P1: FCH/FFX

P2: FCH/FFX

GTBL001-front˙end

QC: FCH/FFX

T1: FCH

GTBL001-Smith-v16.cls

October 17, 2005

20:2

Algebra

Geometry

Arithmetic

Triangle

a+b
a
b
= +
c
c
c
a
b
c
d

=

a
b

Area = 1 bh
2
c2 = a 2 + b2 − 2ab cos θ

c
ad + bc
a
+ =
b
d
bd
d
c

=

Circle
Area = πr 2
C = 2πr

ad
bc

a

c

r

h
␪
b

Factoring
x 2 − y 2 = (x − y)(x + y)

x 3 − y 3 = (x − y)(x 2 + x y + y 2 )

x 3 + y 3 = (x + y)(x 2 − x y + y 2 )

x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 )

Binomial
(x + y)2 = x 2 + 2x y + y 2

Sector of a Circle

Trapezoid

Area = 1 r 2 θ
2
s = rθ
(for θ in radians only)

Area = 1 (a + b)h
2
a

(x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3
h
s

Exponents
xn xm
x −n

=

b

xn
= x n−m
xm

x n+m

1
= n
x

x n/m =

√
m

(x y)n
√
n

xn

=

xy =

(x n )m
x
y

x n yn
√ √
n
xny

n

=

x nm

xn
= n
y
√
n

n

x
x
= √
n y
y

␪
r

Sphere

Cone

Volume = 4 πr 3
3
Surface Area = 4πr 2

Volume = 1 πr 2 h
3
√
Surface Area = πr r 2 + h 2

Lines
Slope m of line through (x0 , y0 ) and (x1 , y1 )
m=

r
h

y1 − y0
x1 − x0

r

Through (x0 , y0 ), slope m
y − y0 = m(x − x0 )
Slope m, y-intercept b
y = mx + b

Quadratic Formula
If ax 2 + bx + c = 0 then
x=

−b ±

√

b2 − 4ac
2a

Cylinder
Volume = πr 2 h
Surface Area = 2πr h

h
r

Distance
Distance d between (x1 , y1 ) and (x2 , y2 )
d=

(x2 − x1 )2 + (y2 − y1 )2

1
P1: FCH/FFX

P2: FCH/FFX

GTBL001-front˙end

QC: FCH/FFX

GTBL001-Smith-v16.cls

T1: FCH
October 17, 2005

20:2

Trigonometry
sin θ =

(x, y)
r

Half-Angle

y
r

sin2 θ =

x
cos θ =
r

␪

tan θ =

1 − cos 2θ
2

cos2 θ =

1 + cos 2θ
2

Addition

y
x

sin(a + b) = sin a cos b + cos a sin b

cos(a + b) = cos a cos b − sin a sin b

Subtraction
sin θ =

hyp

opp

cos θ =

adj
hyp

tan θ =

␪

sin(a − b) = sin a cos b − cos a sin b

opp
hyp

cos(a − b) = cos a cos b + sin a sin b

Sum
u−v
u+v
cos
2
2
u−v
u+v
cos
cos u + cos v = 2 cos
2
2

sin u + sin v = 2 sin

opp
adj

adj

Product
sin u sin v = 1 [cos(u − v) − cos(u + v)]
2

Reciprocals
cot θ =

1
tan θ

cos u cos v = 1 [cos(u − v) + cos(u + v)]
2
sec θ =

1
cos θ

csc θ =

1
sin θ

sin u cos v = 1 [sin(u + v) + sin(u − v)]
2
cos u sin v = 1 [sin(u + v) − sin(u − v)]
2

Definitions

π/2
2π/3

cos θ
cot θ =
sin θ

1
sec θ =
cos θ

1
csc θ =
sin θ

π/3
π/4

3π/4
5π/6
π

Pythagorean
sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

π/6
0

1 + cot2 θ = csc2 θ

Radians

sin(0) = 0

cos(0) = 1

− θ = cos θ

π
2

− θ = sin θ

π
2

− θ = cot θ

Even/Odd
sin(−θ ) = −sin θ

cos(−θ) = cos θ

tan(−θ ) = −tan θ

Double-Angle
sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

π
3

=

π
2

sin

2π
3

=

3π
4

=

5π
6

=

=

π
3

=

1
2

π
2

=0

2π
3

= −1
2

cos

3π
4

=−

cos

1
2

π
4

√
3
2
√
2
2

cos

√
3
2
√
2
2

=

cos

1
2
√
2
2
√
3
2

π
6

cos

=1

sin

tan

=

sin

cos

π
4

sin

π
2

sin
sin

sin

=

cos

cos

sin

Cofunction

π
6

5π
6

=

2
2
√
− 23

sin(π) = 0
cos 2θ = 1 − 2 sin2 θ

cos(π ) = −1

sin(2π) = 0

cos(2π ) = 1

2

√

Figures

  • 1.
    P1: FCH/FFX P2: FCH/FFX GTBL001-front˙end QC:FCH/FFX T1: FCH GTBL001-Smith-v16.cls October 17, 2005 20:2 Algebra Geometry Arithmetic Triangle a+b a b = + c c c a b c d = a b Area = 1 bh 2 c2 = a 2 + b2 − 2ab cos θ c ad + bc a + = b d bd d c = Circle Area = πr 2 C = 2πr ad bc a c r h ␪ b Factoring x 2 − y 2 = (x − y)(x + y) x 3 − y 3 = (x − y)(x 2 + x y + y 2 ) x 3 + y 3 = (x + y)(x 2 − x y + y 2 ) x 4 − y 4 = (x − y)(x + y)(x 2 + y 2 ) Binomial (x + y)2 = x 2 + 2x y + y 2 Sector of a Circle Trapezoid Area = 1 r 2 θ 2 s = rθ (for θ in radians only) Area = 1 (a + b)h 2 a (x + y)3 = x 3 + 3x 2 y + 3x y 2 + y 3 h s Exponents xn xm x −n = b xn = x n−m xm x n+m 1 = n x x n/m = √ m (x y)n √ n xn = xy = (x n )m x y x n yn √ √ n xny n = x nm xn = n y √ n n x x = √ n y y ␪ r Sphere Cone Volume = 4 πr 3 3 Surface Area = 4πr 2 Volume = 1 πr 2 h 3 √ Surface Area = πr r 2 + h 2 Lines Slope m of line through (x0 , y0 ) and (x1 , y1 ) m= r h y1 − y0 x1 − x0 r Through (x0 , y0 ), slope m y − y0 = m(x − x0 ) Slope m, y-intercept b y = mx + b Quadratic Formula If ax 2 + bx + c = 0 then x= −b ± √ b2 − 4ac 2a Cylinder Volume = πr 2 h Surface Area = 2πr h h r Distance Distance d between (x1 , y1 ) and (x2 , y2 ) d= (x2 − x1 )2 + (y2 − y1 )2 1
  • 2.
    P1: FCH/FFX P2: FCH/FFX GTBL001-front˙end QC:FCH/FFX GTBL001-Smith-v16.cls T1: FCH October 17, 2005 20:2 Trigonometry sin θ = (x, y) r Half-Angle y r sin2 θ = x cos θ = r ␪ tan θ = 1 − cos 2θ 2 cos2 θ = 1 + cos 2θ 2 Addition y x sin(a + b) = sin a cos b + cos a sin b cos(a + b) = cos a cos b − sin a sin b Subtraction sin θ = hyp opp cos θ = adj hyp tan θ = ␪ sin(a − b) = sin a cos b − cos a sin b opp hyp cos(a − b) = cos a cos b + sin a sin b Sum u−v u+v cos 2 2 u−v u+v cos cos u + cos v = 2 cos 2 2 sin u + sin v = 2 sin opp adj adj Product sin u sin v = 1 [cos(u − v) − cos(u + v)] 2 Reciprocals cot θ = 1 tan θ cos u cos v = 1 [cos(u − v) + cos(u + v)] 2 sec θ = 1 cos θ csc θ = 1 sin θ sin u cos v = 1 [sin(u + v) + sin(u − v)] 2 cos u sin v = 1 [sin(u + v) − sin(u − v)] 2 Definitions π/2 2π/3 cos θ cot θ = sin θ 1 sec θ = cos θ 1 csc θ = sin θ π/3 π/4 3π/4 5π/6 π Pythagorean sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ π/6 0 1 + cot2 θ = csc2 θ Radians sin(0) = 0 cos(0) = 1 − θ = cos θ π 2 − θ = sin θ π 2 − θ = cot θ Even/Odd sin(−θ ) = −sin θ cos(−θ) = cos θ tan(−θ ) = −tan θ Double-Angle sin 2θ = 2 sin θ cos θ cos 2θ = cos2 θ − sin2 θ π 3 = π 2 sin 2π 3 = 3π 4 = 5π 6 = = π 3 = 1 2 π 2 =0 2π 3 = −1 2 cos 3π 4 =− cos 1 2 π 4 √ 3 2 √ 2 2 cos √ 3 2 √ 2 2 = cos 1 2 √ 2 2 √ 3 2 π 6 cos =1 sin tan = sin cos π 4 sin π 2 sin sin sin = cos cos sin Cofunction π 6 5π 6 = 2 2 √ − 23 sin(π) = 0 cos 2θ = 1 − 2 sin2 θ cos(π ) = −1 sin(2π) = 0 cos(2π ) = 1 2 √