Angle Between Two Lines
Angle Between Two Lines
   y




         x
Angle Between Two Lines
   y




        1
         x


             l1
Angle Between Two Lines
   y
                  l1 has slope m1  tan 1


        1
         x


             l1
Angle Between Two Lines
       l
       y   2
                         l1 has slope m1  tan 1


  2           1
                x


                    l1
Angle Between Two Lines
       l
       y   2
                         l1 has slope m1  tan 1
                         l2 has slope m2  tan  2

  2           1
                x


                    l1
Angle Between Two Lines
       l
       y       2
                             l1 has slope m1  tan 1
                            l2 has slope m2  tan  2

  2               1
                    x


                        l1
Angle Between Two Lines
       l
       y       2
                             l1 has slope m1  tan 1
                            l2 has slope m2  tan  2

  2               1        1     2   (exterior  )
                    x


                        l1
Angle Between Two Lines
       l
       y       2
                             l1 has slope m1  tan 1
                            l2 has slope m2  tan  2

  2               1        1     2    (exterior  )
                    x
                                1   2

                        l1
Angle Between Two Lines
       l
       y       2
                                l1 has slope m1  tan 1
                              l2 has slope m2  tan  2

  2               1           1     2    (exterior  )
                    x
                                   1   2
                             tan   tan 1   2 
                        l1
Angle Between Two Lines
       l
       y       2
                             l1 has slope m1  tan 1
                            l2 has slope m2  tan  2

  2               1        1     2     (exterior  )
                    x
                                 1   2
                           tan   tan 1   2 
                        l1
                                    tan 1  tan  2
                                 
                                   1  tan 1 tan  2
Angle Between Two Lines
       l
       y       2
                             l1 has slope m1  tan 1
                            l2 has slope m2  tan  2

  2               1        1     2     (exterior  )
                    x
                                 1   2
                           tan   tan 1   2 
                        l1
                                    tan 1  tan  2
                                 
                                   1  tan 1 tan  2
                                   m1  m2
                                 
                                   1  m1m2
Angle Between Two Lines
         l   y        2
                                       l1 has slope m1  tan 1
                                      l2 has slope m2  tan  2

        2                1           1     2     (exterior  )
                           x
                                           1   2
                                     tan   tan 1   2 
                                  l1
                                              tan 1  tan  2
                                           
                                             1  tan 1 tan  2
                                             m1  m2
                                           
                                             1  m1m2
The acute angle between two lines with slopes m1 and m2 can be
found using;
Angle Between Two Lines
         l   y        2
                                       l1 has slope m1  tan 1
                                      l2 has slope m2  tan  2

        2                1           1     2     (exterior  )
                           x
                                           1   2
                                     tan   tan 1   2 
                                  l1
                                              tan 1  tan  2
                                           
                                             1  tan 1 tan  2
                                             m1  m2
                                           
                                             1  m1m2
The acute angle between two lines with slopes m1 and m2 can be
found using;               m1  m2
                   tan  
                           1  m1m2
2000 Extension 1 HSC Q1b)
e.g. Find the acute angle between the lines
                             1
          y  2 x  1 and y  x  1
                             3
2000 Extension 1 HSC Q1b)
e.g. Find the acute angle between the lines
                             1
          y  2 x  1 and y  x  1
                             3
                                             1
                                        2
                             tan           3
                                             1
                                     1  2  
                                              3
2000 Extension 1 HSC Q1b)
e.g. Find the acute angle between the lines
                             1
          y  2 x  1 and y  x  1
                             3
                                             1
                                        2
                             tan           3
                                             1
                                     1  2  
                                              3
                                    6 1
                                  
                                    3 2
2000 Extension 1 HSC Q1b)
e.g. Find the acute angle between the lines
                             1
          y  2 x  1 and y  x  1
                             3
                                             1
                                        2
                             tan           3
                                             1
                                     1  2  
                                              3
                                    6 1
                                  
                                    3 2
                                  1
2000 Extension 1 HSC Q1b)
e.g. Find the acute angle between the lines
                             1
          y  2 x  1 and y  x  1
                             3
                                             1
                                        2
                             tan           3
                                             1
                                     1  2  
                                              3
                                    6 1
                                  
                                    3 2
                                  1
                                  45
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
          4m  2
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
          4m  2
               1
           m
               2
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
          4m  2                        1  3m  3  m
               1
           m
               2
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
          4m  2                        1  3m  3  m
               1
           m                               2m  4
               2
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                              3 m
                    tan 45 
                          

                             1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
          4m  2                        1  3m  3  m
               1
           m                               2m  4
               2
                                              m  2
2005 Extension 1 HSC Q1f)
(ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45
     Find the possible values of m.
                               3 m
                     tan 45 
                          

                              1  3m
                              3 m
                          1
                             1  3m
                     1  3m  3  m
       1  3m  3  m         or       1  3m   3  m
          4m  2                        1  3m  3  m
               1
           m                               2m  4
               2
                        1                     m  2
                    m  or m  2
                        2
Exercise 14E; 1ac, 2bdf, 4, 7, 8, 10, 11a, 15*

11X1 T07 03 angle between two lines (2011)

  • 1.
  • 2.
  • 3.
    Angle Between TwoLines y 1 x l1
  • 4.
    Angle Between TwoLines y l1 has slope m1  tan 1 1 x l1
  • 5.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1 2 1 x l1
  • 6.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1 l2 has slope m2  tan  2 2 1 x l1
  • 7.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 x l1
  • 8.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x l1
  • 9.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x   1   2 l1
  • 10.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x   1   2 tan   tan 1   2  l1
  • 11.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x   1   2 tan   tan 1   2  l1 tan 1  tan  2  1  tan 1 tan  2
  • 12.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x   1   2 tan   tan 1   2  l1 tan 1  tan  2  1  tan 1 tan  2 m1  m2  1  m1m2
  • 13.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x   1   2 tan   tan 1   2  l1 tan 1  tan  2  1  tan 1 tan  2 m1  m2  1  m1m2 The acute angle between two lines with slopes m1 and m2 can be found using;
  • 14.
    Angle Between TwoLines l y 2 l1 has slope m1  tan 1  l2 has slope m2  tan  2 2 1 1     2 (exterior  ) x   1   2 tan   tan 1   2  l1 tan 1  tan  2  1  tan 1 tan  2 m1  m2  1  m1m2 The acute angle between two lines with slopes m1 and m2 can be found using; m1  m2 tan   1  m1m2
  • 15.
    2000 Extension 1HSC Q1b) e.g. Find the acute angle between the lines 1 y  2 x  1 and y  x  1 3
  • 16.
    2000 Extension 1HSC Q1b) e.g. Find the acute angle between the lines 1 y  2 x  1 and y  x  1 3 1 2 tan   3 1 1  2    3
  • 17.
    2000 Extension 1HSC Q1b) e.g. Find the acute angle between the lines 1 y  2 x  1 and y  x  1 3 1 2 tan   3 1 1  2    3 6 1  3 2
  • 18.
    2000 Extension 1HSC Q1b) e.g. Find the acute angle between the lines 1 y  2 x  1 and y  x  1 3 1 2 tan   3 1 1  2    3 6 1  3 2 1
  • 19.
    2000 Extension 1HSC Q1b) e.g. Find the acute angle between the lines 1 y  2 x  1 and y  x  1 3 1 2 tan   3 1 1  2    3 6 1  3 2 1   45
  • 20.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m.
  • 21.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m
  • 22.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m
  • 23.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m
  • 24.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m
  • 25.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m 4m  2
  • 26.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m 4m  2 1 m 2
  • 27.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m 4m  2  1  3m  3  m 1 m 2
  • 28.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m 4m  2  1  3m  3  m 1 m 2m  4 2
  • 29.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m 4m  2  1  3m  3  m 1 m 2m  4 2 m  2
  • 30.
    2005 Extension 1HSC Q1f) (ii) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45 Find the possible values of m. 3 m tan 45   1  3m 3 m 1 1  3m 1  3m  3  m 1  3m  3  m or  1  3m   3  m 4m  2  1  3m  3  m 1 m 2m  4 2 1 m  2  m  or m  2 2
  • 31.
    Exercise 14E; 1ac,2bdf, 4, 7, 8, 10, 11a, 15*