4


            12                              13
        1                                1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                               
                                                              4 5          5 4


            12                              13                     14
        1                                1                        1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                                
                                                              4 5          5 4


            12                              13                     14
        1                                1                      1
 2 is a solution                 3 is a solution       4 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                                
                                                              4 5          5 4


            12                              13                     14
        1                                1                      1
 2 is a solution                 3 is a solution       4 is a solution

            Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
ii  Prove that 1     2   3   4  0
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5  
                                    a
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                         1
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                         1
OR   1  0
    5
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                         1
OR   1  0
     5


     11     2   3   4   0
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
     5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
                                                  11     2     n1   0
                                                                                     
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
OR
       1   2  3  4
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
OR
       1   2  3  4                              GP: a  1, r   , n  5
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                      1
OR   1  0
      5
                                                   NOTE :                              
                                                   n                                   
     11     2   3   4   0           1  0                             
 1     2   3   4  0   1               11     2     n1   0
                                                                                       
OR                                 a  r n  1
       1   2  3  4                              GP: a  1, r   , n  5
                                        r 1
ii  Prove that 1     2   3   4  0
                                      b
       2  3  4  5                     sum of the roots 
                                      a
        1   2  3  4  0                     5
                                                        1
OR   1  0
      5
                                                     NOTE :                              
                                                     n                                   
     11     2   3   4   0             1  0                             
 1     2   3   4  0   1                 11     2     n1   0
                                                                                         
OR                                   a  r n  1
       1   2  3  4                                GP: a  1, r   , n  5
                                       r 1
                                     1 5  1
                                 
                                           1
ii  Prove that 1     2   3   4  0
                                      b
       2  3  4  5                     sum of the roots 
                                      a
        1   2  3  4  0                     5
                                                        1
OR   1  0
      5
                                                     NOTE :                              
                                                     n                                   
     11     2   3   4   0             1  0                             
 1     2   3   4  0   1                 11     2     n1   0
                                                                                         
OR                                   a  r n  1
       1   2  3  4                                    GP: a  1, r   , n  5
                                       r 1
                                     1 5  1
                                                         0
                                           1
ii  Prove that 1     2   3   4  0
                                      b
       2  3  4  5                     sum of the roots 
                                      a
        1   2  3  4  0                     5
                                                        1
OR   1  0
      5
                                                     NOTE :                              
                                                     n                                   
     11     2   3   4   0             1  0                             
 1     2   3   4  0   1                 11     2     n1   0
                                                                                         
OR                                   a  r n  1
       1   2  3  4                                    GP: a  1, r   , n  5
                                       r 1
                                     1 5  1                     5
                                                                          1  0
                                                         0
                                           1
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                 1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                 1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
        4  2  3
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                 1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
        4  2  3
             1
ii  Prove that 1     2   3   4  0
                                    b
        2  3  4  5                  sum of the roots 
                                    a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1
ii  Prove that 1     2   3   4  0
                                    b
        2  3  4  5                  sum of the roots 
                                    a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1                                    3  4  6  7
ii  Prove that 1     2   3   4  0
                                    b
        2  3  4  5                  sum of the roots 
                                    a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1                                    3  4  6  7
                                                   3  4    2
                                                   1
ii  Prove that 1     2   3   4  0
                                     b
        2  3  4  5                  sum of the roots 
                                     a
        1   2  3  4  0                    1
                                                    5


OR   1  0
          5
                                                  NOTE :                              
                                                  n                                   
         11           0 
                        2    3      4
                                                   1  0                             
  1     2   3   4  0                     11     2     n1   0
                                         1                                        
OR                                 a  r n  1
         1   2  3  4                            GP: a  1, r   , n  5
                                      r 1
                                   1 5  1               5  1  0 
                                                   0
                                       1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2     3                      4  2   3 
             1                                      3  4  6  7
                                                     3  4    2
        equation is x 2  x  1  0
                                                     1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1      
                        2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1      
                        2 3


                
                     3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1     2 3
                           
                
                       3


                3
               1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3


                3
               1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1                                                1 
                                                                 
                                                                      2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1                                                1 
                                                                 
                                                                      2

                                                                  2
                                                                  2
                                                                  
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1                                                1 
                                                                 
(iii) Form the cubic equation with roots 1, 1   , 1   2          2
                                                                  2
                                                                  2
                                                                  
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2


                              z3  2z 2  2z 1  0
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2


                              z3  2z 2  2z 1  0



                      Exercise 4I; 1, 3, 5 (need 4b), 7

More Related Content

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 

Recently uploaded (20)

Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 

X2 T01 07 nth roots of unity (2011)

  • 1. nth Roots Of Unity  z n  1
  • 2. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity
  • 3. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle.
  • 4. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1
  • 5. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5 
  • 6. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  5 5 5 5
  • 7. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 x
  • 8. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 cis0 x
  • 9. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 5 5 5 5 cis 5 cis0 x
  • 10. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 5 5 5 5 cis 5 cis0 x 2 cis  5
  • 11. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 2 cis  5
  • 12. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 13. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 14. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 15. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots.
  • 16. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1
  • 17. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1
  • 18. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1
  • 19. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5
  • 20. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2
  • 21. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2  12 1
  • 22. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2  12 1  2 is a solution
  • 23. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3  12 1  2 is a solution
  • 24. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3  12  13 1 1  2 is a solution
  • 25. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3  12  13 1 1  2 is a solution  3 is a solution
  • 26. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13 1 1  2 is a solution  3 is a solution
  • 27. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution
  • 28. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution  4 is a solution
  • 29. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution  4 is a solution Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
  • 30. ii  Prove that 1     2   3   4  0
  • 31. ii  Prove that 1     2   3   4  0 b   2  3  4  5   a
  • 32. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a
  • 33. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0
  • 34. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1
  • 35. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5
  • 36. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5   11     2   3   4   0
  • 37. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0    11     2     n1   0  
  • 38. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0  
  • 39. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR 1   2  3  4
  • 40. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR 1   2  3  4 GP: a  1, r   , n  5
  • 41. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1
  • 42. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1   1
  • 43. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  0  1
  • 44. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5 1  0  0  1
  • 45. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3
  • 46. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3       4  2  3
  • 47. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3       4  2  3  1
  • 48. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1
  • 49. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7
  • 50. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7  3  4    2  1
  • 51. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7  3  4    2  equation is x 2  x  1  0  1
  • 52. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  • 53. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3
  • 54. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3     3
  • 55. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3      3   3  1
  • 56. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3   3  1
  • 57. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1
  • 58. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1    2
  • 59. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1    2 2  2  1
  • 60. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2 2  2  1
  • 61. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2 1
  • 62. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1
  • 63. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2
  • 64. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2 z3  2z 2  2z 1  0
  • 65. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2 z3  2z 2  2z 1  0 Exercise 4I; 1, 3, 5 (need 4b), 7