SlideShare a Scribd company logo
nth Roots Of Unity  z   n
                              1
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis 
                5           5        5          5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y
                5           5        5          5



                                                                        x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y
                5           5        5          5


                                                                      cis0
                                                                         x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y          2
                5           5        5          5         cis
                                                               5

                                                                      cis0
                                                                         x
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis      y          2
                5           5        5          5         cis
                                                               5

                                                                      cis0
                                                                         x

                                                                      2
                                                                cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x

                                                                      2
                                                                cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
nth Roots Of Unity  z                                         n
                                                                    1
The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
          2 k  0 
z  cis             k  0, 1, 2
          5 
               2          2       4         4
z  cis 0, cis     , cis     , cis    , cis         4 y     2
                5           5        5          5 cis      cis
                                                       5        5

                                                                      cis0
                                                                         x
                                                  4
                                            cis                      2
                                                   5            cis 
                                                                       5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1     If  is a solution then  5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1    If  is a solution then  5  1
                     15
                      5 5


                          1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1    If  is a solution then  5  1
                     15
                      5 5


                           1  is a solution
                                    5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1         If  is a solution then  5  1
                          15
                           5 5


                                1  is a solution
                                         5




      
     2 5        5 2
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2


            12
           1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2


            12
        1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5     5 3


            12
        1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3


            12                              13
        1                                  1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3


            12                              13
        1                                1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                               
                                                              4 5      5 4


            12                              13
        1                                1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                               
                                                              4 5          5 4


            12                              13                     14
        1                                1                        1
 2 is a solution                 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                                
                                                              4 5          5 4


            12                              13                     14
        1                                1                      1
 2 is a solution                 3 is a solution       4 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
        the other roots.

       z5  1           If  is a solution then  5  1
                            15
                             5 5


                                  1  is a solution
                                           5




      
     2 5          5 2
                                        
                                      3 5          5 3
                                                                
                                                              4 5          5 4


            12                              13                     14
        1                                1                      1
 2 is a solution                 3 is a solution       4 is a solution

            Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
ii  Prove that 1     2   3   4  0
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5  
                                    a
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                         1
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                         1
OR   1  0
    5
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                         1
OR   1  0
     5


     11     2   3   4   0
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
     5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
                                                  11     2     n1   0
                                                                                     
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
OR
       1   2  3  4
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   1
                                                    5


OR   1  0
      5
                                                 NOTE :                              
                                                 n                                   
     11     2   3   4   0         1  0                             
 1     2   3   4  0   1             11     2     n1   0
                                                                                     
OR
       1   2  3  4                              GP: a  1, r   , n  5
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                   5
                                                      1
OR   1  0
      5
                                                   NOTE :                              
                                                   n                                   
     11     2   3   4   0           1  0                             
 1     2   3   4  0   1               11     2     n1   0
                                                                                       
OR                                 a  r n  1
       1   2  3  4                              GP: a  1, r   , n  5
                                        r 1
ii  Prove that 1     2   3   4  0
                                      b
       2  3  4  5                     sum of the roots 
                                      a
        1   2  3  4  0                     5
                                                        1
OR   1  0
      5
                                                     NOTE :                              
                                                     n                                   
     11     2   3   4   0             1  0                             
 1     2   3   4  0   1                 11     2     n1   0
                                                                                         
OR                                   a  r n  1
       1   2  3  4                                GP: a  1, r   , n  5
                                       r 1
                                     1 5  1
                                 
                                           1
ii  Prove that 1     2   3   4  0
                                      b
       2  3  4  5                     sum of the roots 
                                      a
        1   2  3  4  0                     5
                                                        1
OR   1  0
      5
                                                     NOTE :                              
                                                     n                                   
     11     2   3   4   0             1  0                             
 1     2   3   4  0   1                 11     2     n1   0
                                                                                         
OR                                   a  r n  1
       1   2  3  4                                    GP: a  1, r   , n  5
                                       r 1
                                     1 5  1
                                                         0
                                           1
ii  Prove that 1     2   3   4  0
                                      b
       2  3  4  5                     sum of the roots 
                                      a
        1   2  3  4  0                     5
                                                        1
OR   1  0
      5
                                                     NOTE :                              
                                                     n                                   
     11     2   3   4   0             1  0                             
 1     2   3   4  0   1                 11     2     n1   0
                                                                                         
OR                                   a  r n  1
       1   2  3  4                                    GP: a  1, r   , n  5
                                       r 1
                                     1 5  1                     5
                                                                          1  0
                                                         0
                                           1
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                 1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                 1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
        4  2  3
ii  Prove that 1     2   3   4  0
                                    b
       2  3  4  5                   sum of the roots 
                                    a
        1   2  3  4  0                 1
                                                    5


OR   1  0
          5
                                               NOTE :                              
                                               n                                   
         11           0 
                        2    3    4
                                                1  0                             
  1     2   3   4  0                  11     2     n1   0
                                       1                                       
OR                               a  r n  1
         1   2  3  4                         GP: a  1, r   , n  5
                                    r 1
                                 1 5  1              5  1  0 
                                                0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
        4  2  3
             1
ii  Prove that 1     2   3   4  0
                                    b
        2  3  4  5                  sum of the roots 
                                    a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1
ii  Prove that 1     2   3   4  0
                                    b
        2  3  4  5                  sum of the roots 
                                    a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1                                    3  4  6  7
ii  Prove that 1     2   3   4  0
                                    b
        2  3  4  5                  sum of the roots 
                                    a
        1   2  3  4  0                  1
                                                    5


OR   1  0
          5
                                                NOTE :                              
                                                n                                   
         11           0 
                        2    3    4
                                                 1  0                             
  1     2   3   4  0                   11     2     n1   0
                                       1                                        
OR                               a  r n  1
         1   2  3  4                          GP: a  1, r   , n  5
                                    r 1
                                 1 5  1               5  1  0 
                                                 0
                                     1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2    3                     4  2   3 
             1                                    3  4  6  7
                                                   3  4    2
                                                   1
ii  Prove that 1     2   3   4  0
                                     b
        2  3  4  5                  sum of the roots 
                                     a
        1   2  3  4  0                    1
                                                    5


OR   1  0
          5
                                                  NOTE :                              
                                                  n                                   
         11           0 
                        2    3      4
                                                   1  0                             
  1     2   3   4  0                     11     2     n1   0
                                         1                                        
OR                                 a  r n  1
         1   2  3  4                            GP: a  1, r   , n  5
                                      r 1
                                   1 5  1               5  1  0 
                                                   0
                                       1
 iii  Find the quadratic equation whose roots are    4 and  2   3
         4   2     3                      4  2   3 
             1                                      3  4  6  7
                                                     3  4    2
        equation is x 2  x  1  0
                                                     1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1      
                        2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1      
                        2 3


                
                     3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
 (i ) Evaluate 1     2 3
                           
                
                       3


                3
               1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3


                3
               1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1                                                1 
                                                                 
                                                                      2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1                                                1 
                                                                 
                                                                      2

                                                                  2
                                                                  2
                                                                  
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1   2 3                                     1        1
                                              (ii ) Evaluate       
                                                              1  1 2
                  
                       3
                                                                     1 1
                                                                 2 
                 3                                                
                1                                                1 
                                                                 
(iii) Form the cubic equation with roots 1, 1   , 1   2          2
                                                                  2
                                                                  2
                                                                  
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2


                              z3  2z 2  2z 1  0
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  (i ) Evaluate 1    2 3                                     1       1
                                                 (ii ) Evaluate      
                                                                1  1 2
                   
                        3
                                                                       1 1
                                                                   2 
                   3                                                
                  1                                                1 
                                                                  
(iii) Form the cubic equation with roots 1, 1   , 1   2           2
    z  1z  2     z  1         0
             2             2              2   3
                                                                   
                                                                     2
                                                                   2
                               z  1z 2  z  1  0
                                                                 1
                         z  z  z  z  z 1  0
                          3    2        2


                              z3  2z 2  2z 1  0



                      Exercise 4I; 1, 3, 5 (need 4b), 7

More Related Content

What's hot

Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
Jean Leano
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
dicosmo178
 

What's hot (20)

First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
 
The integral
The integralThe integral
The integral
 
Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinates
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
 
Types of RELATIONS
Types of RELATIONSTypes of RELATIONS
Types of RELATIONS
 
Analytic function 1
Analytic function 1Analytic function 1
Analytic function 1
 
Metric space
Metric spaceMetric space
Metric space
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examples
 
Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
 
Group Theory
Group TheoryGroup Theory
Group Theory
 
1.4.4 Parallel and Perpendicular Line Equations
1.4.4 Parallel and Perpendicular Line Equations1.4.4 Parallel and Perpendicular Line Equations
1.4.4 Parallel and Perpendicular Line Equations
 
Area between curves
Area between curvesArea between curves
Area between curves
 
Unit1 vrs
Unit1 vrsUnit1 vrs
Unit1 vrs
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 

Recently uploaded (20)

PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Gyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptxGyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
UNIT – IV_PCI Complaints: Complaints and evaluation of complaints, Handling o...
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation[GDSC YCCE] Build with AI Online Presentation
[GDSC YCCE] Build with AI Online Presentation
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
The impact of social media on mental health and well-being has been a topic o...
The impact of social media on mental health and well-being has been a topic o...The impact of social media on mental health and well-being has been a topic o...
The impact of social media on mental health and well-being has been a topic o...
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPoint
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptx
 
Keeping Your Information Safe with Centralized Security Services
Keeping Your Information Safe with Centralized Security ServicesKeeping Your Information Safe with Centralized Security Services
Keeping Your Information Safe with Centralized Security Services
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 

X2 T01 07 nth roots of unity

  • 1. nth Roots Of Unity  z n  1
  • 2. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity
  • 3. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle.
  • 4. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1
  • 5. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5 
  • 6. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  5 5 5 5
  • 7. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 x
  • 8. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 cis0 x
  • 9. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 5 5 5 5 cis 5 cis0 x
  • 10. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 5 5 5 5 cis 5 cis0 x 2 cis  5
  • 11. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 2 cis  5
  • 12. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 13. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 14. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  4 y 2 5 5 5 5 cis cis 5 5 cis0 x 4 cis  2 5 cis  5
  • 15. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots.
  • 16. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1
  • 17. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1
  • 18. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5 1
  • 19. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5
  • 20. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2
  • 21. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2  12 1
  • 22. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2  12 1  2 is a solution
  • 23. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3  12 1  2 is a solution
  • 24. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3  12  13 1 1  2 is a solution
  • 25. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3  12  13 1 1  2 is a solution  3 is a solution
  • 26. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13 1 1  2 is a solution  3 is a solution
  • 27. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution
  • 28. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution  4 is a solution
  • 29. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1     15 5 5  1  is a solution 5      2 5 5 2      3 5 5 3      4 5 5 4  12  13  14 1 1 1  2 is a solution  3 is a solution  4 is a solution Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
  • 30. ii  Prove that 1     2   3   4  0
  • 31. ii  Prove that 1     2   3   4  0 b   2  3  4  5   a
  • 32. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a
  • 33. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0
  • 34. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1
  • 35. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5
  • 36. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5   11     2   3   4   0
  • 37. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0    11     2     n1   0  
  • 38. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0  
  • 39. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR 1   2  3  4
  • 40. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR 1   2  3  4 GP: a  1, r   , n  5
  • 41. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1
  • 42. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1   1
  • 43. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  0  1
  • 44. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  5  1 OR   1  0 5  NOTE :   n    11     2   3   4   0  1  0  1     2   3   4  0   1   11     2     n1   0   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5 1  0  0  1
  • 45. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3
  • 46. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3       4  2  3
  • 47. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0  1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3       4  2  3  1
  • 48. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1
  • 49. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7
  • 50. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7  3  4    2  1
  • 51. ii  Prove that 1     2   3   4  0 b   2  3  4  5   sum of the roots  a 1   2  3  4  0   1 5 OR   1  0 5  NOTE :   n    11           0  2 3 4  1  0  1     2   3   4  0   11     2     n1   0   1   OR a  r n  1 1   2  3  4  GP: a  1, r   , n  5 r 1 1 5  1  5  1  0   0  1 iii  Find the quadratic equation whose roots are    4 and  2   3        4 2 3      4  2   3   1  3  4  6  7  3  4    2  equation is x 2  x  1  0  1
  • 52. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
  • 53. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3
  • 54. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3     3
  • 55. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3      3   3  1
  • 56. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3   3  1
  • 57. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1
  • 58. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1    2
  • 59. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1    2 2  2  1
  • 60. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1   2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2 2  2  1
  • 61. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2 1
  • 62. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1
  • 63. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2
  • 64. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2 z3  2z 2  2z 1  0
  • 65. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3 1 1 (ii ) Evaluate  1  1 2     3 1 1  2    3    1 1   (iii) Form the cubic equation with roots 1, 1   , 1   2 2  z  1z  2     z  1         0 2 2 2 3  2 2  z  1z 2  z  1  0 1 z  z  z  z  z 1  0 3 2 2 z3  2z 2  2z 1  0 Exercise 4I; 1, 3, 5 (need 4b), 7