COLLEGE OF ARTS AND SCIENCES
                        UNIVERSITI UTARA MALAYSIA

                           SQQM2023 LINEAR ALGEBRA

                                    TUTORIAL 2


1. Find the determinant of each of the following matrices.
                                    4 0 0                a b      c
      3 − 5                                            
   a)                          b) 5 2 0             c)  0 0      0
       2 1 
                                                                      
                                     2 0 4
                                                         d e
                                                                    f
                                                                      
         2d   2e 2 f                 a 3d    d
                  f                          e
     d)  d    e                   e) b 3e     
        g
              h   i                 c 3 f
                                               f
                                                 


2.       Find all values of t for which
                                       t −1 0      1
        t +3 −3
     a)          =0                 b) − 2 t + 2 − 1 = 0
          2  t−2
                                         0   0   t +1



3.                                                          [ ]
         Give an example of an upper triangular matrix A = aij of size 3 × 3 .
     Show that A = a11 a 22 a33 .


4. Let A and B be 3 × 3 matrices with A = 4 and B = 5 . Find the values of
                                                      −1
     a) AB           b) 3 A         c) 2 AB       d) A B



              1 3 − 2         1 0 2 
             − 2 1 1 ,               
5. Given A =          and B = 3 2 − 5 .
             0 3 0 
                              2 1 3 
                                       

     a) Verify that AB = A B
     b) Is AB = BA ? Justify your answer.
     c) Show that if k =2, then kA = k A
                                      3




               [ ]
6. Let A = aij is a 3 × 3 matrix, form the general expression for A by expanding
   a) along the first column.           b) along the second row.
1 2 − 3 
                      
7. Let A = 3 1 4  . Find each cofactor below:
            4 3 − 2
                      
   a) c13       b) c32      c) c 21


           4   2       3 − 4
            3 −2       1 5 
8. Let C =                   , find the determinant of C.
           − 2 0       1 − 3
                            
            8 −2       6 4


9. Let A be a 3x3 matrix. Give an example to show that AA-1 = I, where I is an
   identity matrix.


10. Consider the following linear system:

                    − 2x + 3y − z = 1
                    x + 2y − z = 4
                    − 2 x − y + z = −3

       a)   Write the system as a matrix equation AX = B.
       b)   Find A .
       c)   Solve the system using Cramer’s rule.
       d)   Find adj (A).
       e)   Solve the system using inverse method.


11. Repeat question 10 (b) – (e) for the linear system below:

                   1 1   1 − 2  x1  − 4
                   0 2 1
                            3   x2   4 
                                 =  
                   2 1 − 1 2   x3   5 
                                 
                   1 − 1 0  1   x4   4 

12. Verify your answer in 10 and 11 using MATLAB. The print-out from the matlab
    should be attached.
Tutorial 2 -_sem_a102

Tutorial 2 -_sem_a102

  • 1.
    COLLEGE OF ARTSAND SCIENCES UNIVERSITI UTARA MALAYSIA SQQM2023 LINEAR ALGEBRA TUTORIAL 2 1. Find the determinant of each of the following matrices. 4 0 0 a b c 3 − 5    a)  b) 5 2 0 c)  0 0 0  2 1    2 0 4   d e  f   2d 2e 2 f  a 3d d  f   e d)  d e  e) b 3e  g  h i  c 3 f  f  2. Find all values of t for which t −1 0 1 t +3 −3 a) =0 b) − 2 t + 2 − 1 = 0 2 t−2 0 0 t +1 3. [ ] Give an example of an upper triangular matrix A = aij of size 3 × 3 . Show that A = a11 a 22 a33 . 4. Let A and B be 3 × 3 matrices with A = 4 and B = 5 . Find the values of −1 a) AB b) 3 A c) 2 AB d) A B  1 3 − 2 1 0 2  − 2 1 1 ,   5. Given A =   and B = 3 2 − 5 . 0 3 0    2 1 3    a) Verify that AB = A B b) Is AB = BA ? Justify your answer. c) Show that if k =2, then kA = k A 3 [ ] 6. Let A = aij is a 3 × 3 matrix, form the general expression for A by expanding a) along the first column. b) along the second row.
  • 2.
    1 2 −3    7. Let A = 3 1 4  . Find each cofactor below:  4 3 − 2   a) c13 b) c32 c) c 21 4 2 3 − 4  3 −2 1 5  8. Let C =   , find the determinant of C. − 2 0 1 − 3    8 −2 6 4 9. Let A be a 3x3 matrix. Give an example to show that AA-1 = I, where I is an identity matrix. 10. Consider the following linear system: − 2x + 3y − z = 1 x + 2y − z = 4 − 2 x − y + z = −3 a) Write the system as a matrix equation AX = B. b) Find A . c) Solve the system using Cramer’s rule. d) Find adj (A). e) Solve the system using inverse method. 11. Repeat question 10 (b) – (e) for the linear system below: 1 1 1 − 2  x1  − 4 0 2 1  3   x2   4    =   2 1 − 1 2   x3   5       1 − 1 0 1   x4   4  12. Verify your answer in 10 and 11 using MATLAB. The print-out from the matlab should be attached.