X2 t01 01 arithmetic of complex numbers (2013)

1,502 views

Published on

Published in: Education, Technology, Business
2 Comments
3 Likes
Statistics
Notes
  • No - I'm wrong. Conjugate of (z1-z2) does in fact equal conjugate z1 - conjugate z2. Should perhaps point this out in this lesson.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Should point out that in z=x+iy the coefficients x and y are REAL numbers.
    Also, should point out that conjugate z1 MINUS conjugate z2 is not always the same as conjugate(z1 minus z2), unlike sums, multiplications and quotients.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
1,502
On SlideShare
0
From Embeds
0
Number of Embeds
127
Actions
Shares
0
Downloads
52
Comments
2
Likes
3
Embeds 0
No embeds

No notes for slide

X2 t01 01 arithmetic of complex numbers (2013)

  1. 1. Complex Numbers Solving Quadratics x2 1  0
  2. 2. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions
  3. 3. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number
  4. 4. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number
  5. 5. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  6. 6. All complex numbers (z) can be written as; z = x + iy
  7. 7. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  8. 8. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  9. 9. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  10. 10. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  11. 11. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  12. 12. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  13. 13. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  14. 14. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy z  2  7i e.g . z  2  7i
  15. 15. Complex Numbers x + iy
  16. 16. Complex Numbers x + iy Real Numbers y=0
  17. 17. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0
  18. 18. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Irrational Numbers
  19. 19. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Irrational Numbers
  20. 20. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  21. 21. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  22. 22. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Pure Imaginary Numbers x  0, y  0 Fractions Integers Naturals Zero Negatives Irrational Numbers
  23. 23. Complex Numbers x + iy Imaginary Numbers y0 Real Numbers y=0 Rational Numbers Pure Imaginary Numbers x  0, y  0 Fractions Integers Naturals Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  24. 24. Basic Operations As i a surd, the operations with complex numbers are the same as surds
  25. 25. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  26. 26. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  27. 27. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  28. 28. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  29. 29. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  30. 30. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i 
  31. 31. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i    8  2i   8  2i   32  8i  24i  6  64  4
  32. 32. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i Division (Realising The Denominator) 4  3i   8  2i    8  2i   8  2i   32  8i  24i  6  64  4  38  16i  68  19 8   i 34 34
  33. 33. Conjugate Basics 1 z1  z2  z1  z2
  34. 34. Conjugate Basics 1 z1  z2  z1  z2  2 z1 z2  z1  z2  z1  z1  3     z2  z2
  35. 35. Conjugate Basics 1 z1  z2  z1  z2  2 z1 z2  z1  z2  z1  z1  3     z2  z2  4  zz  x 2  y 2
  36. 36. Conjugate Basics 1 z1  z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2
  37. 37. Conjugate Basics 1 z1  z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2 1 e.g.  4  3i 
  38. 38. Conjugate Basics 1 z1  z2  z1  z2  4  zz  x 2  y 2  2 z1 z2  z1  z2 1 z  5  z zz  z1  z1  3     z2  z2 1 4  3i  e.g.  4  3i  16  9 4 3   i 25 25
  39. 39. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2
  40. 40. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2
  41. 41. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i 
  42. 42. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i
  43. 43. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2
  44. 44. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 4x  6 y  8  9 x  6 y  6
  45. 45. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 4x  6 y  8  9 x  6 y  6 5x  14 14 x 5
  46. 46. Complex Equations If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal i.e. If a1  b1i  a2  b2i then a1  a2 b1  b2 e.g . (i)  2  3i  x  iy    4  2i  2 x  2iy  3ix  3 y  4  2i  2 x  3 y  4 and 3 x  2 y  2 14 16 , y x   5 5 4x  6 y  8  9 x  6 y  6 5x  14 14 x 5
  47. 47. ii  z  2iw  4  3i 2 z  iw  3  4i
  48. 48. ii  z  2iw  4  3i 2 z  iw  3  4i  z  2iw  4  3i 4 z  2iw  6  8i
  49. 49. ii  z  2iw  4  3i 2 z  iw  3  4i  z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  50. 50. ii  z  2iw  4  3i 2 z  iw  3  4i 2 5   i  2iw  4  3i 3 3 10 4 2iw   i 3 3 10 4 w  6i 6 2 5   i 3 3  z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  51. 51. ii  z  2iw  4  3i 2 z  iw  3  4i  2 5   i  2iw  4  3i 3 3 10 4 2iw   i 3 3 10 4 w  6i 6 2 5   i 3 3 2 5 2 5 w  i , z  i 3 3 3 3 z  2iw  4  3i 4 z  2iw  6  8i  2  5i 3z 2 5 z  i 3 3
  52. 52. Cambridge: Exercise 1A; 1 to 10 ace etc, 11bd, 13 to 20 Patel: Exercise 4A; 28 ac

×