Logarithms
Logarithms
Logarithms are the inverse of exponentials.
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x then x  log e y
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x then x  log e y
                             x  ln y
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x then x  log e y
                             x  ln y
                             x  log y
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x then x  log e y
                                              log base e is known as
                             x  ln y
                                              the natural logarithm.
                             x  log y
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x then x  log e y
                                              log base e is known as
                             x  ln y
                                              the natural logarithm.
                             x  log y
              y                                  y  log a x   a  1



                      1                              x
Logarithms
Logarithms are the inverse of exponentials.

             If y  a x then x  log a y
             If y  e x then x  log e y
                                              log base e is known as
                             x  ln y
                                              the natural logarithm.
                             x  log y
              y                                  y  log a x    a  1



                      1                              x

                                                y  log a x    0  a  1
Logarithms
 Logarithms are the inverse of exponentials.

                 If y  a x then x  log a y
                 If y  e x then x  log e y
                                               log base e is known as
                                 x  ln y
                                               the natural logarithm.
                                 x  log y
                 y                                y  log a x    a  1



                          1                           x
domain : x  0
                                                 y  log a x    0  a  1
Logarithms
  Logarithms are the inverse of exponentials.

                     If y  a x then x  log a y
                     If y  e x then x  log e y
                                                   log base e is known as
                                     x  ln y
                                                   the natural logarithm.
                                     x  log y
                     y                                y  log a x    a  1



                              1                           x
domain : x  0
range : all real y                                   y  log a x    0  a  1
Log Laws
Log Laws
1 log a m  log a n  log a mn
Log Laws
1 log a m  log a n  log a mn
                              m
2 log a m  log a n  log a  
                              n
Log Laws
1 log a m  log a n  log a mn
                              m
2 log a m  log a n  log a  
                              n
3 log a m n  n log a m
Log Laws
1 log a m  log a n  log a mn
                              m
2 log a m  log a n  log a  
                              n
3 log a m n  n log a m
4 log a 1  0
Log Laws
1 log a m  log a n  log a mn
                              m
2 log a m  log a n  log a  
                              n
3 log a m n  n log a m
4 log a 1  0
5 log a a  1
Log Laws
1 log a m  log a n  log a mn
                              m
2 log a m  log a n  log a  
                              n
3 log a m n  n log a m
4 log a 1  0
5 log a a  1
6 a log x  x
        a
Log Laws
1 log a m  log a n  log a mn
                              m
2 log a m  log a n  log a  
                              n
3 log a m n  n log a m
4 log a 1  0
5 log a a  1
6 a log x  x
        a




                 log b x
7  log a x 
                 log b a
e.g. (i) x  log 5 125
e.g. (i) x  log 5 125
       5 x  125
e.g. (i) x  log 5 125
       5 x  125
        x3
e.g. (i) x  log 5 125   ii  log x 343  3
       5 x  125
        x3
e.g. (i) x  log 5 125   ii  log x 343  3
       5 x  125                     x 3  343
        x3
e.g. (i) x  log 5 125   ii  log x 343  3
       5 x  125                     x 3  343
        x3                           x7
e.g. (i) x  log 5 125   ii  log x 343  3
       5 x  125                     x 3  343
        x3                           x7
iii  Evaluate;
  a) log 4 16
e.g. (i) x  log 5 125   ii  log x 343  3
        5 x  125                    x 3  343
         x3                          x7
iii  Evaluate;
  a) log 4 16
      log 4 4 2
e.g. (i) x  log 5 125   ii  log x 343  3
       5 x  125                     x 3  343
        x3                           x7
iii  Evaluate;
  a) log 4 16
      log 4 4 2
      2 log 4 4
e.g. (i) x  log 5 125   ii  log x 343  3
       5 x  125                     x 3  343
        x3                           x7
iii  Evaluate;
  a) log 4 16
      log 4 4 2
      2 log 4 4
     2
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3
      log 4 4 2
      2 log 4 4
     2
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3
      log 4 4 2            6   log 6 32

      2 log 4 4
     2
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3
      log 4 4 2            6   log 6 32

      2 log 4 4             32
     2
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3
      log 4 4 2            6   log 6 32

      2 log 4 4             32
     2                     9
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32

      2 log 4 4             32
     2                     9
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32
     2                     9
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32                         log 2 27
     2                     9
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32                         log 2 27
     2                     9                          7
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32                         log 2 27
     2                     9                          7

  d) log10125  log10 32  log10 4
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32                         log 2 27
     2                     9                          7

  d) log10125  log10 32  log10 4
            125  32 
    log10 
                    
            4 
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32                         log 2 27
     2                     9                          7

  d) log10125  log10 32  log10 4
            125  32 
    log10 
                    
            4 
    log10 1000
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                         log 2 128
      2 log 4 4             32                         log 2 27
     2                     9                          7

  d) log10125  log10 32  log10 4
            125  32 
    log10 
                    
            4 
    log10 1000
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                     x 3  343
        x3                                           x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7

  d) log10125  log10 32  log10 4               log 7 8
                                            e)
            125  32                            log 7 2
    log10 
                    
            4 
    log10 1000
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7

  d) log10125  log10 32  log10 4               log 7 8
                                            e)
            125  32                            log 7 2
    log10 
                    
            4                                   log 2 8
    log10 1000
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7

  d) log10125  log10 32  log10 4               log 7 8
                                            e)
            125  32                            log 7 2
    log10 
                    
            4                                   log 2 8
    log10 1000                                  3
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7                       1
                                                                         f) log 2
                                                 log 7 8                            8
  d) log10125  log10 32  log10 4          e)
            125  32                            log 7 2
    log10 
                    
            4                                   log 2 8
    log10 1000                                  3
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7                       1
                                                                         f) log 2
                                                 log 7 8                            8
  d) log10125  log10 32  log10 4          e)                              1      1
                                                 log 7 2                    log 2
            125  32 
    log10 
                    
                                                                            2      8
            4                                   log 2 8
    log10 1000                                  3
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7                       1
                                                                         f) log 2
                                                 log 7 8                            8
  d) log10125  log10 32  log10 4          e)                              1      1
                                                 log 7 2                    log 2
            125  32 
    log10 
                    
                                                                            2      8
            4                                   log 2 8
    log10 1000                                  3
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7                       1
                                                                         f) log 2
                                                 log 7 8                            8
  d) log10125  log10 32  log10 4          e)                              1      1
                                                 log 7 2                    log 2
            125  32 
    log10 
                    
                                                                            2      8
            4                                   log 2 8                  1
    log10 1000                                                              3
                                                 3                         2
   3
e.g. (i) x  log 5 125                   ii  log x 343  3
       5 x  125                                      x 3  343
        x3                                            x7
iii  Evaluate;
  a) log 4 16            b) 6 2log 6 3                 c) log 216  log 2 8
      log 4 4 2            6   log 6 32
                                                            log 2 128
      2 log 4 4             32                            log 2 27
     2                     9                             7                       1
                                                                         f) log 2
                                                 log 7 8                            8
  d) log10125  log10 32  log10 4          e)                               1     1
                                                 log 7 2                    log 2
            125  32 
    log10 
                    
                                                                             2     8
            4                                   log 2 8                   1
    log10 1000                                                              3
                                                 3                          2
   3                                                                        3
                                                                           
                                                                              2
1
iv  32 x 1 
                  27
1
iv  32 x 1 
                  27
      32 x 1  33
1
iv  32 x 1 
                  27
     32 x 1  33
     2 x  1  3
         2 x  4
           x  2
1
iv  32 x 1         v  2 x  9
                  27
     32 x 1  33
     2 x  1  3
         2 x  4
           x  2
1
iv  32 x 1         v  2 x  9
                  27
                       log 2 x  log 9
     32 x 1  33
     2 x  1  3
         2 x  4
           x  2
1
iv  32 x 1         v  2 x  9
                  27
                       log 2 x  log 9
     32 x 1  33
                       x log 2  log 9
     2 x  1  3
         2 x  4
           x  2
1
iv  32 x 1         v  2 x  9
                  27
                       log 2 x  log 9
     32 x 1  33
                       x log 2  log 9
     2 x  1  3
                                  log 9
         2 x  4            x
                                  log 2
           x  2
1
iv  32 x 1         v  2 x  9
                  27
                       log 2 x  log 9
     32 x 1  33
                       x log 2  log 9
     2 x  1  3
                                  log 9
         2 x  4            x
                                  log 2
           x  2             x  3.17 (to 2 dp)
1
iv  32 x 1                     v  2 x  9
                  27
                                   log 2 x  log 9
     32 x 1  33
                                   x log 2  log 9
     2 x  1  3
                                              log 9
         2 x  4                        x
                                              log 2
           x  2                         x  3.17 (to 2 dp)



 Exercise 12A; 2, 3aceg, 4bdfh, 5ab, 6ab, 7ac, 8bdh, 9ac, 14, 18*

                         Exercise 6B; 8

12X1 T01 01 log laws

  • 1.
  • 2.
    Logarithms Logarithms are theinverse of exponentials.
  • 3.
    Logarithms Logarithms are theinverse of exponentials. If y  a x
  • 4.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y
  • 5.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x
  • 6.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y
  • 7.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y x  ln y
  • 8.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y x  ln y x  log y
  • 9.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y log base e is known as x  ln y the natural logarithm. x  log y
  • 10.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y log base e is known as x  ln y the natural logarithm. x  log y y y  log a x a  1 1 x
  • 11.
    Logarithms Logarithms are theinverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y log base e is known as x  ln y the natural logarithm. x  log y y y  log a x a  1 1 x y  log a x 0  a  1
  • 12.
    Logarithms Logarithms arethe inverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y log base e is known as x  ln y the natural logarithm. x  log y y y  log a x a  1 1 x domain : x  0 y  log a x 0  a  1
  • 13.
    Logarithms Logarithmsare the inverse of exponentials. If y  a x then x  log a y If y  e x then x  log e y log base e is known as x  ln y the natural logarithm. x  log y y y  log a x a  1 1 x domain : x  0 range : all real y y  log a x 0  a  1
  • 14.
  • 15.
    Log Laws 1 loga m  log a n  log a mn
  • 16.
    Log Laws 1 loga m  log a n  log a mn m 2 log a m  log a n  log a   n
  • 17.
    Log Laws 1 loga m  log a n  log a mn m 2 log a m  log a n  log a   n 3 log a m n  n log a m
  • 18.
    Log Laws 1 loga m  log a n  log a mn m 2 log a m  log a n  log a   n 3 log a m n  n log a m 4 log a 1  0
  • 19.
    Log Laws 1 loga m  log a n  log a mn m 2 log a m  log a n  log a   n 3 log a m n  n log a m 4 log a 1  0 5 log a a  1
  • 20.
    Log Laws 1 loga m  log a n  log a mn m 2 log a m  log a n  log a   n 3 log a m n  n log a m 4 log a 1  0 5 log a a  1 6 a log x  x a
  • 21.
    Log Laws 1 loga m  log a n  log a mn m 2 log a m  log a n  log a   n 3 log a m n  n log a m 4 log a 1  0 5 log a a  1 6 a log x  x a log b x 7  log a x  log b a
  • 22.
    e.g. (i) x log 5 125
  • 23.
    e.g. (i) x log 5 125 5 x  125
  • 24.
    e.g. (i) x log 5 125 5 x  125 x3
  • 25.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x3
  • 26.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3
  • 27.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7
  • 28.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16
  • 29.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16  log 4 4 2
  • 30.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16  log 4 4 2  2 log 4 4
  • 31.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16  log 4 4 2  2 log 4 4 2
  • 32.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3  log 4 4 2  2 log 4 4 2
  • 33.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3  log 4 4 2 6 log 6 32  2 log 4 4 2
  • 34.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3  log 4 4 2 6 log 6 32  2 log 4 4  32 2
  • 35.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3  log 4 4 2 6 log 6 32  2 log 4 4  32 2 9
  • 36.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  2 log 4 4  32 2 9
  • 37.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32 2 9
  • 38.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9
  • 39.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7
  • 40.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4
  • 41.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4 125  32   log10     4 
  • 42.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4 125  32   log10     4   log10 1000
  • 43.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4 125  32   log10     4   log10 1000 3
  • 44.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4 log 7 8 e) 125  32  log 7 2  log10     4   log10 1000 3
  • 45.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4 log 7 8 e) 125  32  log 7 2  log10     4   log 2 8  log10 1000 3
  • 46.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 d) log10125  log10 32  log10 4 log 7 8 e) 125  32  log 7 2  log10     4   log 2 8  log10 1000 3 3
  • 47.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 1 f) log 2 log 7 8 8 d) log10125  log10 32  log10 4 e) 125  32  log 7 2  log10     4   log 2 8  log10 1000 3 3
  • 48.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 1 f) log 2 log 7 8 8 d) log10125  log10 32  log10 4 e) 1 1 log 7 2  log 2 125  32   log10    2 8  4   log 2 8  log10 1000 3 3
  • 49.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 1 f) log 2 log 7 8 8 d) log10125  log10 32  log10 4 e) 1 1 log 7 2  log 2 125  32   log10    2 8  4   log 2 8  log10 1000 3 3
  • 50.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 1 f) log 2 log 7 8 8 d) log10125  log10 32  log10 4 e) 1 1 log 7 2  log 2 125  32   log10    2 8  4   log 2 8 1  log10 1000   3 3 2 3
  • 51.
    e.g. (i) x log 5 125 ii  log x 343  3 5 x  125 x 3  343 x3 x7 iii  Evaluate; a) log 4 16 b) 6 2log 6 3 c) log 216  log 2 8  log 4 4 2 6 log 6 32  log 2 128  2 log 4 4  32  log 2 27 2 9 7 1 f) log 2 log 7 8 8 d) log10125  log10 32  log10 4 e) 1 1 log 7 2  log 2 125  32   log10    2 8  4   log 2 8 1  log10 1000   3 3 2 3 3  2
  • 52.
    1 iv  32x 1  27
  • 53.
    1 iv  32x 1  27 32 x 1  33
  • 54.
    1 iv  32x 1  27 32 x 1  33 2 x  1  3 2 x  4 x  2
  • 55.
    1 iv  32x 1  v  2 x  9 27 32 x 1  33 2 x  1  3 2 x  4 x  2
  • 56.
    1 iv  32x 1  v  2 x  9 27 log 2 x  log 9 32 x 1  33 2 x  1  3 2 x  4 x  2
  • 57.
    1 iv  32x 1  v  2 x  9 27 log 2 x  log 9 32 x 1  33 x log 2  log 9 2 x  1  3 2 x  4 x  2
  • 58.
    1 iv  32x 1  v  2 x  9 27 log 2 x  log 9 32 x 1  33 x log 2  log 9 2 x  1  3 log 9 2 x  4 x log 2 x  2
  • 59.
    1 iv  32x 1  v  2 x  9 27 log 2 x  log 9 32 x 1  33 x log 2  log 9 2 x  1  3 log 9 2 x  4 x log 2 x  2 x  3.17 (to 2 dp)
  • 60.
    1 iv  32x 1  v  2 x  9 27 log 2 x  log 9 32 x 1  33 x log 2  log 9 2 x  1  3 log 9 2 x  4 x log 2 x  2 x  3.17 (to 2 dp) Exercise 12A; 2, 3aceg, 4bdfh, 5ab, 6ab, 7ac, 8bdh, 9ac, 14, 18* Exercise 6B; 8