TUTORIAL 8
MTH3201 LINEAR ALGEBRA
Eigen value = λ
1(a)   To find λ,        To find bases for eigen space
        λI−A =0           λI−A 𝑥 =0
              λ=?                 𝑥 =?

         −1 3
        𝐴=
          8 4
          1 0   −1         3   λ+1          −3
λI−A = λ      −              =
          0 1   8          4    −8         λ−4

                              = λ + 1 λ − 4 − 24 = λ2 − 3λ −28


λ I − A = 0, λ2 − 3λ −28=0,    λ = 7, −4
when λ = 7,                                        when λ = −4,
 λI−A 𝑥 =0                               λI−A 𝑥 =0
 λ + 1 −3      𝑥1   0                    λ + 1 −3       𝑥1   0
               𝑥2 =                                     𝑥2 =
  −8 λ − 4          0                     −8 λ − 4           0
  8 −3 𝑥1         0                        −3 −3 𝑥1        0
             𝑥2 =                                       =
 −8 3             0                        −8 −8 𝑥2        0
  8 −3 0        𝐸𝑅𝑂 1 −3/8 0               −3 −3 0      𝐸𝑅𝑂 1    1 0
 −8 3 0               0    0 0             −8 −8 0           0   0 0
        3                                   𝑥1 + 𝑥2 = 0
 𝑥1 −      𝑥2 = 0
        8                                   𝐿𝑒𝑡 𝑥2 = 𝑡
  𝐿𝑒𝑡 𝑥2 = 𝑡                                  𝑥1 = −𝑡
        3                 t 3                       −1
  𝑥1 =     𝑡       ∴ 𝑥=                    ∴ 𝑥= 𝑡
        8                 8 8                        1
                      3
            ∴ Hence,    form a basis corresponding to λ = 7
                      8
                     −1
                         form a basis corresponding to λ = −4
                     1
1(b)           λ = 1,6,7
               −15/16     0 0
       bases = −1/2 , 1 , 2
                  1      −3 1

1(c)          λ = 3,9, −6
                 1      1 −2
       bases = −1 , −2 , 2
                 1      1 1
1(e)          λ = 2,2,3
                −2 −2 0
       bases = 1 , 0 , 1
                 0      1 0

1(f)       λ = 2, −2, −4
                −1 0 1
       bases = 1 , 1 , 0
                 0     3 1
2 −6            1           0   2       −6   λ−2             6
      1(d) 𝐴 =        , λI−A = λ               −            =
                 4 −8            0           1   4       −8    −4            λ+8

                                                       = λ − 2 λ + 8 + 24 = λ2 + 6λ +8
     λ I − A = 0, λ2 + 6λ +8=0,      (λ+2)(λ+4)=0, λ = −2, −4
when λ = −2,                                          when λ = −4,
 −4 6 𝑥1         0                            −6 6 𝑥1        0
              =                                           =
 −4 6 𝑥2         0                            −4 4 𝑥2        0
−4 6 0 𝐸𝑅𝑂 1 −3/2 0                          −6 6 0 𝐸𝑅𝑂 1 −1 0
−4 6 0             0     0 0                 −4 4 0          0 0 0
        3                                     𝑥1 − 𝑥2 = 0
 𝑥1 −      𝑥 =0
        2 2
                                              𝐿𝑒𝑡 𝑥2 = 𝑡
  𝐿𝑒𝑡 𝑥2 = 𝑡                                    𝑥1 = 𝑡
        3            t 3
  𝑥1 =      𝑡   ∴ 𝑥=                                  1
        2                                    ∴ 𝑥= 𝑡
                     2 2                              1
    3                                            1
∴     form a basis corresponding to λ = −2    ∴       form a basis corresponding to λ = −4
    2                                             1
2(a)        1
            −1 −1
         𝐴= 12 −2
            0
            −1 0
              𝜆−1  1                   1
det 𝜆𝐼 − 𝐴 = −1   𝜆−2                  2 = −1 2 𝜆 − 1 + 1 + 𝜆    𝜆−1   𝜆−2 +1
               0   1                   𝜆
   𝜆𝐼 − 𝐴 = 𝜆3 − 3𝜆2 + 𝜆 + 1 = 𝜆 − 1          𝜆2 − 2𝜆 − 1
 Characteristic equation of A:
          𝜆𝐼 − 𝐴 = 0
   𝜆 − 1 𝜆2 − 2𝜆 − 1 = 0                     𝜆 = 1,    𝜆 =1± 2

                                                      11
 ∴ Eigen values of 𝐴11 : 𝜆 = 111 ,         𝜆 = 1± 2

2(b)
       𝜆 = 2,1, −1
  ∴ Eigen values of 𝐴11 :
       𝜆 = 211 , 𝜆 = 111 𝜆 = −1   11
3(a)       3       −1 1
       𝐴= 1         0     1
          −5        2 −3
                   𝜆−3 1       −1
 det 𝜆𝐼 − 𝐴 = −1            𝜆  −1
                    5      −2 𝜆 + 3
 𝜆𝐼 − 𝐴 = 𝜆3 − 5𝜆 + 2 = 𝜆 − 2 𝜆2 + 2𝜆 − 1
Characteristic equation of A:
         𝜆𝐼 − 𝐴 = 0
  𝜆 − 2 𝜆2 + 2𝜆 − 1 = 0
  𝜆 = 2,      𝜆 = −1 ± 2
 ∴ λ ≠ 0, A is invertible
3(b)                𝜆−5      −2 −6
       det 𝜆𝐼 − 𝐴 = 0        𝜆+8 1
                    −1        2  𝜆
                   −9 ± 57
   𝜆 = 6,    𝜆=
                        2
 ∴ λ ≠ 0, A is invertible
1 0         2
 4(a)   𝐴 = −3 0       −2
            0 1         5

             𝜆−1 0              −2
det 𝜆𝐼 − 𝐴 = 3    𝜆              2
              0  −1             𝜆−5

 𝜆𝐼 − 𝐴 = 𝜆3 − 6𝜆2 + 7𝜆 + 4 = 𝜆 − 4     𝜆2 − 2𝜆 − 1
Characteristic equation of A:
         𝜆𝐼 − 𝐴 = 0
  𝜆 − 4 𝜆2 − 2𝜆 − 1 = 0               𝜆 = 4,    𝜆 =1± 2
∴ det A = 4 1 + 2 1 − 2 = −4
∴ trace A = 4 + 1 + 2 + 1 − 2 = 6
4(b)  𝜆 = 2,   𝜆 = −2 ± 2 3
   ∴ det A = 2 −2 + 2 3 −2 − 2 3 = −16
   ∴ trace A = 2 + −2 + 2 3 + −2 − 2 3 = −2


4(c)      𝜆 = 0,   𝜆 = −1 ± 2
       ∴ det A = 0
       ∴ trace A = −2


4(d) 𝜆 = 1,     𝜆 = 6,     𝜆=6
    ∴ det A = 36
    ∴ trace A = 13
−9   −6    −22                𝜆+9          6       22
   5(a)     𝐴= 1    2       2 , det 𝜆𝐼 − 𝐴 = −1          𝜆−2      −2
                4   2      10                −4          −2     𝜆 − 10
    𝜆𝐼 − 𝐴 = 𝜆3 − 3𝜆2 + 2𝜆 = 𝜆 𝜆 − 2   𝜆−1               𝜆 = 1,2,0
For 𝜆 = 1
                                                           To find bases for eigen space
10 6 22 0                ERO     1 0   5/2 0                λI−A 𝑥 =0
−1 −1 −2 0                       0 1   −1/2 0                       𝑥 =?
−4 −2 −9 0                       0 0    0 0
𝐿𝑒𝑡 𝑥3 = 𝑡
             −5
     𝑥 = 𝑡/2 1
             2
                                                    −5
Basis for eigenspace corresponding to λ = 1 is 𝑝1 = 1
                                                     2
For 𝜆 = 2                                                 To find bases for eigen space
 11 6 22 0             ERO      1 0 2 0                     λI−A 𝑥 =0
 −1 0 −2 0                      0 1 0 0                             𝑥 =?
 −4 −2 −8 0                     0 0 0 0
  𝐿𝑒𝑡 𝑥3 = 𝑡
              −2
       𝑥= 𝑡 0
               1                                    −2
Basis for eigenspace corresponding to λ = 2 is 𝑝2 = 0
                                                     1
 For 𝜆 = 0
  9      6    22 0 ERO          1 0 8/3          0
 −1 −2 −2 0                     0 1 −1/3         0
 −4 −2 −10 0                    0 0       0      0
 𝐿𝑒𝑡 𝑥3 = 𝑡
                −8
       𝑥 = 𝑡/3 1
                 3                                    −8
Basis for eigenspace corresponding to λ = 0 is   𝑝3 = 1
                                                       3
𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑝1 , 𝑝2 𝑎𝑛𝑑 𝑝3

         −5 −2      −8
      𝑃= 1  0        1
          2 1        3




              𝜆1    0    0   1   0   0
𝑃−1   𝐴 𝑃= 𝐷= 0     𝜆2   0 = 0   2   0
              0     0    𝜆3  0   0   0
5(b)   𝜆 = 2,2,5
For 𝜆 = 2            For 𝜆 = 5
  0 0 0 0             3     0 0 0      ∴ Since A is 3X3 matrix,
  1 0 0 0             1     3 0 0   there are only two basis vector.
 −4 3 −3 0           −4     3 0 0     Thus, A is not diagonalizable
       ERO                  ERO
 1 0 0 0              1 0 0 0
 0 1 −1 0             0 1 0 0
 0 0 0 0              0 0 0 0
𝐿𝑒𝑡 𝑥3 = 𝑡           𝐿𝑒𝑡 𝑥3 = 𝑡
          0                   0
    𝑥= 𝑡 1               𝑥= 𝑡 0
          1                   1
        0                    0
   𝑝1 = 1               𝑝2 = 0
        1                    1
5(c)     𝜆 = 1, −1,2
           0   2       −1                      𝜆1    0     0   1    0 0
                                  −1
       𝑃 = −1 −1       −1 ,   𝑃        𝐴 𝑃= 𝐷= 0     𝜆2    0 = 0   −1 0
           1 −1         2                      0     0     𝜆3  0    0 2

5(d)     𝜆 = 1,4,9

           −1 0 0                               𝜆1    0    0   1   0 0
       𝑃 = −1 1 −1 ,              𝑃−1   𝐴 𝑃= 𝐷= 0     𝜆2   0 = 0   4 0
           1 0 1                                0     0    𝜆3  0   0 9
6.          4 −3                  𝜆−4 3
           𝐴=        ,    𝜆𝐼 − 𝐴 =
               1 0                    −1     𝜆
                 1 0
   𝑃−1 𝐴 𝑃 = 𝐷 =     ,     from here, we know that λ1 = 1 and λ2 =3
                 0 3
For 𝜆 = 1              For 𝜆 = 3            𝑃 𝐼        𝐼 𝑃−1
 −3 3 0                  −1 3 0
 −1 1 0                  −1 3 0            1 3 1 0 ERO 1 0 −1/2 3/2
      ERO                     ERO          1 1 0 1            0 1 1/2 −1/2
 1 −1 0                     1   −3 0              −1/2 3/2
 0 0 0                      0    0 0      𝑃−1 =
                                                   1/2 −1/2
𝐿𝑒𝑡 𝑥2 = 𝑡                 𝐿𝑒𝑡 𝑥2 = 𝑡
           1                          3
      𝑥= 𝑡                       𝑥= 𝑡
           1                          1
         1                          3
    𝑝1 =                       𝑝2 =
         1                          1

                     1 3
                𝑃=
                     1 1
𝐷 = 𝑃−1 𝐴 𝑃
     𝐷 𝑛 = 𝑃−1 𝐴𝑃 𝑛
     𝐷 𝑛 = 𝑃−1 𝐴𝑃 ∙ 𝑃−1 𝐴𝑃 ∙ 𝑃−1 𝐴𝑃 ∙ 𝑃−1 𝐴𝑃… ∙ 𝑃−1 𝐴𝑃    𝑛
                                                              1        3𝑛
                                                         𝐴 = 3𝐼 − 𝐴 +     𝐴− 𝐼
      𝐷𝑛=   𝑃−1 𝐴 𝑛 𝑃                                         2        2
    𝑃𝐷 𝑛 =  𝑃𝑃−1 𝐴 𝑛 𝑃                                        3𝑛−1    3−3𝑛
                                                         𝐴𝑛 =      𝐴+      𝐼
𝑃𝐷 𝑛 𝑃−1 =  𝑃𝑃−1 𝐴 𝑛                                            2       2
𝑃𝐷 𝑛 𝑃−1 =  𝐴𝑛                                           ∗ 𝑝𝑟𝑜𝑣𝑒𝑑
      𝐴𝑛 =  𝑃𝐷 𝑛 𝑃−1
        𝑛   1 3 1 0 𝑛 −1/2 3/2
      𝐴 =
            1 1 0 3          1/2 −1/2
                      𝑛 1 −1   3
        𝑛 = 1 3∙3
     𝐴
            1     3 𝑛 2 1 −1
       𝑛 =
           1 −1 + 3 ∙ 3 𝑛 3 − 3 ∙ 3 𝑛
    𝐴
           2 −1 + 3 𝑛        3−3𝑛
           1 3 0         4 −3       1  4 −3
     𝐴𝑛 =              −         + ∙3𝑛
           2 0 3         1 0        2  1 0
7(a)        1     1  0
        𝐴 = −1 −2 −1       𝐴𝑛 =    𝑃𝐷 𝑛 𝑃−1
             3     1 −2    𝐴10 =   𝑃𝐷10 𝑃−1
 λ = 0, −1, −2               1      1 −1 010      0         0        1    1    −1
                                                      10
                          = −1     −2 3     0    −1         0        −1   −2   3
        1    1 −1                                               10
                             1      1     1 0     0        −2        1    1    1
  𝑃 = −1 −2 3
        1    1     1               510    −1   −511
                           10
         ERO              𝐴     = −1532    2   1534
    𝑃 𝐼        𝐼 𝑃−1              −514    −1    513
         1   1    −1
𝑃−1   = −1   −2   3
         1   1    1
7(b)      2 0 1
       𝐴 = 6 4 −3       𝐴 𝑛 = 𝑃𝐷 𝑛 𝑃−1
           2 0 3        𝐴10 = 𝑃𝐷10 𝑃−1
 λ = 4,4,1               1 0 −1 410          0     0      1/3 0    1/3
                       = 0 1 3         0    410    0       2  1    −1
       1 0 −1                                            −2/3 0    1/3
                         2 0 1         0     0    110
  𝑃= 0 1 3
       2 0 1                    349526        0          349525
                        10
        ERO            𝐴     = 2097150     1048576      −1048575
   𝑃 𝐼       𝐼 𝑃−1              699050        0          699051
         1/3   0 1/3
𝑃−1   =   2    1 −1                  Use calculator
        −2/3   0 1/3
8(a)          1   −3
             𝐴=
                 −3   9
Step 1     λ = 0,10

 For 𝜆 = 0            For 𝜆 = 10
  −1 3 0                   9   3 0
   3 −9 0                  3   1 0
     ERO                        ERO
  1 −3 0                1 1/3 0
  0 0 0                 0     0 0
𝐿𝑒𝑡 𝑥2 = 𝑡             𝐿𝑒𝑡 𝑥2 = 𝑡
            3                     −1
      𝑥= 𝑡              𝑥 = 𝑡/3
            1                      3
          3                         −1
    𝑝1 =                      𝑝2 =
          1                          3
8(a)
Step 2   Gram-Schmidt process                𝑣𝑛
                                  𝑞𝑛 =
                           3                 𝑣𝑛             −1
                   𝑝1 =                                𝑝2 =
                           1                                3
                𝑣1   3,1                                    𝑣2   −1,3
         𝑞1 =      =                                   𝑞2 =    =
                𝑣1    10                                    𝑣2     10
                       3   1                                      −1 3
                   =     ,                                     =      ,
                       10 10                                       10 10
                       3                                          −1
                       10                                         10
                  =                                           =
                       1                                          3
                       10                                         10
Step 3                                   3        −1
                                         10       10
                                𝑃=
                                         1        3
                                      10  10
                                     0 0
                      𝐷 = 𝑃−1   𝐴 𝑃=
                                     0 10
Tutorial 8 mth 3201

Tutorial 8 mth 3201

  • 2.
  • 3.
    Eigen value =λ 1(a) To find λ, To find bases for eigen space λI−A =0 λI−A 𝑥 =0 λ=? 𝑥 =? −1 3 𝐴= 8 4 1 0 −1 3 λ+1 −3 λI−A = λ − = 0 1 8 4 −8 λ−4 = λ + 1 λ − 4 − 24 = λ2 − 3λ −28 λ I − A = 0, λ2 − 3λ −28=0, λ = 7, −4
  • 4.
    when λ =7, when λ = −4, λI−A 𝑥 =0 λI−A 𝑥 =0 λ + 1 −3 𝑥1 0 λ + 1 −3 𝑥1 0 𝑥2 = 𝑥2 = −8 λ − 4 0 −8 λ − 4 0 8 −3 𝑥1 0 −3 −3 𝑥1 0 𝑥2 = = −8 3 0 −8 −8 𝑥2 0 8 −3 0 𝐸𝑅𝑂 1 −3/8 0 −3 −3 0 𝐸𝑅𝑂 1 1 0 −8 3 0 0 0 0 −8 −8 0 0 0 0 3 𝑥1 + 𝑥2 = 0 𝑥1 − 𝑥2 = 0 8 𝐿𝑒𝑡 𝑥2 = 𝑡 𝐿𝑒𝑡 𝑥2 = 𝑡 𝑥1 = −𝑡 3 t 3 −1 𝑥1 = 𝑡 ∴ 𝑥= ∴ 𝑥= 𝑡 8 8 8 1 3 ∴ Hence, form a basis corresponding to λ = 7 8 −1 form a basis corresponding to λ = −4 1
  • 5.
    1(b) λ = 1,6,7 −15/16 0 0 bases = −1/2 , 1 , 2 1 −3 1 1(c) λ = 3,9, −6 1 1 −2 bases = −1 , −2 , 2 1 1 1 1(e) λ = 2,2,3 −2 −2 0 bases = 1 , 0 , 1 0 1 0 1(f) λ = 2, −2, −4 −1 0 1 bases = 1 , 1 , 0 0 3 1
  • 6.
    2 −6 1 0 2 −6 λ−2 6 1(d) 𝐴 = , λI−A = λ − = 4 −8 0 1 4 −8 −4 λ+8 = λ − 2 λ + 8 + 24 = λ2 + 6λ +8 λ I − A = 0, λ2 + 6λ +8=0, (λ+2)(λ+4)=0, λ = −2, −4 when λ = −2, when λ = −4, −4 6 𝑥1 0 −6 6 𝑥1 0 = = −4 6 𝑥2 0 −4 4 𝑥2 0 −4 6 0 𝐸𝑅𝑂 1 −3/2 0 −6 6 0 𝐸𝑅𝑂 1 −1 0 −4 6 0 0 0 0 −4 4 0 0 0 0 3 𝑥1 − 𝑥2 = 0 𝑥1 − 𝑥 =0 2 2 𝐿𝑒𝑡 𝑥2 = 𝑡 𝐿𝑒𝑡 𝑥2 = 𝑡 𝑥1 = 𝑡 3 t 3 𝑥1 = 𝑡 ∴ 𝑥= 1 2 ∴ 𝑥= 𝑡 2 2 1 3 1 ∴ form a basis corresponding to λ = −2 ∴ form a basis corresponding to λ = −4 2 1
  • 7.
    2(a) 1 −1 −1 𝐴= 12 −2 0 −1 0 𝜆−1 1 1 det 𝜆𝐼 − 𝐴 = −1 𝜆−2 2 = −1 2 𝜆 − 1 + 1 + 𝜆 𝜆−1 𝜆−2 +1 0 1 𝜆 𝜆𝐼 − 𝐴 = 𝜆3 − 3𝜆2 + 𝜆 + 1 = 𝜆 − 1 𝜆2 − 2𝜆 − 1 Characteristic equation of A: 𝜆𝐼 − 𝐴 = 0 𝜆 − 1 𝜆2 − 2𝜆 − 1 = 0 𝜆 = 1, 𝜆 =1± 2 11 ∴ Eigen values of 𝐴11 : 𝜆 = 111 , 𝜆 = 1± 2 2(b) 𝜆 = 2,1, −1 ∴ Eigen values of 𝐴11 : 𝜆 = 211 , 𝜆 = 111 𝜆 = −1 11
  • 8.
    3(a) 3 −1 1 𝐴= 1 0 1 −5 2 −3 𝜆−3 1 −1 det 𝜆𝐼 − 𝐴 = −1 𝜆 −1 5 −2 𝜆 + 3 𝜆𝐼 − 𝐴 = 𝜆3 − 5𝜆 + 2 = 𝜆 − 2 𝜆2 + 2𝜆 − 1 Characteristic equation of A: 𝜆𝐼 − 𝐴 = 0 𝜆 − 2 𝜆2 + 2𝜆 − 1 = 0 𝜆 = 2, 𝜆 = −1 ± 2 ∴ λ ≠ 0, A is invertible 3(b) 𝜆−5 −2 −6 det 𝜆𝐼 − 𝐴 = 0 𝜆+8 1 −1 2 𝜆 −9 ± 57 𝜆 = 6, 𝜆= 2 ∴ λ ≠ 0, A is invertible
  • 9.
    1 0 2 4(a) 𝐴 = −3 0 −2 0 1 5 𝜆−1 0 −2 det 𝜆𝐼 − 𝐴 = 3 𝜆 2 0 −1 𝜆−5 𝜆𝐼 − 𝐴 = 𝜆3 − 6𝜆2 + 7𝜆 + 4 = 𝜆 − 4 𝜆2 − 2𝜆 − 1 Characteristic equation of A: 𝜆𝐼 − 𝐴 = 0 𝜆 − 4 𝜆2 − 2𝜆 − 1 = 0 𝜆 = 4, 𝜆 =1± 2 ∴ det A = 4 1 + 2 1 − 2 = −4 ∴ trace A = 4 + 1 + 2 + 1 − 2 = 6
  • 10.
    4(b) 𝜆= 2, 𝜆 = −2 ± 2 3 ∴ det A = 2 −2 + 2 3 −2 − 2 3 = −16 ∴ trace A = 2 + −2 + 2 3 + −2 − 2 3 = −2 4(c) 𝜆 = 0, 𝜆 = −1 ± 2 ∴ det A = 0 ∴ trace A = −2 4(d) 𝜆 = 1, 𝜆 = 6, 𝜆=6 ∴ det A = 36 ∴ trace A = 13
  • 11.
    −9 −6 −22 𝜆+9 6 22 5(a) 𝐴= 1 2 2 , det 𝜆𝐼 − 𝐴 = −1 𝜆−2 −2 4 2 10 −4 −2 𝜆 − 10 𝜆𝐼 − 𝐴 = 𝜆3 − 3𝜆2 + 2𝜆 = 𝜆 𝜆 − 2 𝜆−1 𝜆 = 1,2,0 For 𝜆 = 1 To find bases for eigen space 10 6 22 0 ERO 1 0 5/2 0 λI−A 𝑥 =0 −1 −1 −2 0 0 1 −1/2 0 𝑥 =? −4 −2 −9 0 0 0 0 0 𝐿𝑒𝑡 𝑥3 = 𝑡 −5 𝑥 = 𝑡/2 1 2 −5 Basis for eigenspace corresponding to λ = 1 is 𝑝1 = 1 2
  • 12.
    For 𝜆 =2 To find bases for eigen space 11 6 22 0 ERO 1 0 2 0 λI−A 𝑥 =0 −1 0 −2 0 0 1 0 0 𝑥 =? −4 −2 −8 0 0 0 0 0 𝐿𝑒𝑡 𝑥3 = 𝑡 −2 𝑥= 𝑡 0 1 −2 Basis for eigenspace corresponding to λ = 2 is 𝑝2 = 0 1 For 𝜆 = 0 9 6 22 0 ERO 1 0 8/3 0 −1 −2 −2 0 0 1 −1/3 0 −4 −2 −10 0 0 0 0 0 𝐿𝑒𝑡 𝑥3 = 𝑡 −8 𝑥 = 𝑡/3 1 3 −8 Basis for eigenspace corresponding to λ = 0 is 𝑝3 = 1 3
  • 13.
    𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑝1 ,𝑝2 𝑎𝑛𝑑 𝑝3 −5 −2 −8 𝑃= 1 0 1 2 1 3 𝜆1 0 0 1 0 0 𝑃−1 𝐴 𝑃= 𝐷= 0 𝜆2 0 = 0 2 0 0 0 𝜆3 0 0 0
  • 14.
    5(b) 𝜆 = 2,2,5 For 𝜆 = 2 For 𝜆 = 5 0 0 0 0 3 0 0 0 ∴ Since A is 3X3 matrix, 1 0 0 0 1 3 0 0 there are only two basis vector. −4 3 −3 0 −4 3 0 0 Thus, A is not diagonalizable ERO ERO 1 0 0 0 1 0 0 0 0 1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 𝐿𝑒𝑡 𝑥3 = 𝑡 𝐿𝑒𝑡 𝑥3 = 𝑡 0 0 𝑥= 𝑡 1 𝑥= 𝑡 0 1 1 0 0 𝑝1 = 1 𝑝2 = 0 1 1
  • 15.
    5(c) 𝜆 = 1, −1,2 0 2 −1 𝜆1 0 0 1 0 0 −1 𝑃 = −1 −1 −1 , 𝑃 𝐴 𝑃= 𝐷= 0 𝜆2 0 = 0 −1 0 1 −1 2 0 0 𝜆3 0 0 2 5(d) 𝜆 = 1,4,9 −1 0 0 𝜆1 0 0 1 0 0 𝑃 = −1 1 −1 , 𝑃−1 𝐴 𝑃= 𝐷= 0 𝜆2 0 = 0 4 0 1 0 1 0 0 𝜆3 0 0 9
  • 16.
    6. 4 −3 𝜆−4 3 𝐴= , 𝜆𝐼 − 𝐴 = 1 0 −1 𝜆 1 0 𝑃−1 𝐴 𝑃 = 𝐷 = , from here, we know that λ1 = 1 and λ2 =3 0 3 For 𝜆 = 1 For 𝜆 = 3 𝑃 𝐼 𝐼 𝑃−1 −3 3 0 −1 3 0 −1 1 0 −1 3 0 1 3 1 0 ERO 1 0 −1/2 3/2 ERO ERO 1 1 0 1 0 1 1/2 −1/2 1 −1 0 1 −3 0 −1/2 3/2 0 0 0 0 0 0 𝑃−1 = 1/2 −1/2 𝐿𝑒𝑡 𝑥2 = 𝑡 𝐿𝑒𝑡 𝑥2 = 𝑡 1 3 𝑥= 𝑡 𝑥= 𝑡 1 1 1 3 𝑝1 = 𝑝2 = 1 1 1 3 𝑃= 1 1
  • 17.
    𝐷 = 𝑃−1𝐴 𝑃 𝐷 𝑛 = 𝑃−1 𝐴𝑃 𝑛 𝐷 𝑛 = 𝑃−1 𝐴𝑃 ∙ 𝑃−1 𝐴𝑃 ∙ 𝑃−1 𝐴𝑃 ∙ 𝑃−1 𝐴𝑃… ∙ 𝑃−1 𝐴𝑃 𝑛 1 3𝑛 𝐴 = 3𝐼 − 𝐴 + 𝐴− 𝐼 𝐷𝑛= 𝑃−1 𝐴 𝑛 𝑃 2 2 𝑃𝐷 𝑛 = 𝑃𝑃−1 𝐴 𝑛 𝑃 3𝑛−1 3−3𝑛 𝐴𝑛 = 𝐴+ 𝐼 𝑃𝐷 𝑛 𝑃−1 = 𝑃𝑃−1 𝐴 𝑛 2 2 𝑃𝐷 𝑛 𝑃−1 = 𝐴𝑛 ∗ 𝑝𝑟𝑜𝑣𝑒𝑑 𝐴𝑛 = 𝑃𝐷 𝑛 𝑃−1 𝑛 1 3 1 0 𝑛 −1/2 3/2 𝐴 = 1 1 0 3 1/2 −1/2 𝑛 1 −1 3 𝑛 = 1 3∙3 𝐴 1 3 𝑛 2 1 −1 𝑛 = 1 −1 + 3 ∙ 3 𝑛 3 − 3 ∙ 3 𝑛 𝐴 2 −1 + 3 𝑛 3−3𝑛 1 3 0 4 −3 1 4 −3 𝐴𝑛 = − + ∙3𝑛 2 0 3 1 0 2 1 0
  • 18.
    7(a) 1 1 0 𝐴 = −1 −2 −1 𝐴𝑛 = 𝑃𝐷 𝑛 𝑃−1 3 1 −2 𝐴10 = 𝑃𝐷10 𝑃−1 λ = 0, −1, −2 1 1 −1 010 0 0 1 1 −1 10 = −1 −2 3 0 −1 0 −1 −2 3 1 1 −1 10 1 1 1 0 0 −2 1 1 1 𝑃 = −1 −2 3 1 1 1 510 −1 −511 10 ERO 𝐴 = −1532 2 1534 𝑃 𝐼 𝐼 𝑃−1 −514 −1 513 1 1 −1 𝑃−1 = −1 −2 3 1 1 1
  • 19.
    7(b) 2 0 1 𝐴 = 6 4 −3 𝐴 𝑛 = 𝑃𝐷 𝑛 𝑃−1 2 0 3 𝐴10 = 𝑃𝐷10 𝑃−1 λ = 4,4,1 1 0 −1 410 0 0 1/3 0 1/3 = 0 1 3 0 410 0 2 1 −1 1 0 −1 −2/3 0 1/3 2 0 1 0 0 110 𝑃= 0 1 3 2 0 1 349526 0 349525 10 ERO 𝐴 = 2097150 1048576 −1048575 𝑃 𝐼 𝐼 𝑃−1 699050 0 699051 1/3 0 1/3 𝑃−1 = 2 1 −1 Use calculator −2/3 0 1/3
  • 20.
    8(a) 1 −3 𝐴= −3 9 Step 1 λ = 0,10 For 𝜆 = 0 For 𝜆 = 10 −1 3 0 9 3 0 3 −9 0 3 1 0 ERO ERO 1 −3 0 1 1/3 0 0 0 0 0 0 0 𝐿𝑒𝑡 𝑥2 = 𝑡 𝐿𝑒𝑡 𝑥2 = 𝑡 3 −1 𝑥= 𝑡 𝑥 = 𝑡/3 1 3 3 −1 𝑝1 = 𝑝2 = 1 3
  • 21.
    8(a) Step 2 Gram-Schmidt process 𝑣𝑛 𝑞𝑛 = 3 𝑣𝑛 −1 𝑝1 = 𝑝2 = 1 3 𝑣1 3,1 𝑣2 −1,3 𝑞1 = = 𝑞2 = = 𝑣1 10 𝑣2 10 3 1 −1 3 = , = , 10 10 10 10 3 −1 10 10 = = 1 3 10 10 Step 3 3 −1 10 10 𝑃= 1 3 10 10 0 0 𝐷 = 𝑃−1 𝐴 𝑃= 0 10