SlideShare a Scribd company logo
FINAL TUTORIAL
MTH3201 LINEAR ALGEBRA
1. Linear combination or not
(a) 𝛵: ℛ 3 → ℛ 2 ; 𝛵 𝑥, 𝑦, 𝑧 = (𝑥 − 𝑦, 𝑦 − 𝑧)
                       Condition given, please follow

  𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 , 𝑧1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2 , 𝑧2
 (i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2
     𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2
    By follow the condition,
                = 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 , 𝑦1 + 𝑦2 − 𝑧1 − 𝑧2
                = 𝑥1 − 𝑦1 + 𝑥2 − 𝑦2 , 𝑦1 − 𝑧1 + 𝑦2 − 𝑧2
                = 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1 ) + (𝑥2 − 𝑦2 , 𝑦2 − 𝑧2
                = 𝛵(𝑢) + 𝛵(𝑣)
 (ii) 𝐼𝑓 𝑘 𝑖𝑠 𝑎𝑛𝑦 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑘 ∈ ℜ,
       𝑘𝑢 = 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1                           𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 = 𝛵 𝑢 + 𝛵 𝑣 ,
        𝛵 (𝑘𝑢) = 𝛵 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1                   ∴ 𝛵 is linear combination
               = 𝑘𝑥1 − 𝑘𝑦1 , 𝑘𝑦1 − 𝑘𝑧1
               = 𝑘 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1
               = 𝑘𝛵(𝑢 )
1. Linear combination or not
                                   𝑥          𝑦
(d) 𝛵: ℛ 2 → ℛ; 𝛵 𝑥, 𝑦 =                             𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2
                                  𝑥+ 𝑦       𝑥− 𝑦
                    Condition given, please follow

(i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 ,    𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2
                                          𝑥 + 𝑥                 𝑦1 + 𝑦2
By follow the condition,
                         𝛵 𝑢 + 𝑣 = 𝑥 + 𝑥1 + 𝑦2 + 𝑦         𝑥1 + 𝑥2 − 𝑦1 − 𝑦2
                                      1    2    1      2
= 𝑥1 + 𝑥2 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 − 𝑦1 + 𝑦2 𝑥1 + 𝑥2 + 𝑦1 + 𝑦2
= 𝑥1 2 + 𝑥1 𝑥2 − 𝑥1 𝑦1 − 𝑥1 𝑦2 + 𝑥1 𝑥2 + 𝑥2 2 − 𝑥2 𝑦1 − 𝑥2 𝑦2
                               − 𝑦1 𝑥1 + 𝑦1 𝑥2 + 𝑦1 2 + 𝑦1 𝑦2 + 𝑦2 𝑥1 + 𝑦2 𝑥2 + 𝑦2 𝑦1 + 𝑦2 2
= 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 + 2𝑥1 𝑥2 − 2𝑦1 𝑥2 − 2𝑥1 𝑦1 − 2𝑥1 𝑦2 − 2𝑥2 𝑦1 − 2𝑥2 𝑦2
∗∗ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝛵 𝑢 + 𝛵 𝑣 ? ? ?
  𝛵 𝑢 + 𝛵 𝑣 = 𝛵 𝑥1 , 𝑦1 + 𝛵 𝑥2 , 𝑦2                                compare
                 𝑥1         𝑦1         𝑥2               𝑦2
            = 𝑥 + 𝑦      𝑥1 − 𝑦1  + 𝑥 + 𝑦            𝑥2 − 𝑦2
               1      1              2    2
               = 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 − 2𝑥1 𝑦1 − 2𝑥2 𝑦2
 𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 ≠ 𝛵 𝑢 + 𝛵 𝑣 , ∴ 𝛵 is not linear combination
2(a)   𝛵2 ∙ 𝛵1     𝑝 𝑥    = 𝛵2 𝛵1 (𝑝 𝑥 )    𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1 𝑝(𝑥) = 𝑝 𝑥 − 1 ,
                          = 𝛵2 𝑝(𝑥 − 1)             𝛵2 𝑝 𝑥 = 𝑝 𝑥 + 2

                          = 𝑝(𝑥 − 1 + 2)
                          = 𝑝(𝑥 + 1)

 (b)     𝛵1 ∙ 𝛵2    𝑝 𝑥    = 𝛵1 𝛵2 (𝑝 𝑥 )
                           = 𝛵1 𝑝(𝑥 + 2)
                           = 𝑝(𝑥 + 2 − 1)
                           = 𝑝(𝑥 + 1)
3(a)             𝑎   𝑏             𝑎   𝑏          𝑎   𝑐
       𝛵1 ∙ 𝛵2           = 𝛵1 𝛵2           = 𝛵1           = 𝑎 − 𝑐 + 4𝑏 − 𝑑
                 𝑐   𝑑             𝑐   𝑑          𝑏   𝑑

                        𝑎 𝑏
   𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1       = 𝑎 − 𝑏 + 4𝑐 − 𝑑,
                        𝑐 𝑑
                    𝑎 𝑏     𝑎 𝑐
               𝛵2         =
                    𝑐 𝑑     𝑏 𝑑


              𝑎 𝑏                𝑎 𝑏
 (b)   𝛵2 ∙ 𝛵1        = 𝛵2 𝛵1            = 𝛵2 (𝑎 − 𝑏 + 4𝑐 − 𝑑)
              𝑐 𝑑                𝑐 𝑑
       ∴ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑖𝑚𝑎𝑔𝑒 𝑇1 𝑛𝑜𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑇2
4(a)                                          𝑥2 𝑝 𝑥 = 𝑥2 + 𝑥
                                (i)               𝑝 𝑥 = 1 + 1/𝑥
                                             𝑝 𝑥 is not in domain of 𝑝2
                                             ∴ x 2 +x is not in range(T)
  𝛵 𝑝 𝑥    = 𝑥 2 𝑝(𝑥)
                                      (ii)

                                                             𝑥2 𝑝 𝑥 = 𝑥 + 1
                        (iii)                                 𝑝 𝑥 = 1/𝑥 + 1/𝑥 2
                                                            𝑝 𝑥 is not in domain of 𝑝2
                                                            ∴ x + 1 is not in range(T)


   𝑥2 𝑝 𝑥 = 3 − 𝑥2
              3
     𝑝 𝑥 = 2−1
              𝑥
𝑝 𝑥 is not in domain of 𝑝2
∴ 3 − x 2 is not in range(T)
4(b)                                             𝛵 𝑥 2 = 𝑥 2 ∙ 𝑥 2= 𝑥 4
                               (i)                      𝑥4 ≠ 0
                                                 ∴not in Kernel(T)

 𝛵 𝑝 𝑥   = 𝑥 2 𝑝(𝑥)
                                     (ii)

                                                      𝛵 0 = 𝑥2 ∙ 0 = 0
                       (iii)                          ∴ in Kernel(T)



                       𝛵 𝑥 + 1 = 𝑥2 𝑥 + 1 = 𝑥3 + 𝑥2 ≠ 0
                      ∴not in Kernel(T)
5(a)    𝐴𝑥 = 0
                             𝑟1 /4
    4 5        7 0        3𝑟1 + 2𝑟2      1 5/4 7/4 0             13𝑟2 − 17𝑟3 1   5/4  7/4 0
   −6 1        −1 0                      0 17 19 0                           0    1  19/17 0
                            𝑟2 + 3𝑟3                               𝑟2 /17
    3 6        4 0                       0 13   7 0                          0    0   128 0
                                              19
   𝑟3 /128        1 0     6/17 0         𝑟2 −    𝑟       1   0    0 0
                                              17 3
                  0 1     19/17 0                        0   1    0 0
       5                                       6
𝑟1 −     𝑟        0 0       1   0        𝑟1 −    𝑟       0   0    1 0
       4 2                                    17 3
             ∴ Since 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0. There is no basis for Kernel (T)

                                     4   5    7
             ∴ Basis for image (T)= −6 , 1 , −1
                                     3   6    4
5(b)   𝐴𝑥 = 0
   1   −1 3 0          5𝑟1 − 𝑟2     1 −1   3 0           𝑟2 − 𝑟3    1 −1  3    0
   5    6 −4 0                      0 −11 19 0                      0 1 −19/11 0
   7    4    2 0       7𝑟1 − 𝑟3     0 −11 19 0            𝑟2 /-11   0 0   0    0
                                                         19           14
   𝑟1 + 𝑟2     1   0 14/11 0         𝐿𝑒𝑡 𝑥3 = 𝑡 , 𝑥2 =      𝑡, 𝑥1 = −    𝑡
                                                         11           11
               0   1 −19/11 0
                            0                 14
               0   0   0                    −      𝑡
                                              11        𝑡 −14
                                        𝑥 = 19       =     19
                                                 𝑡     11
                                             11            11
                                               𝑡
                                     1 −1
             ∴ Basis for range (T)= 5 , 6
                                     7    4
                                     −14
             ∴ Basis for kernel (T)= 19
                                      11
6. 𝑇 𝑥, 𝑦, 𝑧 = (0,0,0)                                           2𝑥 + 4𝑦 − 6𝑧 = 0
  (2𝑥 + 4𝑦 − 6𝑧, 𝑥 − 2𝑦 + 𝑧, 5𝑥 − 2𝑦 − 3𝑧) = (0,0,0)                𝑥 − 2𝑦 + 𝑧 = 0
                                                                 5𝑥 − 2𝑦 − 3𝑧 = 0
                            𝑟1 /2
   2    4      −6 0       𝑟1 − 𝑟2    1      2    −3 0       𝑟3 + 𝑟2      1   2   −3 0
   1   −2      1 0                   0      8    −8 0                    0   1   −1 0
                        5𝑟2 − 𝑟3                              𝑟2 /8      0   0    0 0
   5   −2      −3 0                  0     −8     8 0

   𝑟2 − 2𝑟2       1 0    −1 0            𝐿𝑒𝑡 𝑥3 = 𝑡 ,   𝑥2 = 𝑡, 𝑥1 = 𝑡
                  0 1    −1 0
                                            𝑡     1
                  0 0     0 0
                                         𝑥= 𝑡 = 𝑡 1
                                             𝑡    1


                                      2   4
              ∴ Basis for range (T)= 1 , −2
                                      5 −2
                                      1
              ∴ Basis for kernel (T)= 1
                                      1
TAMAT

More Related Content

What's hot

Tutorial 1 mth 3201
Tutorial 1 mth 3201Tutorial 1 mth 3201
Tutorial 1 mth 3201Drradz Maths
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201Drradz Maths
 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
Hanini Hamsan
 
Persamaan Logaritma, sifat-sifat Logaritma
Persamaan Logaritma, sifat-sifat LogaritmaPersamaan Logaritma, sifat-sifat Logaritma
Persamaan Logaritma, sifat-sifat Logaritma
Eman Mendrofa
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
Sandilya Sridhara
 
35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notesWendy Pindah
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices SlidesMatthew Leingang
 
Gauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptxGauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptx
AHSANMEHBOOB12
 
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions ManualQuantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Andersonasaa
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths NoteChek Wei Tan
 
68157929 lapangan-hingga
68157929 lapangan-hingga68157929 lapangan-hingga
68157929 lapangan-hingga
Oyan Siemens
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
Neil MacIntosh
 
Presentation2
Presentation2Presentation2
Presentation2
lutfi aldiansyah
 
The Exponential and natural log functions
The Exponential and natural log functionsThe Exponential and natural log functions
The Exponential and natural log functionsJJkedst
 
Rで実験計画法 前編
Rで実験計画法 前編Rで実験計画法 前編
Rで実験計画法 前編
itoyan110
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
Edgar Linares
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagramNigel Simmons
 
6.4 inverse matrices t
6.4 inverse matrices t6.4 inverse matrices t
6.4 inverse matrices t
math260
 

What's hot (20)

Tutorial 1 mth 3201
Tutorial 1 mth 3201Tutorial 1 mth 3201
Tutorial 1 mth 3201
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
 
Persamaan Logaritma, sifat-sifat Logaritma
Persamaan Logaritma, sifat-sifat LogaritmaPersamaan Logaritma, sifat-sifat Logaritma
Persamaan Logaritma, sifat-sifat Logaritma
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
 
Capitulo 2 Soluciones Purcell 9na Edicion
Capitulo 2 Soluciones Purcell 9na EdicionCapitulo 2 Soluciones Purcell 9na Edicion
Capitulo 2 Soluciones Purcell 9na Edicion
 
Gauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptxGauss Jorden and Gauss Elimination method.pptx
Gauss Jorden and Gauss Elimination method.pptx
 
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions ManualQuantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
Quantum Mechanics A Paradigms Approach 1st Edition McIntyre Solutions Manual
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
68157929 lapangan-hingga
68157929 lapangan-hingga68157929 lapangan-hingga
68157929 lapangan-hingga
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Matrice zadaci i_deo
Matrice zadaci i_deoMatrice zadaci i_deo
Matrice zadaci i_deo
 
Presentation2
Presentation2Presentation2
Presentation2
 
The Exponential and natural log functions
The Exponential and natural log functionsThe Exponential and natural log functions
The Exponential and natural log functions
 
Rで実験計画法 前編
Rで実験計画法 前編Rで実験計画法 前編
Rで実験計画法 前編
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
X2 T01 03 argand diagram
X2 T01 03 argand diagramX2 T01 03 argand diagram
X2 T01 03 argand diagram
 
6.4 inverse matrices t
6.4 inverse matrices t6.4 inverse matrices t
6.4 inverse matrices t
 

Similar to Tutorial 9 mth 3201

Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
ShelbistarMarbaniang
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Santhanam Krishnan
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardo
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
katherinecedeo11
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
Март
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
Gualberto Lopéz Durán
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Santhanam Krishnan
 
Calculo
CalculoCalculo
Calculo
malevolex123
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Rai University
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
Nurkhalifah Anwar
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
SoyaMathew1
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
anasKhalaf4
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
Nurkhalifah Anwar
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
ZaakXO
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
anasKhalaf4
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
AnuBajpai5
 
Interpolation
InterpolationInterpolation
Interpolation
Santhanam Krishnan
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
Demetrio Ccesa Rayme
 
S1230109
S1230109S1230109
S1230109
ObaraKakeru1
 

Similar to Tutorial 9 mth 3201 (20)

Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Calculo
CalculoCalculo
Calculo
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Interpolation
InterpolationInterpolation
Interpolation
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
S1230109
S1230109S1230109
S1230109
 

More from Drradz Maths

Figures
FiguresFigures
Figures
Drradz Maths
 
Formulas
FormulasFormulas
Formulas
Drradz Maths
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
Drradz Maths
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplierDrradz Maths
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti importantDrradz Maths
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101Drradz Maths
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7Drradz Maths
 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials QuestionDrradz Maths
 
tutor 8, question 6
tutor 8, question 6tutor 8, question 6
tutor 8, question 6Drradz Maths
 
tutor 8, question 5
tutor 8, question 5tutor 8, question 5
tutor 8, question 5Drradz Maths
 
solution tutor 3.... 7(b)
solution tutor 3.... 7(b)solution tutor 3.... 7(b)
solution tutor 3.... 7(b)
Drradz Maths
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
Drradz Maths
 
Ism et chapter_8
Ism et chapter_8Ism et chapter_8
Ism et chapter_8
Drradz Maths
 

More from Drradz Maths (20)

Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
 
Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Figures
FiguresFigures
Figures
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
 
Echelon or not
Echelon or notEchelon or not
Echelon or not
 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials Question
 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
 
tutor 8, question 6
tutor 8, question 6tutor 8, question 6
tutor 8, question 6
 
tutor 8, question 5
tutor 8, question 5tutor 8, question 5
tutor 8, question 5
 
solution tutor 3.... 7(b)
solution tutor 3.... 7(b)solution tutor 3.... 7(b)
solution tutor 3.... 7(b)
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Ism et chapter_8
Ism et chapter_8Ism et chapter_8
Ism et chapter_8
 

Tutorial 9 mth 3201

  • 1.
  • 3. 1. Linear combination or not (a) 𝛵: ℛ 3 → ℛ 2 ; 𝛵 𝑥, 𝑦, 𝑧 = (𝑥 − 𝑦, 𝑦 − 𝑧) Condition given, please follow 𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 , 𝑧1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2 , 𝑧2 (i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2 𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2 By follow the condition, = 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 , 𝑦1 + 𝑦2 − 𝑧1 − 𝑧2 = 𝑥1 − 𝑦1 + 𝑥2 − 𝑦2 , 𝑦1 − 𝑧1 + 𝑦2 − 𝑧2 = 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1 ) + (𝑥2 − 𝑦2 , 𝑦2 − 𝑧2 = 𝛵(𝑢) + 𝛵(𝑣) (ii) 𝐼𝑓 𝑘 𝑖𝑠 𝑎𝑛𝑦 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑘 ∈ ℜ, 𝑘𝑢 = 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1 𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 = 𝛵 𝑢 + 𝛵 𝑣 , 𝛵 (𝑘𝑢) = 𝛵 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1 ∴ 𝛵 is linear combination = 𝑘𝑥1 − 𝑘𝑦1 , 𝑘𝑦1 − 𝑘𝑧1 = 𝑘 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1 = 𝑘𝛵(𝑢 )
  • 4. 1. Linear combination or not 𝑥 𝑦 (d) 𝛵: ℛ 2 → ℛ; 𝛵 𝑥, 𝑦 = 𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2 𝑥+ 𝑦 𝑥− 𝑦 Condition given, please follow (i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 𝑥 + 𝑥 𝑦1 + 𝑦2 By follow the condition, 𝛵 𝑢 + 𝑣 = 𝑥 + 𝑥1 + 𝑦2 + 𝑦 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 1 2 1 2 = 𝑥1 + 𝑥2 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 − 𝑦1 + 𝑦2 𝑥1 + 𝑥2 + 𝑦1 + 𝑦2 = 𝑥1 2 + 𝑥1 𝑥2 − 𝑥1 𝑦1 − 𝑥1 𝑦2 + 𝑥1 𝑥2 + 𝑥2 2 − 𝑥2 𝑦1 − 𝑥2 𝑦2 − 𝑦1 𝑥1 + 𝑦1 𝑥2 + 𝑦1 2 + 𝑦1 𝑦2 + 𝑦2 𝑥1 + 𝑦2 𝑥2 + 𝑦2 𝑦1 + 𝑦2 2 = 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 + 2𝑥1 𝑥2 − 2𝑦1 𝑥2 − 2𝑥1 𝑦1 − 2𝑥1 𝑦2 − 2𝑥2 𝑦1 − 2𝑥2 𝑦2 ∗∗ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝛵 𝑢 + 𝛵 𝑣 ? ? ? 𝛵 𝑢 + 𝛵 𝑣 = 𝛵 𝑥1 , 𝑦1 + 𝛵 𝑥2 , 𝑦2 compare 𝑥1 𝑦1 𝑥2 𝑦2 = 𝑥 + 𝑦 𝑥1 − 𝑦1 + 𝑥 + 𝑦 𝑥2 − 𝑦2 1 1 2 2 = 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 − 2𝑥1 𝑦1 − 2𝑥2 𝑦2 𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 ≠ 𝛵 𝑢 + 𝛵 𝑣 , ∴ 𝛵 is not linear combination
  • 5. 2(a) 𝛵2 ∙ 𝛵1 𝑝 𝑥 = 𝛵2 𝛵1 (𝑝 𝑥 ) 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1 𝑝(𝑥) = 𝑝 𝑥 − 1 , = 𝛵2 𝑝(𝑥 − 1) 𝛵2 𝑝 𝑥 = 𝑝 𝑥 + 2 = 𝑝(𝑥 − 1 + 2) = 𝑝(𝑥 + 1) (b) 𝛵1 ∙ 𝛵2 𝑝 𝑥 = 𝛵1 𝛵2 (𝑝 𝑥 ) = 𝛵1 𝑝(𝑥 + 2) = 𝑝(𝑥 + 2 − 1) = 𝑝(𝑥 + 1)
  • 6. 3(a) 𝑎 𝑏 𝑎 𝑏 𝑎 𝑐 𝛵1 ∙ 𝛵2 = 𝛵1 𝛵2 = 𝛵1 = 𝑎 − 𝑐 + 4𝑏 − 𝑑 𝑐 𝑑 𝑐 𝑑 𝑏 𝑑 𝑎 𝑏 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1 = 𝑎 − 𝑏 + 4𝑐 − 𝑑, 𝑐 𝑑 𝑎 𝑏 𝑎 𝑐 𝛵2 = 𝑐 𝑑 𝑏 𝑑 𝑎 𝑏 𝑎 𝑏 (b) 𝛵2 ∙ 𝛵1 = 𝛵2 𝛵1 = 𝛵2 (𝑎 − 𝑏 + 4𝑐 − 𝑑) 𝑐 𝑑 𝑐 𝑑 ∴ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑖𝑚𝑎𝑔𝑒 𝑇1 𝑛𝑜𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑇2
  • 7. 4(a) 𝑥2 𝑝 𝑥 = 𝑥2 + 𝑥 (i) 𝑝 𝑥 = 1 + 1/𝑥 𝑝 𝑥 is not in domain of 𝑝2 ∴ x 2 +x is not in range(T) 𝛵 𝑝 𝑥 = 𝑥 2 𝑝(𝑥) (ii) 𝑥2 𝑝 𝑥 = 𝑥 + 1 (iii) 𝑝 𝑥 = 1/𝑥 + 1/𝑥 2 𝑝 𝑥 is not in domain of 𝑝2 ∴ x + 1 is not in range(T) 𝑥2 𝑝 𝑥 = 3 − 𝑥2 3 𝑝 𝑥 = 2−1 𝑥 𝑝 𝑥 is not in domain of 𝑝2 ∴ 3 − x 2 is not in range(T)
  • 8. 4(b) 𝛵 𝑥 2 = 𝑥 2 ∙ 𝑥 2= 𝑥 4 (i) 𝑥4 ≠ 0 ∴not in Kernel(T) 𝛵 𝑝 𝑥 = 𝑥 2 𝑝(𝑥) (ii) 𝛵 0 = 𝑥2 ∙ 0 = 0 (iii) ∴ in Kernel(T) 𝛵 𝑥 + 1 = 𝑥2 𝑥 + 1 = 𝑥3 + 𝑥2 ≠ 0 ∴not in Kernel(T)
  • 9. 5(a) 𝐴𝑥 = 0 𝑟1 /4 4 5 7 0 3𝑟1 + 2𝑟2 1 5/4 7/4 0 13𝑟2 − 17𝑟3 1 5/4 7/4 0 −6 1 −1 0 0 17 19 0 0 1 19/17 0 𝑟2 + 3𝑟3 𝑟2 /17 3 6 4 0 0 13 7 0 0 0 128 0 19 𝑟3 /128 1 0 6/17 0 𝑟2 − 𝑟 1 0 0 0 17 3 0 1 19/17 0 0 1 0 0 5 6 𝑟1 − 𝑟 0 0 1 0 𝑟1 − 𝑟 0 0 1 0 4 2 17 3 ∴ Since 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0. There is no basis for Kernel (T) 4 5 7 ∴ Basis for image (T)= −6 , 1 , −1 3 6 4
  • 10. 5(b) 𝐴𝑥 = 0 1 −1 3 0 5𝑟1 − 𝑟2 1 −1 3 0 𝑟2 − 𝑟3 1 −1 3 0 5 6 −4 0 0 −11 19 0 0 1 −19/11 0 7 4 2 0 7𝑟1 − 𝑟3 0 −11 19 0 𝑟2 /-11 0 0 0 0 19 14 𝑟1 + 𝑟2 1 0 14/11 0 𝐿𝑒𝑡 𝑥3 = 𝑡 , 𝑥2 = 𝑡, 𝑥1 = − 𝑡 11 11 0 1 −19/11 0 0 14 0 0 0 − 𝑡 11 𝑡 −14 𝑥 = 19 = 19 𝑡 11 11 11 𝑡 1 −1 ∴ Basis for range (T)= 5 , 6 7 4 −14 ∴ Basis for kernel (T)= 19 11
  • 11. 6. 𝑇 𝑥, 𝑦, 𝑧 = (0,0,0) 2𝑥 + 4𝑦 − 6𝑧 = 0 (2𝑥 + 4𝑦 − 6𝑧, 𝑥 − 2𝑦 + 𝑧, 5𝑥 − 2𝑦 − 3𝑧) = (0,0,0) 𝑥 − 2𝑦 + 𝑧 = 0 5𝑥 − 2𝑦 − 3𝑧 = 0 𝑟1 /2 2 4 −6 0 𝑟1 − 𝑟2 1 2 −3 0 𝑟3 + 𝑟2 1 2 −3 0 1 −2 1 0 0 8 −8 0 0 1 −1 0 5𝑟2 − 𝑟3 𝑟2 /8 0 0 0 0 5 −2 −3 0 0 −8 8 0 𝑟2 − 2𝑟2 1 0 −1 0 𝐿𝑒𝑡 𝑥3 = 𝑡 , 𝑥2 = 𝑡, 𝑥1 = 𝑡 0 1 −1 0 𝑡 1 0 0 0 0 𝑥= 𝑡 = 𝑡 1 𝑡 1 2 4 ∴ Basis for range (T)= 1 , −2 5 −2 1 ∴ Basis for kernel (T)= 1 1
  • 12. TAMAT