SlideShare a Scribd company logo
1 of 90
Download to read offline
The Conical Pendulum
The Conical Pendulum
  A




      
      P
The Conical Pendulum
  A
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
      
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                 T= tension in the string
                          T         (always away from object)
  h

              
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h

                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg
 O        r   P
The Conical Pendulum
  A               Force Diagram
                                  T= tension in the string
                          T          (always away from object)
  h                                   string makes with vertical
                             mg     angular velocity of pendulum
 O        r   P
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x
         r
The Conical Pendulum
     A               Force Diagram
                                     T= tension in the string
                             T          (always away from object)
    h                                    string makes with vertical
                                mg     angular velocity of pendulum
   O       r     P
Resultant Forces
        mv 2
  m 
   x                                           m  0
                                                y
         r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                              T          (always away from object)
      h                                   string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                         m  0
                                                 y
            r
                    mv 2
horizontal forces 
                     r
The Conical Pendulum
       A              Force Diagram
                                       T= tension in the string
                              T           (always away from object)
      h                                    string makes with vertical
                                 mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                           m  0
                                                   y
            r
                    mv 2
horizontal forces                     vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin 
The Conical Pendulum
       A              Force Diagram
                                      T= tension in the string
                            T           (always away from object)
      h                                   string makes with vertical
                                mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                          m  0
                                                  y
            r
                    mv 2
horizontal forces                    vertical forces  0
                     r

   T sin  2
           mv
 T sin  
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r

   T sin  2
 T sin  
           mv       mr 2

            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos
   T sin  2
 T sin  
           mv       mr 2              mg
            r
The Conical Pendulum
       A              Force Diagram
                                          T= tension in the string
                                T           (always away from object)
      h                                       string makes with vertical
                                    mg     angular velocity of pendulum
     O      r     P
 Resultant Forces
          mv 2
    m 
      x                                              m  0
                                                      y
            r
                    mv 2
horizontal forces                        vertical forces  0
                     r
                                          T cos       T cos  mg  0
   T sin  2
 T sin  
           mv       mr 2              mg                    T cos  mg
            r
T sin  mv 2 1
           
T cos   r    mg
T sin  mv 2 1
            
T cos     r   mg
          v2
  tan  
          rg
T sin  mv 2 1
            
T cos     r   mg
          v2         r 2 
  tan                  
          rg         g 
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g
                   h 2
                      v
T sin  mv 2 1
                          
              T cos     r   mg
                        v2         r 2 
                tan                  
                        rg         g 
                        r
But in AOP     tan  
                        h
                  v2 r
                 
                  rg h
                     r2g           g 
                   h 2               
                      v            2 
T sin  mv 2 1
                           
               T cos     r   mg
                         v2         r 2 
                 tan                  
                         rg         g 
                         r
But in AOP      tan  
                         h
                   v2 r
                  
                   rg h
                      r2g           g 
                    h 2               
                       v            2 
Implications
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
T sin  mv 2 1
                            
                T cos     r   mg
                          v2                      r 2 
                  tan                               
                          rg                      g 
                          r
But in AOP       tan  
                          h
                    v2 r
                   
                    rg h
                        r2g                       g 
                      h 2                           
                         v                        2 
Implications
•depth of the pendulum below A is independent of the length of the
 string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                            T



                                mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                             T
                      h


                              r
                                  mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces 
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin 

   T sin   mr 2
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos

   T sin   mr 2                      mg
e.g. The number of revolutions per minute of a conical pendulum
     increases from 60 to 90.
     Find the rise in the level of the bob.

                              T
                       h


                               r
                                   mg

                    mv 2
horizontal forces                      vertical forces  0
                     r

    T sin                              T cos T cos  mg  0

   T sin   mr 2                      mg          T cos  mg
1
 tan   mr 2 
                    mg
         r 2
       
          g
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
1
 tan   mr 2 
                    mg
         r 2
       
          g
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min
                    mg
                                  120
         r 2                         rad/s
                                  60
          g
                                 2rad/s
              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h
       r 2 r
           
        g     h
               g
          h 2
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                       m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min
       r 2 r
                                180
        g     h                       rad/s
                                   60
          h 2
               g                 3rad/s
                
1
 tan   mr 2         when   60rev/min    h
                                                      g
                    mg
                                  120
                                                    2 2
         r 2                         rad/s         g
                                  60                        m
          g
                                 2rad/s           4   2


              r
  But tan  
              h          when   90rev/min              g
                                               h
   
       r 2 r
                                 180
                                                    3 2
        g     h                       rad/s          g
                                   60                        m
               g                 3rad/s           9    2
          h 2
                
1
 tan   mr 2              when   60rev/min     h
                                                            g
                    mg
                                       120
                                                          2 2
         r 2                              rad/s          g
                                       60                         m
          g
                                      2rad/s            4   2


              r
  But tan  
              h               when   90rev/min               g
                                                     h
   
       r 2 r
                                      180
                                                          3 2
        g     h                            rad/s           g
                                        60                         m
               g                      3rad/s            9    2
          h 2
                

                                        g  g m
                     rise in height   2
                                        4 9 2 
                                                 
                                     0.14m
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
(ii) (2002)
     A particle of mass m is suspended by a string of length l from a point
     directly above the vertex of a smooth cone, which has a vertical axis.
     The particle remains in contact with the cone and rotates as a conical
     pendulum with angular velocity .
                               The angle of the cone at its vertex is 2
                                           
                               where         , and the string makes an
                                            4
                               angle of  with the horizontal as shown in
                               the diagram. The forces acting on the
                               particle are the tension in the string T, the
                               normal reaction N and the gravitational
                               force mg.
 Note: whenever a particle makes contact with a surface there will be
 a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T

        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
        
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                  N
        
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 


        T
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                 
        T                                                   
                 N
                                                     
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                  
        T                                                   
                  N
                                                     
             mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                   
        T c                                                 
                   N
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                         c
        T c                   sin 
                          N                                 
                   N
                           c  N sin 
                                                     
              mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                
                   N
                            c  N sin 
                                                 
                        the vertical component        
              mg
                        of N isN sin 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                          c
        T c                    sin 
                           N                                   
                  N
                            c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                 
                  N
                              c  N sin 
                                                  
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos 
T cos   N cos   mr 2
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin     N sin 
T cos   N cos   mr 2                   mg
a) Show, with the aid of a diagram, that the vertical component of
   N is N sin 

                            c
        T c                      sin 
                             N                                    
                  N
                              c  N sin 
                                                      
                       the vertical component            
              mg
                        of N isN sin 
                       mg
b) Show that T  N         , and find an expression for T  N in
                      sin 
   terms of m, l and
 horizontal forces  mr 2                  vertical forces  0

   T cos  N cos                 T sin    N sin 
                                                 T sin   N sin   mg  0
T cos   N cos   mr 2                   mg
                                                       T sin   N sin   mg
T sin   N sin   mg
T sin   N sin   mg
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg
                 mg
          TN 
                sin 
T sin   N sin   mg   T cos   N cos   mr 2
   T  N  sin   mg       T  N  cos   mr 2
                 mg                        mr 2
          TN                      T N 
                sin                       cos 
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                           mr 2
          TN                         T N 
                sin                          cos 
                            r
                         But  cos 
                            l
T sin   N sin   mg    T cos   N cos   mr 2
   T  N  sin   mg        T  N  cos   mr 2
                 mg                         mr 2
          TN                       T N 
                sin                        cos 
                            r
                         But  cos  T  N  ml 2
                            l
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                     mg                                     mr 2
              TN                                   T N 
                    sin                                    cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
  When N  0;
       mg
   T       and T  ml 2
      sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                     ml 2
                                              sin 
         mg
    T          and T  ml 2
        sin 
T sin   N sin   mg                  T cos   N cos   mr 2
     T  N  sin   mg                     T  N  cos   mr 2
                    mg                                      mr 2
             TN                                    T N 
                   sin                                     cos 
                                         r
                                      But  cos  T  N  ml 2
                                         l
c) The angular velocity is increased until N  0, that is, when the particle
   is about to lose contact with the cone.
   Find an expression for this value of  in terms of  , l and g
   When N  0;                              
                                               mg
                                                      ml 2
                                              sin 
         mg                                                g
    T          and T  ml  2
                                                 2

        sin                                           l sin 
                                                             g
                                                 
                                                          l sin 
Exercise 9C; all

More Related Content

What's hot

Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2Shahid Aaqil
 
Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqmmatcol
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transformTarun Gehlot
 
12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)Nigel Simmons
 
Ja Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosJa Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosMiguel Morales
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : OscillationsPooja M
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesNishant Prabhakar
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesLeonardo Uieda
 

What's hot (13)

Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2
 
Forces & Eqm
Forces & EqmForces & Eqm
Forces & Eqm
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Projekt
ProjektProjekt
Projekt
 
Lec10
Lec10Lec10
Lec10
 
Logics of the laplace transform
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
 
12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)12X1 T07 03 projectile motion (2010)
12X1 T07 03 projectile motion (2010)
 
Ja Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor TrasgosJa Garzon Tim Trackfor Trasgos
Ja Garzon Tim Trackfor Trasgos
 
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
PHYSICS (CLASSS XII)  - Chapter 5 : OscillationsPHYSICS (CLASSS XII)  - Chapter 5 : Oscillations
PHYSICS (CLASSS XII) - Chapter 5 : Oscillations
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densities
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Recently uploaded (20)

MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 

X2 T06 05 conical pendulum (2011)

  • 3. The Conical Pendulum A  h  O r P
  • 4. The Conical Pendulum A Force Diagram  h  O r P
  • 5. The Conical Pendulum A Force Diagram  h  O r P
  • 6. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  O r P
  • 7. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h  mg O r P
  • 8. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg O r P
  • 9. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P
  • 10. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces
  • 11. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x r
  • 12. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r
  • 13. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  r
  • 14. The Conical Pendulum A Force Diagram  T= tension in the string T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 15. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 16. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r
  • 17. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin 
  • 18. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 mv T sin   r
  • 19. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 20. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T sin  2 T sin   mv  mr 2 r
  • 21. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T sin  2 T sin   mv  mr 2 mg r
  • 22. The Conical Pendulum A Force Diagram  T= tension in the string  T (always away from object) h    string makes with vertical  mg   angular velocity of pendulum O r P Resultant Forces mv 2 m  x m  0 y r mv 2 horizontal forces  vertical forces  0 r T cos T cos  mg  0 T sin  2 T sin   mv  mr 2 mg T cos  mg r
  • 23. T sin  mv 2 1   T cos r mg
  • 24. T sin  mv 2 1   T cos r mg v2 tan   rg
  • 25. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g 
  • 26. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h
  • 27. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h
  • 28. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g h 2 v
  • 29. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2 
  • 30. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications
  • 31. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string.
  • 32. T sin  mv 2 1   T cos r mg v2  r 2  tan     rg  g  r But in AOP tan   h v2 r   rg h r2g  g  h 2   v  2  Implications •depth of the pendulum below A is independent of the length of the string. •as the speed increases, the particle (bob) rises.
  • 33. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 34. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.
  • 35. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T
  • 36. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob. T mg
  • 37. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg
  • 38. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  r
  • 39. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 40. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r
  • 41. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin 
  • 42. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 43. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T sin   mr 2
  • 44. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T sin   mr 2 mg
  • 45. e.g. The number of revolutions per minute of a conical pendulum increases from 60 to 90. Find the rise in the level of the bob.  T h r mg mv 2 horizontal forces  vertical forces  0 r T sin  T cos T cos  mg  0 T sin   mr 2 mg T cos  mg
  • 46. 1  tan   mr 2  mg r 2  g
  • 47. 1  tan   mr 2  mg r 2  g r But tan   h
  • 48. 1  tan   mr 2  mg r 2  g r But tan   h r 2 r   g h g h 2 
  • 49. 1  tan   mr 2  when   60rev/min mg 120 r 2  rad/s  60 g  2rad/s r But tan   h r 2 r   g h g h 2 
  • 50. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h r 2 r   g h g h 2 
  • 51. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min r 2 r   180 g h  rad/s 60 h 2 g  3rad/s 
  • 52. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2 
  • 53. 1  tan   mr 2  when   60rev/min h g mg 120 2 2 r 2  rad/s g  60  m g  2rad/s 4 2 r But tan   h when   90rev/min g h  r 2 r  180 3 2 g h  rad/s g 60  m g  3rad/s 9 2 h 2   g  g m  rise in height   2  4 9 2    0.14m
  • 54. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg.
  • 55. (ii) (2002) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity . The angle of the cone at its vertex is 2  where   , and the string makes an 4 angle of  with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction N and the gravitational force mg. Note: whenever a particle makes contact with a surface there will be a normal force perpendicular to the surface.
  • 56. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 57. a) Show, with the aid of a diagram, that the vertical component of N is N sin 
  • 58. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T
  • 59. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T 
  • 60. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N 
  • 61. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  mg
  • 62. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N  
  • 63. a) Show, with the aid of a diagram, that the vertical component of N is N sin  T N   
  • 64. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N   
  • 65. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T  N    mg
  • 66. a) Show, with the aid of a diagram, that the vertical component of N is N sin   T c  N    mg
  • 67. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     mg
  • 68. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin 
  • 69. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and
  • 70. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 71. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2
  • 72. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos 
  • 73. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 T cos  N cos  T cos   N cos   mr 2
  • 74. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 75. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T cos   N cos   mr 2
  • 76. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T cos   N cos   mr 2 mg
  • 77. a) Show, with the aid of a diagram, that the vertical component of N is N sin   c T c  sin  N  N c  N sin     the vertical component  mg of N isN sin  mg b) Show that T  N  , and find an expression for T  N in sin  terms of m, l and horizontal forces  mr 2 vertical forces  0 T cos  N cos  T sin  N sin  T sin   N sin   mg  0 T cos   N cos   mr 2 mg T sin   N sin   mg
  • 78. T sin   N sin   mg
  • 79. T sin   N sin   mg T  N  sin   mg mg TN  sin 
  • 80. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg mg TN  sin 
  • 81. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos 
  • 82. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  l
  • 83. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l
  • 84. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g
  • 85. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;
  • 86. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T sin 
  • 87. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0; mg T and T  ml 2 sin 
  • 88. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg T and T  ml 2 sin 
  • 89. T sin   N sin   mg T cos   N cos   mr 2 T  N  sin   mg T  N  cos   mr 2 mg mr 2 TN  T N  sin  cos  r But  cos  T  N  ml 2 l c) The angular velocity is increased until N  0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of  in terms of  , l and g When N  0;  mg  ml 2 sin  mg g T and T  ml 2  2 sin  l sin  g  l sin 