SlideShare a Scribd company logo
7.5



                                                                                                5.0



                                                                                                2.5


Chapter 4                                                                                       0.0
                                                                      βˆ’2           βˆ’1                  0       1        2
                                                                                       x
                                                                                                βˆ’2.5


Integration                                                     4. sin x, sin x + 2, sin x βˆ’ 5

                                                                                                  2

                                                                                   x
                                                                     βˆ’3       βˆ’2           βˆ’1          0   1        2   3

4.1        Antiderivatives                                                                        0




                                                                                                  βˆ’2
    x4 x4      x4
 1.   ,   + 3,    βˆ’2
    4 4        4
                                                                                                  βˆ’4


                            20

                                                                                                  βˆ’6

                            15
                                                                                                       3 5 3 2
                                                                5.        (3x4 βˆ’ 3x)dx =                 x βˆ’ x +c
                            10                                                                         5    2
                                                                                                 1 4
                             5                                  6.        (x3 βˆ’ 2)dx =             x βˆ’ 2x + c
                                                                                                 4
                                                                             √   1                                 xβˆ’3
      βˆ’3     βˆ’2        βˆ’1            1       2       3          7.          3 xβˆ’ 4               dx = 2x3/2 +          +c
                                                                                x                                   3

                                                                                1
                                                                8.      2xβˆ’2 + √     dx
                                                                                 x
      x4  x2 x4   x2      x4   x2                                    = βˆ’2xβˆ’1 + 2x1/2 + c
 2.      βˆ’ ,    βˆ’    βˆ’ 1,    βˆ’    +4
      4   2 4     2       4    2
                                                                      x1/3 βˆ’ 3
                            6                                   9.             dx = (xβˆ’1/3 βˆ’ 3xβˆ’2/3 )dx
                                                                        x2/3
                            5                                         3
                                                                     = x2/3 βˆ’ 9x1/3 + c
                            4
                                                                      2
                                                                      x + 2x3/4
                            3
                                                               10.              dx = (xβˆ’1/4 + 2xβˆ’1/2 )dx
                                                                        x5/4
                            2
                                                                      4
                                                                     = x3/4 + 4x1/2 + c
                            1                                         3
                            0

       βˆ’2         βˆ’1             0       1       2
                                                               11.        (2 sin x + cos x)dx = βˆ’2 cos x + sin x + c
                  x         βˆ’1


                                                               12.        (3 cos x βˆ’ sin x)dx = 3 sin x + cos x + c


 3. ex , ex + 1, ex βˆ’ 3                                        13.        2 sec x tan xdx = 2 sec x + c

                                                         240
4.1. ANTIDERIVATIVES                                                                                      241

                4                                                  d
14.       √          dx = 4 arcsin x + c                    30.       ln |sin x · 2|
              1 βˆ’ x2                                              dx
                                                                         1      d
                                                                  =                (sin x Β· 2)
15.       5 sec2 xdx = 5 tan x + c                                   sin x Β· 2 dx
                                                                     2 cos x
                                                                  =           = cot x
                                                                     2 sin x
          4 cos x
16.               dx = βˆ’4 csc x + c
          sin2 x                                            31. (a) N/A
                                                                   (b) By Power Formula,
17.       (3ex βˆ’ 2)dx = 3ex βˆ’ 2x + c
                                                                            √           2
                                                                           ( x3 + 4)dx = x5/2 + 4x + c.
                                                                                        5
18.       (4x βˆ’ 2ex )dx = 2x2 βˆ’ 2ex + c
                                                            32. (a) By Power Formula,
                                                                      3x2 βˆ’ 4
19.       (3 cos x βˆ’ 1/x)dx = 3 sin x βˆ’ ln |x| + c                            dx = (3 βˆ’ 4xβˆ’2 )dx
                                                                         x2
                                                                    = 3x + 4xβˆ’1 + c
20.       (2xβˆ’1 + sin x)dx = 2 ln |x| βˆ’ cos x + c                  (b) N/A
                                                            33. (a) N/A
            4x
21.              dx = 2 ln |x2 + 4| + c                            (b) By Reversing derivative formula,
          x2 + 4
                                                                           sec2 xdx = tan x + c
             3        3
22.               dx = tanβˆ’1 x + c
          4x2 + 4     4                                     34. (a) By Power Formula,
                                                                        1             1
          cos x                                                             βˆ’ 1 dx = βˆ’ βˆ’ x + c
23.             dx = ln | sin x| + c                                    x 2           x
          sin x
                                                                (b) N/A
24.       (2 cos x βˆ’ ex )dx = 2 sin x βˆ’ ex + c              35. Finding the antiderivative,
                                                                              x2
                                                                f (x) = 3ex +    + c.
            ex                                                                2
25.              dx = ln | ex + 3| + c
          ex + 3                                                  Since f (0) = 4,
      ex + 3                                                      we have 4 = f (0) = 3 + c.
26.          dx = (1 + 3eβˆ’x )dx                                   Therefore,
        ex
    = x βˆ’ 3eβˆ’x + c                                                               x2
                                                                  f (x) = 3ex +     + 1.
                                                                                 2
27.       x1/4 (x5/4 βˆ’ 4)dx =     (x3/2 βˆ’ 4x1/4 )dx         36. Finding the antiderivative,
          2 5/2 16 5/4                                          f (x) = 4 sin x + c.
      =     x βˆ’ x +c                                            Since f (0) = 3,
          5     5
                                                                we have 3 = f (0) = c.
                                                                Therefore,
28.       x2/3 (xβˆ’4/3 βˆ’ 3)dx =         (xβˆ’2/3 βˆ’ 3x2/3 )dx
                                                                f (x) = 4 sin x + 3.
               9
      = 3x1/3 βˆ’ x5/3 + c                                    37. Finding the antiderivative
               5
                                                                f (x) = 4x3 + 2ex + c1 .
       d                                                        Since, f (0) = 2.
29.       ln |sec x + tan x|
      dx                                                        We have 2 = f (0) = 2 + c1
                1        d
      =                    (sec x + tan x)                      and therefore
         sec x + tan x dx                                       f (x) = 4x3 + 2ex .
                           2
         sec x tan x + sec x
      =                                                         Finding the antiderivative,
            sec x + tan x                                       f (x) = x4 + 2ex + c2 .
         sec x (tan x + sec x)
      =                                                         Since f (0) = 3,
              sec x + tan x
      = sec x                                                   We have 3 = f (0) = 2 + c2
                                                                Therefore,
242                                                             CHAPTER 4. INTEGRATION

      f (x) = x4 + 2ex + 1.                                        1
                                                 f (x) = βˆ’3 sin x + x4 + c1 x + c2 .
                                                                   3
                                             42. Taking antiderivatives,
 38. Finding the antiderivative,                 f (x) = x1/2 βˆ’ 2 cos x
     f (x) = 5x4 + e2x + c1 .                             2
     Since f (0) = βˆ’3,                           f (x) = x3/2 βˆ’ 2 sin x + c1
                                                          3
     we have βˆ’3 = f (0) = 1 + c1                          4 5/2
                                                 f (x) =    x + 2 cos x + c1 x + c2 .
     Therefore,                                          15
     f (x) = 5x4 + e2x βˆ’ 4.                  43. Taking antiderivatives,
     Finding the antiderivative,                 f (x) = 4 βˆ’ 2/x3
                  e2x
     f (x) = x5 +     βˆ’ 4x + c2 .                f (x) = 4x + xβˆ’2 + c1
                   2                             f (x) = 2x2 βˆ’ xβˆ’1 + c1 x + c2
     Since f (0) = 2,
                          1                             2              c1
     We have 2 = f (0) = + c2                    f (x) = x3 βˆ’ ln |x| + x2 + c2 x + c3
                          2                             3               2
     Therefore,                              44. Taking antiderivatives,
                  e2x         3                  f (x) = sin x βˆ’ ex
     f (x) = x5 +     βˆ’ 4x + .
                   2          2                  f (x) = βˆ’ cos x βˆ’ ex + c1
                                                 f (x) = βˆ’ sin x βˆ’ ex + c1 x + c2
                                                                      c1
 39. Taking antiderivatives,                     f (x) = cos x βˆ’ ex + x2 + c2 x + c3
     f (t) = 2t + t2 + c1                                             2
                  t3                         45. Position is the antiderivative of velocity,
     f (t) = t2 + + c1 t + c2
                  3                              s(t) = 3t βˆ’ 6t2 + c.
     Since f (0) = 2,                            Since s(0) = 3, we have c = 3. Thus,
     we have 2 = f (0) = c2                      s(t) = 3t βˆ’ 6t2 + 3.
     Therefore,
                  t3                         46. Position is the antiderivative of velocity,
     f (t) = t2 + + c1 t + 2.
                  3                              s(t) = βˆ’3eβˆ’t βˆ’ 2t + c.
     Since f (3) = 2,                            Since s(0) = 0, we have βˆ’3 + c = 0 and there-
     we have                                     fore c = 3. Thus,
     2 = f (3) = 9 + 9 + 3c1 + 2                 s(t) = βˆ’3eβˆ’t βˆ’ 2t + 3.
     βˆ’ 6 = c1
     Therefore,                              47. First we find velocity, which is the antideriva-
             t3                                  tive of acceleration,
     f (t) =    + t2 βˆ’ 6t + 2.
              3                                  v(t) = βˆ’3 cos t + c1 .
                                                 Since v(0) = 0 we have
                                                 βˆ’3 + c1 = 0, c1 = 3 and
 40. Taking antiderivatives,
                                                 v(t) = βˆ’3 cos t + 3.
     f (t) = 4t + 3t2 + c1
                                                 Position is the antiderivative of velocity,
     f (t) = 2t2 + t3 + c1 t + c2
                                                 s(t) = βˆ’3 sin t + 3t + c2 .
     Since f (1) = 3,
                                                 Since s(0) = 4, we have c2 = 4. Thus,
     we have 3 = f (1) = 2 + 1 + c1 + c2
                                                 s(t) = βˆ’3 sin t + 3t + 4.
     Therefore,
     c1 + c2 = 0                             48. First we find velocity, which is the antideriva-
     Since f (βˆ’1) = βˆ’2,                          tive of acceleration,
     we have βˆ’2 = f (βˆ’1) = 2 βˆ’ 1 βˆ’ c1 + c2               1
                                                 v(t) = t3 + t + c1 .
     Therefore, βˆ’c1 + c2 = βˆ’3.                           3
     So, c1 = 2 and c2 = βˆ’ 3
                3
                              2                  Since v(0) = 4 we have c1 = 4 and
     Hence,                                              1
                        3      3                 v(t) = t3 + t + 4.
     f (t) = t3 + 2t2 + t βˆ’ .                            3
                        2      2
                                                 Position is the antiderivative of velocity,
                                                         1 4 1 2
 41. Taking antiderivatives,                     s(t) =    t + t + 4t + c2 .
                                                        12      2
     f (x) = 3 sin x + 4x2                       Since s(0) = 0, we have c2 = 0. Thus,
                        4                                1 4 1 2
     f (x) = βˆ’3 cos x + x3 + c1                  s(t) =    t + t + 4t.
                        3                               12      2
4.1. ANTIDERIVATIVES                                                                                                                           243

49. (a) There are many correct answers, but any                                                                              15

        correct answer will be a vertical shift of
        these answers.                                                                                                       10


                                                            10.0
                                                                                                                              5

                                                            7.5

                                                                                                                              0
                                                            5.0         y                                βˆ’3    βˆ’2       βˆ’1         0   1   2   3
                                                                                                                    x

                                                                                                                             βˆ’5
                                                            2.5



                                                            0.0                                                              βˆ’10

           βˆ’4.0   βˆ’3.2      βˆ’2.4     βˆ’1.6   βˆ’0.8      0.0       0.8         1.6   2.4   3.2
                                 x
                                                            βˆ’2.5
                                                                                              51. We start by taking antiderivatives:
                                                            βˆ’5.0
                                                                                                  f (x) = x2 /2 βˆ’ x + c1
                                                                                                  f (x) = x3 /6 βˆ’ x2 /2 + c1 x + c2 .
                                                                                                  Now, we use the data that we are given. We
     (b) There are many correct answers, but any                                                  know that f (1) = 2 and f (1) = 3, which gives
         correct answer will be a vertical shift of                                               us
         these answers.                                                                           3 = f (1) = 1/2 βˆ’ 1 + c1 ,
                                                                                                  and
                                            8.8
                                                                                                  1 = f (1) = 1/6 βˆ’ 1/2 + c1 + c2 .
                                            8.0
                                                                                                  Therefore c1 = 7/2 and c2 = βˆ’13/6 and the
                                            7.2
                                                                                                  function is
                                            6.4                                                           x3    x2     7x 13
                                                                                                  f (x) =     βˆ’    +      βˆ’ .
                                            5.6
                                                                                                           6     2      2     6
                                            4.8

                                            4.0
                                                                                              52. We start by taking antiderivatives:
                                            3.2
                                                                                                  f (x) = 3x2 + 4x + c1
                                            2.4
                                                                                                  f (x) = x3 + 2x2 + c1 x + c2 .
                                                                                                  Now, we use the data that we are given. We
          βˆ’3           βˆ’2            βˆ’1           0             1             2         3
                             x
                                                                                                  know that f (βˆ’1) = 1 and f (βˆ’1) = 2, which
                                                                                                  gives us
                                                                                                  2 = f (βˆ’1) = βˆ’1 + c1 ,
                                                                                                  and
                                                                                                  1 = f (βˆ’1) = 1 βˆ’ c1 + c2 .
50. (a) There are many correct answers, but any
                                                                                                  Therefore c1 = 3 and c2 = 3 and the function
        correct answer will be a vertical shift of
                                                                                                  is
        these answers.
                                                                                                  f (x) = x3 + 2x2 + 3x βˆ’ 3.
                                                            14
                                                                                                     d
                                                            12                                53.      sin x2 = 2x cos x2
                                                                                                    dx
                                                            10
                                                                                                    Therefore,
                                                            8       y

                                                            6                                         2x cos x2 dx = sin x2 + c
                                                            4

                                                            2
                                                                                                     d                9
                                                                                              54.        (x3 + 2)3/2 = x2 (x3 + 2)1/2
                  βˆ’4                 βˆ’2                0
                                                            0
                                                                              2
                                                                                                    dx                2
                                 x
                                                            βˆ’2
                                                                                                    Therefore,
                                                            βˆ’4                                                        2
                                                                                                       x2 x3 + 2dx = (x3 + 2)3/2 + c
                                                                                                                      9

     (b) There are many correct answers, but any                                                     d
                                                                                              55.      x2 sin 2x = 2(x sin 2x + x2 cos 2x)
         correct answer will be a vertical shift of                                                 dx
         these answers.                                                                             Therefore,
244                                                                        CHAPTER 4. INTEGRATION

                                                            1            36          x2
            x sin 2x + x2 cos 2x dx                       =     3βˆ’              = 2
                                                            9        12 βˆ’ 9x 2    3x βˆ’ 4
           1 2                                            For 33(a): Almost the same as in Exercise 59,
       =     x sin 2x + c
           2                                              example 1.11 (b).
                                                                      1 xβˆ’1
        d x2      2xe3x βˆ’ 3x2 e3x                         For 34(b): ln         +c
 56.           =                                                      2 x+1
       dx e 3x          e6x                               Verify:
       Therefore,                                          d 1 xβˆ’1
                                                                  ln
          2xe3x βˆ’ 3x2 e3x        x2                       dx 2 x + 1
                 6x
                          dx = 3x + c                       1 x + 1 (x + 1) βˆ’ (x βˆ’ 1)
                e               e                         = Β·          Β·
                                                            2 xβˆ’1           (x + 1)2
           x cos(x2 )                                          1
 57.                    dx =   sin(x2 ) + c               = 2
             sin(x2 )                                       x βˆ’1
                                                      61. Use a CAS to find antiderivatives and verify by
      d   √             √         1                       computing the derivatives:
 58.     2 x sin x = 2 x cos x + √ sin x
     dx                            x
          √            1                                                  3        1     3

         2 x cos x + √ sin x dx                            (a)    x2 eβˆ’x dx = βˆ’ eβˆ’x + c
                        x                                                          3
           √                                                   Verify:
        = 2 x sin x + c                                         d       1      3
                                                                     βˆ’ eβˆ’x
                                                               dx       3
 59. Use a CAS to find antiderivatives and verify by                 1       3
                                                               = βˆ’ eβˆ’x Β· (βˆ’3x2 )
     computing the derivatives:                                     3 3
     For 11.1(b):                                              = x2 eβˆ’x
                                                                      1
           sec xdx = ln | sec x + tan x| + c               (b)              dx = ln |x βˆ’ 1| βˆ’ ln |x| + c Verify:
                                                                  x2 βˆ’ x
       Verify:                                                  d
                                                                   (ln |x βˆ’ 1| βˆ’ ln |x|)
        d                                                      dx
           ln | sec x + tan x|                                       1        1   x βˆ’ (x βˆ’ 1)
       dx                                                      =          βˆ’ =
          sec x tan x + sec2 x                                    xβˆ’1 x             x(x βˆ’ 1)
       =                         = sec x                               1           1
              sec x + tan x                                    =              = 2
       For 11.1(f):                                               x(x βˆ’ 1)       x βˆ’x
                          sin 2x x cos 2x
          x sin 2xdx =           βˆ’        +c               (c)       sec xdx = ln | sec x + tan x| + c
                             4         2
       Verify:                                                   Verify:
        d sin 2x x cos 2x                                         d
                      βˆ’                                              [ln | sec x + tan x|]
       dx        4          2                                    dx
          2 cos 2x cos 2x βˆ’ 2x sin 2x                               sec x tan x + sec2 x
       =             βˆ’                                           =
              4                 2                                       sec x + tan x
       = x sin 2x                                                   sec x(sec x + tan x)
                                                                 =                         = sec x
                                                                        sec x + tan x
 60. Use a CAS to find antiderivatives and verify by
     computing the derivatives:                       62. Use a CAS to find antiderivatives and verify
     For 31(a): The answer is too complicated to be       by computing the derivatives:
     presented here.
                                √
                 1       √     2 3 βˆ’ 3x                                x          1
     For 32(b):     3x + 3 ln √            +c              (a)             dx = arctan x2 + c
                 9             2 3 + 3x                            x4 + 1         2
     Verify:                                                     Verify:
                           √                                      d 1
      d 1          √    2 3 βˆ’ 3x                                         arctan x2
             3x + 3 ln √                                         dx 2
     dx 9               2 3 + 3x
                 √                                                 1      1             x
        1       2 3 + 3x                                         = Β· 4         Β· 2x = 4
     =      3+ √         ·                                         2 x +1            x +1
        9       2 3 βˆ’ 3x
           √              √                                (b)       3x sin 2xdx
      βˆ’3(2 3 + 3x) βˆ’ 3(2 3 βˆ’ 3x)
                 √                                                   3          3x
              (2 3 + 3x)2                                        =     sin 2x βˆ’    cos 2x + c
                                                                     4           2
4.1. ANTIDERIVATIVES                                                                                      245

             Verify:                                   67. The key is to find the velocity and position
              d 3             3x                           functions. We start with constant acceleration
                     sin 2x βˆ’    cos 2x
             dx 4              2                           a, a constant. Then, v(t) = at + v0 where v0
               3            3                              is the initial velocity. The initial velocity is 30
             = cos 2x βˆ’ cos 2x + 3x sin 2x
               2            2                              miles per hour, but since our time is in seconds,
             = 3x sin 2x                                   it is probably best to work in feet per second
                                                           (30mph = 44ft/s). v(t) = at + 44.
       (c)     ln xdx = x ln x βˆ’ x + c                     We know that the car accelerates to 50 mph
             Verify:                                       (50mph = 73ft/s) in 4 seconds, so v(4) = 73.
              d                                                                                   29
                (x ln x βˆ’ x) = ln x + 1 βˆ’ 1                Therefore, a Β· 4 + 44 = 73 and a =        ft/s
             dx                                                                                    4
             = ln x                                        So,
                                                                   29
            βˆ’1                                             v(t) =     t + 44 and
63.     √         dx = cosβˆ’1 (x) + c1                               4
           1 βˆ’ x2                                                  29 2
                                                           s(t) =     t + 44t + s0
            βˆ’1                                                      8
         √        dx = βˆ’ sinβˆ’1 (x) + c2                    where s0 is the initial position. We can assume
           1 βˆ’ x2                                          the the starting position is s0 = 0.
      Therefore,                                                             29 2
      cosβˆ’1 x + c1 = βˆ’ sinβˆ’1 x + c2                        Then, s(t) =         t + 44t and the distance
                                                                              8
      Therefore,                                           traveled by the car during the 4 seconds is
      sinβˆ’1 x + cosβˆ’1 x = constant                         s(4) = 234 feet.
      To find the value of the constant, let x be any
      convenient value.                                68. The key is to find the velocity and position
      Suppose x = 0; then sinβˆ’1 0 = 0 and cosβˆ’1 0 =        functions. We start with constant acceleration
      Ο€/2, so                                              a, a constant. Then, v(t) = at + v0 where v0
                          Ο€                                is the initial velocity. The initial velocity is 60
      sinβˆ’1 x + cosβˆ’1 x =
                           2                               miles per hour, but since our time is in seconds,
                                                           it is probably best to work in feet per second
64. To derive these formulas, all that needs to be
                                                           (60mph = 88ft/s). v(t) = at + 88.
    done is to take the derivatives to see that the
                                                           We know that the car comes to rest in 3 sec-
    integrals are correct:
     d                                                     onds, so v(3) = 0.
        (tan x) = sec2 x                                   Therefore,
    dx
     d                                                     a(3) + 88 = 0 and a = βˆ’88/3ft/s (the accelera-
        (sec x) = sec x tan x                              tion should be negative since the car is actually
    dx
                                                           decelerating.
65. To derive these formulas, all that needs to be         So,
    done is to take the derivatives to see that the                  88
    integrals are correct:                                 v(t) = βˆ’ t + 88 and
                                                                      3
     d x                                                             44
        (e ) = ex                                          s(t) = βˆ’ t2 + 88t + s0 where s0 is the initial
    dx                                                                3
     d                                                     position. We can assume the the starting po-
         βˆ’eβˆ’x = eβˆ’x
    dx                                                     sition is s0 = 0.
                                                                              44
                1      1    1                              Then, s(t) = βˆ’ t2 + 88t and the stopping
66. (a)           dx =        dx                                               3
              kx       k    x                              distance is s(3) = 132 feet.
              1
            = ln |x| + c1                              69. To estimate the acceleration over each inter-
              k
                                                           val, we estimate v (t) by computing the slope
                1      1     k
       (b)        dx =          dx                         of the tangent lines. For example, for the in-
              kx       k    kx                             terval [0, 0.5]:
              1
            = ln |kx| + c2                                      v(0.5) βˆ’ v(0)
              k                                            aβ‰ˆ                  = βˆ’31.6 m/s2 .
                                                                   0.5 βˆ’ 0
      Because                                              Notice, acceleration should be negative since
      1            1
        ln |kx| = (ln |k| + ln |x|)                        the object is falling.
      k            k
         1          1        1                             To estimate the distance traveled over the in-
      = ln |x| + ln |k| = ln |x| + c                       terval, we estimate the velocity and multiply
         k          k        k
      The two antiderivatives are both correct.            by the time (distance is rate times time). For
246                                                                                          CHAPTER 4. INTEGRATION

      an estimate for the velocity, we will use the               Time           Speed Dist
      average of the velocities at the endpoints. For               0              70     0
      example, for the interval [0, 0.5], the time inter-          0.5           69.55 34.89
      val is 0.5 and the velocity is βˆ’11.9. Therefore              1.0            70.3  69.85
      the position changed is (βˆ’11.9)(0.5) = βˆ’5.95                 1.5           70.35 105.01
      meters. The distance traveled will be 5.95 me-               2.0           70.65 104.26
      ters (distance should be positive).
       Interval Accel       Dist                            72. To estimate the speed over the interval, we first
       [0.0, 0.5] βˆ’31.6     5.95                                approximate the acceleration over the interval
       [0.5, 1.0]   βˆ’2     12.925                               by averaging the acceleration at the endpoint
       [1.0, 1.5] βˆ’11.6     17.4                                of the interval. Then, the velocity will be the
       [1.5, 2.0] βˆ’3.6      19.3                                acceleration times the length of time. the slope
                                                                of the tangent lines. For example, for the in-
                                                                terval [0.0, 0.5] the average acceleration is βˆ’0.8
                                                                and v(0.5) = 20+(βˆ’0.8)(.5) = 19.6. Of course,
                                                                speed is the absolute value of the velocity.
 70. To estimate the acceleration over each inter-
                                                                And, the distance traveled is the average speed
     val, we estimate v (t) by computing the slope
                                                                times the length of time. For the time t = 0.5,
     of the tangent lines. For example, for the in-                                        20 + 19.6
     terval [0, 1.0]:                                           the distance would be                Γ— 0.5 = 9.9
                                                                                               2
          v(1.0) βˆ’ v(0)                                         meters.
     aβ‰ˆ                  = βˆ’9.8 m/s2 .                           Time Speed          Dist
              1.0 βˆ’ 0
     Notice, acceleration should be negative since                  0        20        0
     the object is falling.                                        0.5     19.6       9.9
     To estimate the distance traveled over the in-                1.0 17.925 19.281
     terval, we estimate the velocity and multiply                 1.5     16.5 27.888
     by the time (distance is rate times time). For                2.0 16.125 34.044
     an estimate for the velocity, we will use the av-
     erage of the velocities at the endpoints. For
     example, for the interval [0, 1.0], the time in-       4.2     Sums And Sigma Notation
     terval is 1.0 and the velocity is βˆ’4.9. Therefore
     the position changed is (βˆ’4.9)(1.0) = βˆ’4.9 me-          1. The given sum is the sum of twice the
     ters. The distance traveled will be 4.9 meters             squares of the integers from 1 to 14.
     (distance should be positive).                                                                                      14
                                                                        2                2         2                2
      Interval Accel Dist                                         2(1) + 2(2) + 2(3) + . . . + 2(14) =                         2i2
                                                                                                                         i=1
      [0.0, 1.0] βˆ’9.8       4.9
      [1.0, 2.0] βˆ’8.8 14.2                                   2. The given sum is the sum of squares
      [2.0, 3.0] βˆ’6.3 21.75                                     roots of √the integers from 1 to 14.
                                                                √                √               √
      [3.0, 4.0] βˆ’3.6 26.7                                        2 βˆ’ 1 + 3 βˆ’ 1 + 4 βˆ’ 1 + . . . + 15 βˆ’ 1
                                                                    √    √     √         √       √
                                                                 = 1 + 2 + 3 + ... + 13 + 14
                                                                        14
                                                                             √
                                                                  =              i
 71. To estimate the speed over the interval, we                      i=1
     first approximate the acceleration over the in-
     terval by averaging the acceleration at the end-                       50
                                                                                             (50)(51)(101)
     point of the interval. Then, the velocity will be       3. (a)              i2 =                      = 42, 925
                                                                                                   6
     the acceleration times the length of time. The                      i=1

     slope of the tangent lines. For example, for the                        50          2
                                                                                                           2
                                                                                                  50(51)
     interval [0, 0.5] the average acceleration is βˆ’0.9           (b)                i       =                 = 1, 625, 625
     and v(0.5) = 70 + (βˆ’0.9)(0.5) = 69.55.                                  i=1
                                                                                                    2
     And, the distance traveled is the speed times
                                                                            10
     the length of time. For the time t = 0.5, the                               √
                          70 + 69.55                         4. (a)        i
     distance would be               Γ—0.5 β‰ˆ 34.89 me-                    i=1
                               2                                            √ √  √  √  √
     ters.                                                              =1+ 2+ 3+ 4+ 5+ 6
4.2. SUMS AND SIGMA NOTATION                                                                                                         247
                 √   √  √   √
               + 7 + 8 + 9 + 10                                  = 338, 350 βˆ’ 15, 150 + 200 = 323, 400
             β‰ˆ 22.47
                   10                                            140
                                   10(11) √
      (b)               i=               = 55              14.             n2 + 2n βˆ’ 4
                  i=1
                                     2
                                                                 n=1
                                                                   140                      140            140
       6
                                                                 =          n2 + 2                nβˆ’                4
 5.         3i2 = 3 + 12 + 27 + 48 + 75 + 108                         n=1                  n=1             n=1
      i=1                                                          (140)(141)(281)                                  140(141)
      = 273                                                      =                 +2                                          βˆ’ 4 (140)
                                                                           6                                           2
       7                                                         = 943, 670
 6.         i2 + i = 12 + 20 + 30 + 42 + 56
      i=3
                                                                 30
      = 160                                                                            2
                                                           15.             (i βˆ’ 3) + i βˆ’ 3
      10
                                                                 i=3
 7.         (4i + 2)                                                   30                            30
                                                                                           2
      i=6                                                        =          (i βˆ’ 3) +                      (i βˆ’ 3)
      = (4(6) + 2) + (4(7) + 2) + (4(8) + 2)                          i=3                         i=3
      + (4(9) + 2) + (4(10) + 2)                                       27                  27
      = 26 + 30 + 34 + 38 + 42                                   =          n2 +                n (substitute i βˆ’ 3 = n)
      = 170                                                           n=0              n=0
                                                                             27                            27
       8
             2                                                   =0+               n2 + 0 +                     n
 8.         (i + 2)                                                         n=1                           n=1
      i=6                                                             27 (28) (55) 27 (28)
      = (62 + 2) + (72 + 2) + (82 + 2)                           =                +        = 7308
                                                                           6          2
      = 38 + 51 + 66 = 155
      70                           70                            20                                        20
 9.         (3i βˆ’ 1) = 3 Β·              i βˆ’ 70             16.         (i βˆ’ 3) (i + 3) =                            i2 βˆ’ 9
      i=1                         i=1                            i=4                                       i=4
          70(71)                                                       20                  20
      =3Β·        βˆ’ 70 = 7, 385
            2                                                    =          i2 βˆ’ 9               1
      45                        45                45                  i=4                  i=4

10.         (3i βˆ’ 4) = 3             iβˆ’4               1               20              3                  20
      i=1                     i=1             i=1                =          i2 βˆ’               i2 βˆ’9            1
                 45(46)                                               i=1          i=1                    i=4
      =3                     βˆ’ 4(45) = 2925
                   2                                               20 (21) (41)
                                                                 =              βˆ’ 1 βˆ’ 4 βˆ’ 9 βˆ’ 9 (17)
      40                                40                              6
11.         (4 βˆ’ i2 ) = 160 βˆ’                 i2                 = 2703
      i=1                               i=1
              (40)(41)(81)                                        n
      = 160 βˆ’
                    6                                      17.             k2 βˆ’ 3
      = 160 βˆ’ 22, 140 = βˆ’21, 980
                                                                 k=3
                                                                       n               n
      50                     50              50
12.         (8 βˆ’ i) = 8            1βˆ’              i             =          k2 +                (βˆ’3)
                                                                      k=3          k=3
      i=1                    i=1         i=1
                                                                       n             2
                50(51)
      = 8(50) βˆ’        = βˆ’875                                    =          k2 βˆ’                k2
                  2                                                   k=1              k=1
      100                                                                          n                        2

13.          n2 βˆ’ 3n + 2                                                    +              (βˆ’3) βˆ’                   (βˆ’3)
      n=1                                                                       k=1                       k=1
        100               100           100                        n (n + 1) (2n + 1)
                                                                 =                    βˆ’1βˆ’4
      =          n2 βˆ’ 3         n+            2                            6
           n=1            n=1           n=1                        + (βˆ’3) n βˆ’ (βˆ’3) (2)
        (100)(101)(201)    100(101)                                n (n + 1) (2n + 1)
      =                 βˆ’3          + 200                        =                    βˆ’ 5 βˆ’ 3n + 6
               6              2                                            6
248                                                                              CHAPTER 4. INTEGRATION

            n (n + 1) (2n + 1)                      = ((2.05)3 + 4)(0.1) + . . .
       =                       βˆ’ 3n + 1
                    6                                 + ((2.95)3 + 4)(0.1)
        n                                           = (202.4375)(0.1)
 18.             k2 + 5                             = 20.24375
       k=0                                           n                       2
             n            n                               1            i                  i
                                              23.                                +2
       =          k2 +          5                         n            n                  n
                                                    i=1
            k=0           k=0
                    n               n                            n                    n
                                                         1             i2        i
       =0+              k2 + 5 +          5         =                     +2
                  k=1               k=1
                                                         n       i=1
                                                                       n2    i=1
                                                                                 n
         n (n + 1) (2n + 1)                                            n                   n
       =                    + 5 + 5n                     1 1                          2
                 6                                  =                        i2 +               i
                                                         n n2          i=1
                                                                                      n   i=1
        n
 19.         f (xi )βˆ†x                                   1 1               n(n + 1)(2n + 1)
                                                    =
       i=1                                               n n2                     6
             5
       =          (x2 + 4xi ) Β· 0.2
                    i
                                                             2       n(n + 1)
                                                         +
            i=1                                              n          2
       = (0.22 + 4(0.2))(0.2) + . . .
                                                         n(n + 1)(2n + 1) n(n + 1)
         + (12 + 4)(0.2)                            =                    +
                                                               6n3           n2
       = (0.84)(0.2) + (1.76)(0.2)
                                                                 n                    2
         + (2.76)(0.2) + (3.84)(0.2)                                 1           i                  i
                                                    lim                                   +2
         + (5)(0.2)                                 nβ†’βˆž              n           n                  n
                                                             i=1
       = 2.84
        n                                                            n(n + 1)(2n + 1) n(n + 1)
                                                    = lim                            +
 20.         f (xi )βˆ†x                                   nβ†’βˆž               6n3           n2
       i=1                                               2     4
             5                                      =      +1=
       =          (3xi + 5) Β· 0.4                        6     3
            i=1                                      n                       2
       = (3(0.4) + 5)(0.4) + . . .                        1            i                  i
                                              24.                                βˆ’5
         + (3(2) + 5)(0.4)                          i=1
                                                          n            n                  n
       = (6.2)(0.4) + (7.4)(0.4)                                 n                    n
         + (8.6)(0.4) + (9.8)(0.4)                       1             i2        i
                                                    =                     βˆ’5
         + (11)(0.4)                                     n       i=1
                                                                       n2    i=1
                                                                                 n
       = 17.2                                                          n                   n
        n                                                1 1                          5
                                                    =                        i2 βˆ’               i
 21.         f (xi )βˆ†x                                   n n2          i=1
                                                                                      n   i=1
       i=1
             10                                          1 1               n(n + 1)(2n + 1)
                                                    =
       =          (4x2 βˆ’ 2) Β· 0.1
                     i                                   n n2                     6
            i=1
       = (4(2.1)2 βˆ’ 2)(0.1) + . . .                          5       n(n + 1)
                                                         βˆ’
         + (4(3)2 βˆ’ 2)(0.1)                                  n          2
       = (15.64)(0.1) + (17.36)(0.1)                   n(n + 1)(2n + 1) 5n(n + 1)
         + (19.16)(0.1) + (21.04)(0.1)              =                  βˆ’
                                                              6n3          2n2
         + (23)(0.1) + (25.04)(0.1)                         2
                                                       βˆ’13n βˆ’ 12n + 1
         + (27.16)(0.1) + (29.36)(0.1)              =
                                                              6n2
         + (31.64)(0.1) + (34)(0.1)                       n          2
                                                              1   i       i
       = 24.34                                       lim               βˆ’5
        n
                                                    nβ†’βˆž
                                                         i=1
                                                              n   n       n
 22.         f (xi )βˆ†x                                    βˆ’13n2 βˆ’ 12n + 1
       i=1                                          = lim
             10                                      nβ†’βˆž       6n2
       =          (x3 + 4) Β· 0.1                           13   12     1
                                                    = lim βˆ’ βˆ’      + 2
            i=1                                      nβ†’βˆž    6   6n 6n
4.2. SUMS AND SIGMA NOTATION                                                                                            249

              13                                                        n
      =βˆ’                                                                         n2 (n + 1)2
               6                                                             i3 =
                                                                       i=1
                                                                                        4
      n
            1              2i
                                     2
                                                  2i                   is true for all integers n β‰₯ 1.
25.           4                          βˆ’                             For n = 1, we have
            n              n                      n                      1
      i=1                                                                              12 (1 + 1)2
                        n                         n                         i3 = 1 =               ,
          1        i2        i                                         i=1
                                                                                             4
      =     16        βˆ’2
          n    i=1
                   n2    i=1
                             n                                         as desired.
                                                                       So the proposition is true for n = 1.
                         n                            n
          1 16                                2                        Next, assume that
      =                          i2 βˆ’                     i              k
          n n2                                n                                  k 2 (k + 1)2
                        i=1                       i=1                       i3 =               ,
          1 16              n(n + 1)(2n + 1)                           i=1
                                                                                       4
      =                                                                for some integer k β‰₯ 1.
          n n2                     6
                                                                       In this case, we have by the induction assump-
              2        n(n + 1)                                        tion that for n = k + 1,
          βˆ’
              n           2                                             n           k+1          k
                                                                             i3 =         i3 =         i3 + (k + 1)3
        16n(n + 1)(2n + 1) n(n + 1)
      =                   βˆ’                                            i=1          i=1          i=1
               6n3            n2                                          k 2 (k + 1)2
                  n                               2                    =               + (k + 1)3
                       1                 2i                   2i                4
      lim                4                            βˆ’                   k 2 (k + 1)2 + 4(k + 1)3
      nβ†’βˆž
              i=1
                       n                 n                    n        =
                                                                                       4
                       16n(n + 1)(2n + 1) n(n + 1)                        (k + 1)2 (k 2 + 4k + 4)
      = lim                              βˆ’                             =
          nβ†’βˆž                 6n3            n2                                       4
                                                                          (k + 1)2 (k + 2)2
          16     13                                                    =
      =      βˆ’1=                                                                   4
           3      3                                                       n2 (n + 1)2
                                                                       =
      n                          2                                               4
            1           2i                        i                    as desired.
26.                                  +4
      i=1
            n           n                         n
                                                                   28. Want to prove that
                   n                          n                          n
        1               4i2        i                                             n2 (n + 1)2 (2n2 + 2n βˆ’ 1)
      =                     +4                                              i5 =
        n         i=1
                        n2     i=1
                                   n                                                           12
                                                                       i=1
                         n                            n                is true for all integers n β‰₯ 1.
          1 4                                 4                        For n = 1, we have
      =                          i2 +                     i
          n n2          i=1
                                              n   i=1
                                                                         1
                                                                                       12 (1 + 1)2 (2 + 2 βˆ’ 1)
                                                                            i3 = 1 =                           ,
          1 4               n(n + 1)(2n + 1)                           i=1
                                                                                                  12
      =
          n n2                     6                                   as desired.
                                                                       So the proposition is true for n = 1.
              4        n(n + 1)
          +                                                            Next, assume that
              n           2                                              k
                                                                                 k 2 (k + 1)2 (2k 2 + 2k βˆ’ 1)
        4n(n + 1)(2n + 1) 4n(n + 1)                                         i5 =                              ,
      =                  +                                             i=1
                                                                                               12
              6n3            2n2                                       for some integer k β‰₯ 1.
           2
        10n + 12n + 2                                                  In this case, we have by the induction assump-
      =
             3n2                                                       tion that for n = k + 1,
                  n                           2                         n           k+1          k
                       1             2i                       i
      lim                                         +4                         i5 =         i5 =         i5 + (k + 1)5
      nβ†’βˆž
              i=1
                       n             n                        n        i=1          i=1          i=1
                                                                         k 2 (k + 1)2 (2k 2 + 2k βˆ’ 1)
            10n + 12n + 2    2
                                                                       =                              + (k + 1)5
      = lim                                                                            12
          nβ†’βˆž    3n2
            10   12    2    10                                           k 2 (k + 1)2 (2k 2 + 2k βˆ’ 1) + 12(k + 1)5
      = lim    +    +     =                                            =
       nβ†’βˆž 3     3n 3n2     3                                                                 12
                                                                         (k + 1)2 [k 2 (2k 2 + 2k βˆ’ 1) + 12(k + 1)3 ]
27. Want to prove that                                                 =
                                                                                               12
250                                                                                           CHAPTER 4. INTEGRATION

          (k + 1)2 [2k 4 + 14k 3 + 35k 2 + 36k + 12]                                      a βˆ’ ar
       =                                                        34. When n = 0, a =              .
                              12                                                           1βˆ’r
                                                                      Assume the formula holds for n = k βˆ’ 1, which
          (k + 1) (k + 4k + 4)(2k 2 + 6k + 3)
                 2 2
                                                                      gives
       =
                             12                                                              a βˆ’ ark
                                                                      a + ar + Β· Β· Β· arkβˆ’1 =         .
          n2 (n + 1)2 (2n2 + 2n βˆ’ 1)                                                          1βˆ’r
       =                                                              Then for n = k,
                       12
       as desired.                                                    we have a + ar + Β· Β· Β· ark
       10
                                                                      = a + ar + Β· Β· Β· arkβˆ’1 + ark
                                                                         a βˆ’ ark
 29.         (i3 βˆ’ 3i + 1)                                            =           + ark
                                                                          1βˆ’r
       i=1
             10             10                                           a βˆ’ ark + ark (1 βˆ’ r)
                                                                      =
       =          i3 βˆ’ 3          i + 10                                         1βˆ’r
            i=1             i=1                                          a βˆ’ ark + ark βˆ’ ark+1
                                                                      =
         100(11)2    10(11)                                                        1βˆ’r
       =          βˆ’3        + 10                                         a βˆ’ ark+1
              4        2                                              =
       = 2, 870                                                             1βˆ’r
                                                                         a βˆ’ arn+1
                                                                      =
       20                                                                   1βˆ’r
 30.         (i3 + 2i)                                                as desired.
       i=1
             20             20
                                                                       n
       =          i3 + 2          i                                                    6
                                                                35.         e6i/n
            i=1             i=1
                                                                      i=1
                                                                                       n
            400(21)2    20(21)                                                 n
       =             +2        = 44, 520                                   6
               4          2                                           =              e6i/n
                                                                           n   i=1
       100
 31.         (i5 βˆ’ 2i2 )                                                   6    e6/n βˆ’ e6
                                                                      =
       i=1                                                                 n    1 βˆ’ e6/n
          100               100
       =          5
                  i βˆ’2            i2                                       6     1 βˆ’ e6
                                                                      =                  βˆ’1
            i=1             i=1                                            n    1 βˆ’ e6/n
         (100 )(1012 )[2(1002 ) + 2(100) βˆ’ 1]
                    2                                                    6 1 βˆ’ e6      6
       =                                                              =              βˆ’
                           12                                            n 1 βˆ’ e6/n    n
                                                                                 6
            100(101)(201)                                             Now lim = 0, and
         βˆ’2                                                                 xβ†’βˆž n
                    6
       = 171, 707, 655, 800                                                6 1 βˆ’ e6
                                                                       lim
                                                                      xβ†’βˆž n 1 βˆ’ e6/n
       100
                                                                                         1/n
 32.         (2i5 + 2i + 1)                                           = 6(1 βˆ’ e6 ) lim
                                                                                  xβ†’βˆž 1 βˆ’ e6/n
       i=1
              100            100                                                          1
                                                                      = 6(1 βˆ’ e6 ) lim
       =2           i5 + 2            i + 100                                     xβ†’βˆž βˆ’6e6/n
              i=1            i=1
                                                                      = e6 βˆ’ 1.
                        2     2              2                                            n
          (100 )(101 )[2(100 ) + 2(100) βˆ’ 1]                                                          6
       =2                                                             Thus lim                e6i/n     = e6 βˆ’ 1.
                            12                                                 xβ†’βˆž                    n
                                                                                       i=1
               100(101)
         +2Β·             + 100
                   2                                                   n
       = 343, 416, 675, 200                                                           2
                                                                36.         e(2i)/n
                                                                      i=1
                                                                                      n
        n                              n            n
 33.         (cai + dbi ) =                 cai +         dbi              2    e2/n βˆ’ e2
                                                                      =
       i=1                            i=1           i=1                    n    1 βˆ’ e2/n
              n                  n
       =c           ai + d            bi                                   2     1 βˆ’ e2
                                                                      =                  βˆ’1
             i=1             i=1                                           n    1 βˆ’ e2/n
4.3. AREA                                                                                                                251

         2 1 βˆ’ e2      2                                        Notice that βˆ†x = 0.25.
      =              βˆ’
         n 1 βˆ’ e2/n    n                                        A4 = [f (0.125) + f (0.375) + f (0.625)
                 2                                                    + f (0.875)](0.25)
      Now lim = 0, and
            xβ†’βˆž n                                               = [(0.125)2 + 1 + (0.375)2 + 1
           2 1 βˆ’ e2                                               + (0.625)2 + 1 + (0.875)2 + 1](0.25)
       lim
      xβ†’βˆž n 1 βˆ’ e2/n                                            = 1.38125.
                         1/n
      = 2(1 βˆ’ e2 ) lim                                             2

                  xβ†’βˆž 1 βˆ’ e2/n

                          1
      = 2(1 βˆ’ e2 ) lim
                                                                 1.5

                  xβ†’βˆž βˆ’2e2/n

      = e2 βˆ’ 1.                                                    1
                  n
                        2
      Thus lim     e2i/n = e2 βˆ’ 1.
           xβ†’βˆž
               i=1
                        n                                        0.5




37. Distance                                                       0
    = 50(2) + 60(1) + 70(1/2) + 60(3)                                  0   0.2     0.4   0.6
                                                                                          x
                                                                                               0.8        1       1.2


    = 375 miles.

38. Distance
    = 50(1) + 40(1) + 60(1/2) + 55(3)
    = 285 miles.                                            (b) Evaluation points:
                                                                0.25, 0.75, 1.25, 1.75.
39. On the time interval [0, 0.25], the estimated ve-           Notice that βˆ†x = 0.5.
                                    120 + 116                   A4 = [f (0.25) + f (0.75) + f (1.25)
    locity is the average velocity             = 118
                                         2                            + f (1.75)](0.5)
    feet per second.                                            = [(0.25)2 + 1 + (0.75)2 + 1 + (1.25)2
    We estimate the distance traveled during the                  + 1 + (1.75)2 + 1](0.5)
    time interval [0, 0.25] to be                               = 4.625.
    (118)(0.25 βˆ’ 0) = 29.5 feet.
    Altogether, the distance traveled is estimated                         7

    as
                                                                           6
    = (236/2)(0.25) + (229/2)(0.25)
       + (223/2)(0.25) + (218/2)(0.25)                                     5



       + (214/2)(0.25) + (210/2)(0.25)                                     4


       + (207/2)(0.25) + (205/2)(0.25)                                     3

    = 217.75 feet.                                                         2



40. On the time interval [0, 0.5], the estimated ve-                       1


                                   10 + 14.9                               0
    locity is the average velocity            = 12.45              -0.5        0   0.5    1     1.5           2    2.5
                                       2                                                              x

    meters per second. We estimate the distance
    fallen during the time interval [0, 0.5] to be
    (12.45)(0.5 βˆ’ 0) = 6.225 meters.
    Altogether, the distance fallen (estimated)
    = (12.45)(0.5) + (17.35)(0.5)
       + (22.25)(0.5) + (27.15)(0.5)
       + (32.05)(0.5) + (36.95)(0.5)
       + (41.85)(0.5) + (46.75)(0.5)                    2. (a) Evaluation points:
    = 118.4 meters.                                            1.125, 1.375, 1.625, 1.875.
                                                               Notice that βˆ†x = 0.25.
                                                               A4 = [f (1.125) + f (1.375) + f (1.625)
4.3       Area                                                       + f (1.875)](0.25)
                                                               = [(1.125)3 βˆ’ 1 + (1.375)3 βˆ’ 1
 1. (a) Evaluation points:                                       + (1.625)3 βˆ’ 1 + (1.875)3 βˆ’ 1](0.25)
        0.125, 0.375, 0.625, 0.875.                            = 2.7265625.
252                                                                                                CHAPTER 4. INTEGRATION

                                                                                         11Ο€/16, 13Ο€/16, 15Ο€/16.
             7
                                                                                         Notice that βˆ†x = Ο€/8.
             6                                                                           A4 = [f (Ο€/16) + f (3Ο€/16) + f (5Ο€/16)
             5                                                                                 + f (7Ο€/16) + f (9Ο€/16) + f (11Ο€/16)
             4
                                                                                               + f (13Ο€/16) + f (15Ο€/16)](Ο€/8)
                                                                                         = [sin(Ο€/16) + sin(3Ο€/16) + sin(5Ο€/16)
             3
                                                                                           + sin(7Ο€/16) + sin(9Ο€/16)
             2                                                                             + sin(11Ο€/16) + sin(13Ο€/16)
             1                                                                             + sin(15Ο€/16)](Ο€/8)
                                                                                         = 2.0129.
             0
                 1        1.2         1.4         1.6         1.8           2
                                             x                                             1



      (b) Evaluation points:                                                              0.8
          1.25, 1.75, 2.25, 2.75.
          Notice that βˆ†x = 0.5.                                                           0.6

          A4 = [f (1.25) + f (1.75) + f (2.25)
                + f (2.75)](0.5)                                                          0.4


          = [(1.25)3 βˆ’ 1 + (1.75)3 βˆ’ 1
            + (2.25)3 βˆ’ 1 + (2.75)3 βˆ’ 1](0.5)
                                                                                          0.2


          = 17.75.                                                                         0
                                                                                               0   0.5      1   1.5     2    2.5   3
                                                                                                                    x

            30



            25



            20



            15
                                                                                 4. (a) Evaluation points:
                                                                                        βˆ’0.75, βˆ’0.25, 0.25, 0.75.
            10
                                                                                        Notice that βˆ†x = 0.5.
             5
                                                                                        A4 = [f (βˆ’0.75) + f (βˆ’0.25) + f (0.25)
             0                                                                               + f (0.75)](0.5)
                     1          1.5          2          2.5         3
                                             x                                          = [4 βˆ’ (βˆ’0.75)2 + 4 βˆ’ (βˆ’0.25)2 + 4
                                                                                          βˆ’ (0.25)2 + 4 βˆ’ (0.75)2 ](0.5)
  3. (a) Evaluation points:                                                             = 7.375.
         Ο€/8, 3Ο€/8, 5Ο€/8, 7Ο€/8.                                                                                 4

         Notice that βˆ†x = Ο€/4.
         A4 = [f (Ο€/8) + f (3Ο€/8) + f (5Ο€/8)                                                                    3
               + f (7Ο€/8)](Ο€/4)
         = [sin(Ο€/8) + sin(3Ο€/8) + sin(5Ο€/8)
                                                                                                                2
           + sin(7Ο€/8)](Ο€/4)
         = 2.05234.
                                                                                                                1
             1


                                                                                                                0
            0.8                                                                             -1           -0.5       0       0.5        1
                                                                                                                    x

            0.6



            0.4                                                                     (b) Evaluation points:
                                                                                        βˆ’2.75, βˆ’2.25, βˆ’1.75, βˆ’1.25.
            0.2
                                                                                        Notice that βˆ†x = 0.5.
             0
                                                                                        A4 = [f (βˆ’2.75) + f (βˆ’2.25) + f (βˆ’1.75)
                 0       0.5      1         1.5
                                             x
                                                    2         2.5       3
                                                                                             + f (βˆ’1.25)](0.5)
                                                                                        = [4 βˆ’ (βˆ’2.75)2 + 4 βˆ’ (βˆ’2.25)2 + 4
      (b) Evaluation points:                                                              βˆ’ (βˆ’1.75)2 + 4 βˆ’ (βˆ’1.25)2 ](0.5)
          Ο€/16, 3Ο€/16, 5Ο€/16,                           7Ο€/16,          9Ο€/16,          = βˆ’0.625.
4.3. AREA                                                                                                                    253

                                                                                      15
                                                                       A16 = βˆ†x             f (ci )
                                                           2
                                                                                      i=0
                                                                                15                        2
                                      x                                    1           i   1
                -3     -2.5           -2       -1.5   -1               =                 +                    + 1 β‰ˆ 4.6640
                                                           0
                                                                           8   i=0
                                                                                       8 16
                                                           -2
                                                                    (c) There are 16 rectangles and the evalua-
                                                                        tion points are given by ci = iβˆ†x + βˆ†x
                                                           -4
                                                                        where i is from 0 to 15.
                                                                                      15
                                                           -6
                                                                       A16 = βˆ†x             f (ci )
                                                                                      i=0
                                                                                15                    2
                                                                         1             i   1
                                                                       =                 +                + 1 β‰ˆ 4.9219
 5. (a) There are 16 rectangles and the evalua-                          8     i=0
                                                                                       8 8
        tion points are given by ci = iβˆ†x where i
        is from 0 to 15.                                        7. (a) There are 16 rectangles and the evalua-
                     15
                                                                       tion points are the left endpoints which
        A16 = βˆ†x           f (ci )
                                                                       are given by
                     i=0
                15                2                                    ci = 1 + iβˆ†x where i is from 0 to 15.
           1            i                                                             15
        =                             + 1 β‰ˆ 1.3027
          16           16                                              A16 = βˆ†x             f (ci )
               i=0
                                                                                      i=0
    (b) There are 16 rectangles and the evalua-                             3
                                                                                 15
                                                                                              3i
                                            βˆ†x                         =               1+        + 2 β‰ˆ 6.2663
        tion points are given by ci = iβˆ†x +                                16                 16
                                             2                                  i=0
        where i is from 0 to 15.
                     15                                            (b) There are 16 rectangles and the evalua-
        A16 = βˆ†x           f (ci )                                     tion points are the midpoints which are
                     i=0                                               given by
                15                         2                                           βˆ†x
           1            i   1                                          ci = 1 + iβˆ†x +      where i is from 0 to
        =                 +                    +1                                       2
          16   i=0
                       16 32                                           15.
                                                                                      15
        β‰ˆ 1.3330                                                       A16 = βˆ†x             f (ci )
     (c) There are 16 rectangles and the evalua-                                      i=0
                                                                                 15
         tion points are given by ci = iβˆ†x + βˆ†x                             3                 3i   3
                                                                       =               1+        +   +2
         where i is from 0 to 15.                                          16                 16 32
                     15                                                         i=0
        A16 = βˆ†x           f (ci )                                     β‰ˆ 6.3340
                     i=0
                15                         2                        (c) There are 16 rectangles and the evalua-
           1            i   1
        =                 +                    +1                       tion points are the right endpoints which
          16   i=0
                       16 16                                            are given by
        β‰ˆ 1.3652                                                        ci = 1 + iβˆ†x where i is from 1 to 16.
                                                                                      16
                                                                       A16 = βˆ†x             f (ci )
 6. (a) There are 16 rectangles and the evalua-
                                                                                      i=1
        tion points are given by ci = iβˆ†x where i                                16
                                                                            3                 3i
        is from 0 to 15.                                               =               1+        + 2 β‰ˆ 6.4009
                     15                                                    16   i=1
                                                                                              16
        A16 = βˆ†x           f (ci )
                     i=0
               15             2                                 8. (a) There are 16 rectangles and the evalua-
          1           i                                                tion points are the left endpoints which
        =                         + 1 β‰ˆ 4.4219
          8   i=0
                      8                                                are given by
                                                                       ci = βˆ’1 + iβˆ†x βˆ’ βˆ†x
    (b) There are 16 rectangles and the evalua-
                                                                       where i is from 1 to 16.
                                            βˆ†x                                        16
        tion points are given by ci = iβˆ†x +
                                             2                         A16 = βˆ†x             f (ci )
        where i is from 0 to 15.                                                      i=1
254                                                                              CHAPTER 4. INTEGRATION

                  16
              1                      i      1                      given by ci = βˆ’1 + iβˆ†x βˆ’ βˆ†x where i is
          =             eβˆ’2(βˆ’1+ 8 βˆ’ 8 ) β‰ˆ 4.0991                   from 1 to 100.
              8   i=1                                                               100

      (b) There are 16 rectangles and the evalua-                  A100 = βˆ†x              f (ci )
          tion points are the midpoints which are                                   i=1
                                                                             100                               3
          given by                                                      2                         2i   2
                            βˆ†x                                     =                   βˆ’1 +          βˆ’             βˆ’1
          ci = βˆ’1 + iβˆ†x βˆ’                                              100   i=1
                                                                                                 100 100
                             2
          where i is from 1 to 16.                                 β‰ˆ βˆ’2.02
                            16
          A16 = βˆ†x                f (ci )                      (b) There are 100 rectangles and the evalua-
                            i=1
                                                                   tion points are midpoints which are given
                  16                                                                   βˆ†x
              1                      i      1                      by ci = βˆ’1 + iβˆ†x βˆ’      where i is from 1
          =             eβˆ’2(βˆ’1+ 8 βˆ’ 16 ) β‰ˆ 3.6174                                       2
              8                                                    to 100.
                  i=1                                                               100
      (c) There are 16 rectangles and the evalua-                  A100 = βˆ†x              f (ci )
          tion points are the right endpoints which                                 i=1
                                                                             100                               3
          are given by                                                  2                         2i   1
          ci = βˆ’1 + iβˆ†x where i is from 1 to 16.                   =                   βˆ’1 +          βˆ’             βˆ’1
                                                                       100   i=1
                                                                                                 100 100
                            16
          A16 = βˆ†x                f (ci )                          = βˆ’2
                            i=1
                  16
                                                               (c) There are 100 rectangles and the evalua-
              1                      i
                                                                   tion points are right endpoints which are
          =             eβˆ’2(βˆ’1+ 8 ) β‰ˆ 3.1924
              8   i=1
                                                                   given by ci = βˆ’1 + iβˆ†x where i is from 1
                                                                   to 100.
  9. (a) There are 50 rectangles and the evalua-                                    100

         tion points are given by ci = iβˆ†x where i                 A100 = βˆ†x              f (ci )
         is from 0 to 49.                                                           i=1
                            50                                               100                       3
                                                                        2                         2i
          A50 = βˆ†x                f (ci )                          =                   βˆ’1 +                βˆ’ 1 β‰ˆ βˆ’1.98
                                                                       100   i=1
                                                                                                 100
                            i=0
                       50
               Ο€                     Ο€i                                   1
          =                 cos                 β‰ˆ 1.0156   11. (a) βˆ†x =     . We will use right endpoints as
              100   i=0
                                    100                                   n
                                                                                           i
      (b) There are 50 rectangles and the evalua-                  evaluation points, xi = .
                                                                                           n
                                        βˆ†x                                   n
          tion points are given by ci =    + iβˆ†x                   An =            f (xi )βˆ†x
                                         2
          where i is from 0 to 49.                                           i=1
                            50                                                 n             2                n
                                                                        1      i            1
          A50 = βˆ†x                f (ci )                              =           +1 = 3         i2 + 1
                            i=0
                                                                        n i=1  n            n i=1
                       50                                                1 n(n + 1)(2n + 1)
               Ο€                     Ο€   Ο€i                            = 3                    +1
          =                 cos        +                                n         6
              100   i=0
                                    200 100
          β‰ˆ 1.00004                                                      8n2 + 3n + 1
                                                                     =
                                                                             6n2
      (c) There are 50 rectangles and the evalua-                  Now to compute the exact area, we take
          tion points are given by ci = βˆ†x + iβˆ†x                   the limit as n β†’ ∞:
          where i is from 0 to 49.                                                         8n2 + 3n + 1
                            50                                     A = lim An = lim
                                                                        nβ†’βˆž          nβ†’βˆž       6n2
          A50 = βˆ†x                f (ci )
                                                                              8    3     1     4
                            i=0                                      = lim +          +      =
                       50                                               nβ†’βˆž 6     6n 6n2       3
               Ο€                     Ο€   Ο€i                                2
          =                 cos        +                       (b) βˆ†x = . We will use right endpoints as
              100   i=0
                                    100 100                               n
                                                                                            2i
          β‰ˆ 0.9842                                                 evaluation points, xi = .
                                                                                            n
                                                                             n
 10. (a) There are 100 rectangles and the evalu-                   An =            f (xi )βˆ†x
         ation points are left endpoints which are                           i=1
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8

More Related Content

What's hot

Mth 4108-1 a (ans)
Mth 4108-1 a (ans)Mth 4108-1 a (ans)
Mth 4108-1 a (ans)outdoorjohn
Β 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
Wollker Colares
Β 
Systems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphingSystems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphingNene Thomas
Β 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing EquationsRudy Alfonso
Β 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate PlaneRudy Alfonso
Β 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewjackieeee
Β 
9-10 Writing Equations
9-10 Writing Equations9-10 Writing Equations
9-10 Writing EquationsRudy Alfonso
Β 
Sect1 1
Sect1 1Sect1 1
Sect1 1inKFUPM
Β 
Factoring notes
Factoring notesFactoring notes
Factoring notes
Michelle Barnhill
Β 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
Β 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
JosΓ© Encalada
Β 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
Pamela2306
Β 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2morabisma
Β 
Day 1 intro to functions
Day 1 intro to functionsDay 1 intro to functions
Day 1 intro to functionsErik Tjersland
Β 
Day 3 graphing linear equations
Day 3 graphing linear equationsDay 3 graphing linear equations
Day 3 graphing linear equationsErik Tjersland
Β 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
APEX INSTITUTE
Β 

What's hot (19)

Mth 4108-1 a (ans)
Mth 4108-1 a (ans)Mth 4108-1 a (ans)
Mth 4108-1 a (ans)
Β 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
Β 
Systems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphingSystems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphing
Β 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing Equations
Β 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
Β 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 review
Β 
9-10 Writing Equations
9-10 Writing Equations9-10 Writing Equations
9-10 Writing Equations
Β 
Sect1 1
Sect1 1Sect1 1
Sect1 1
Β 
Factoring notes
Factoring notesFactoring notes
Factoring notes
Β 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
Β 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
Β 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
Β 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
Β 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
Β 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
Β 
Em02 im
Em02 imEm02 im
Em02 im
Β 
Day 1 intro to functions
Day 1 intro to functionsDay 1 intro to functions
Day 1 intro to functions
Β 
Day 3 graphing linear equations
Day 3 graphing linear equationsDay 3 graphing linear equations
Day 3 graphing linear equations
Β 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
Β 

Similar to answers tutor 8

EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESOEJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESOangusoo
Β 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
Zerick Lucernas
Β 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoterzaga
Β 
Maximum and minimum
Maximum and minimumMaximum and minimum
Maximum and minimum
shirleyaporter
Β 
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³nFactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³nWuendy Garcia
Β 
2.2-2.5 review (2)
2.2-2.5 review (2)2.2-2.5 review (2)
2.2-2.5 review (2)lgemgnani
Β 
A2 Chapter 6 Study Guide
A2 Chapter 6 Study GuideA2 Chapter 6 Study Guide
A2 Chapter 6 Study Guidevhiggins1
Β 
A2 ch6sg
A2 ch6sgA2 ch6sg
A2 ch6sgvhiggins1
Β 
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³nFactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³nWuendy Garcia
Β 
Precal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational ExpressionsPrecal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational ExpressionsDMCI
Β 
เอกนาฑ
เอกนาฑเอกนาฑ
เอกนาฑkrookay2012
Β 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Drradz Maths
Β 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Drradz Maths
Β 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a squarezwanenkosinathi
Β 
Slide share
Slide shareSlide share
Slide sharezwaneroger
Β 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
Sedona Red Rock HS
Β 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
littrpgaddict
Β 

Similar to answers tutor 8 (20)

EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESOEJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
Β 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
Β 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo grado
Β 
Maximum and minimum
Maximum and minimumMaximum and minimum
Maximum and minimum
Β 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
Β 
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³nFactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
Β 
2.2-2.5 review (2)
2.2-2.5 review (2)2.2-2.5 review (2)
2.2-2.5 review (2)
Β 
A2 Chapter 6 Study Guide
A2 Chapter 6 Study GuideA2 Chapter 6 Study Guide
A2 Chapter 6 Study Guide
Β 
A2 ch6sg
A2 ch6sgA2 ch6sg
A2 ch6sg
Β 
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³nFactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
FactorizaciΓ³n aplicando Ruffini o MΓ©todo de EvaluaciΓ³n
Β 
Precal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational ExpressionsPrecal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational Expressions
Β 
เอกนาฑ
เอกนาฑเอกนาฑ
เอกนาฑ
Β 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Β 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
Β 
125 5.2
125 5.2125 5.2
125 5.2
Β 
πιασαμΡ τα ορια
πιασαμΡ τα ορια πιασαμΡ τα ορια
πιασαμΡ τα ορια
Β 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a square
Β 
Slide share
Slide shareSlide share
Slide share
Β 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
Β 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
Β 

More from Drradz Maths

Figures
FiguresFigures
Figures
Drradz Maths
Β 
Formulas
FormulasFormulas
Formulas
Drradz Maths
Β 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
Drradz Maths
Β 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplierDrradz Maths
Β 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti importantDrradz Maths
Β 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101Drradz Maths
Β 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201Drradz Maths
Β 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201Drradz Maths
Β 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201Drradz Maths
Β 
Tutorial 6 mth 3201
Tutorial 6 mth 3201Tutorial 6 mth 3201
Tutorial 6 mth 3201Drradz Maths
Β 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201Drradz Maths
Β 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201Drradz Maths
Β 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7Drradz Maths
Β 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201Drradz Maths
Β 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201Drradz Maths
Β 

More from Drradz Maths (20)

Figures
FiguresFigures
Figures
Β 
Formulas
FormulasFormulas
Formulas
Β 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
Β 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
Β 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
Β 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
Β 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
Β 
Figures
FiguresFigures
Figures
Β 
Formulas
FormulasFormulas
Formulas
Β 
Figures
FiguresFigures
Figures
Β 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
Β 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
Β 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
Β 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201
Β 
Tutorial 6 mth 3201
Tutorial 6 mth 3201Tutorial 6 mth 3201
Tutorial 6 mth 3201
Β 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
Β 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201
Β 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
Β 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
Β 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
Β 

Recently uploaded

Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
Β 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
Β 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
Β 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
Β 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
Β 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
Β 
GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
Β 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
Β 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
Β 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
Β 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
Β 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
Β 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
Β 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
Β 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
Β 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
Β 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
Β 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
Β 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
Β 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
Β 

Recently uploaded (20)

Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
Β 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Β 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Β 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
Β 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Β 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Β 
GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DαΊ Y THÊM (KαΊΎ HOαΊ CH BΓ€I BUα»”I 2) - TIαΊΎNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Β 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
Β 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Β 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Β 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
Β 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Β 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Β 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Β 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Β 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Β 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Β 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
Β 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Β 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Β 

answers tutor 8

  • 1. 7.5 5.0 2.5 Chapter 4 0.0 βˆ’2 βˆ’1 0 1 2 x βˆ’2.5 Integration 4. sin x, sin x + 2, sin x βˆ’ 5 2 x βˆ’3 βˆ’2 βˆ’1 0 1 2 3 4.1 Antiderivatives 0 βˆ’2 x4 x4 x4 1. , + 3, βˆ’2 4 4 4 βˆ’4 20 βˆ’6 15 3 5 3 2 5. (3x4 βˆ’ 3x)dx = x βˆ’ x +c 10 5 2 1 4 5 6. (x3 βˆ’ 2)dx = x βˆ’ 2x + c 4 √ 1 xβˆ’3 βˆ’3 βˆ’2 βˆ’1 1 2 3 7. 3 xβˆ’ 4 dx = 2x3/2 + +c x 3 1 8. 2xβˆ’2 + √ dx x x4 x2 x4 x2 x4 x2 = βˆ’2xβˆ’1 + 2x1/2 + c 2. βˆ’ , βˆ’ βˆ’ 1, βˆ’ +4 4 2 4 2 4 2 x1/3 βˆ’ 3 6 9. dx = (xβˆ’1/3 βˆ’ 3xβˆ’2/3 )dx x2/3 5 3 = x2/3 βˆ’ 9x1/3 + c 4 2 x + 2x3/4 3 10. dx = (xβˆ’1/4 + 2xβˆ’1/2 )dx x5/4 2 4 = x3/4 + 4x1/2 + c 1 3 0 βˆ’2 βˆ’1 0 1 2 11. (2 sin x + cos x)dx = βˆ’2 cos x + sin x + c x βˆ’1 12. (3 cos x βˆ’ sin x)dx = 3 sin x + cos x + c 3. ex , ex + 1, ex βˆ’ 3 13. 2 sec x tan xdx = 2 sec x + c 240
  • 2. 4.1. ANTIDERIVATIVES 241 4 d 14. √ dx = 4 arcsin x + c 30. ln |sin x Β· 2| 1 βˆ’ x2 dx 1 d = (sin x Β· 2) 15. 5 sec2 xdx = 5 tan x + c sin x Β· 2 dx 2 cos x = = cot x 2 sin x 4 cos x 16. dx = βˆ’4 csc x + c sin2 x 31. (a) N/A (b) By Power Formula, 17. (3ex βˆ’ 2)dx = 3ex βˆ’ 2x + c √ 2 ( x3 + 4)dx = x5/2 + 4x + c. 5 18. (4x βˆ’ 2ex )dx = 2x2 βˆ’ 2ex + c 32. (a) By Power Formula, 3x2 βˆ’ 4 19. (3 cos x βˆ’ 1/x)dx = 3 sin x βˆ’ ln |x| + c dx = (3 βˆ’ 4xβˆ’2 )dx x2 = 3x + 4xβˆ’1 + c 20. (2xβˆ’1 + sin x)dx = 2 ln |x| βˆ’ cos x + c (b) N/A 33. (a) N/A 4x 21. dx = 2 ln |x2 + 4| + c (b) By Reversing derivative formula, x2 + 4 sec2 xdx = tan x + c 3 3 22. dx = tanβˆ’1 x + c 4x2 + 4 4 34. (a) By Power Formula, 1 1 cos x βˆ’ 1 dx = βˆ’ βˆ’ x + c 23. dx = ln | sin x| + c x 2 x sin x (b) N/A 24. (2 cos x βˆ’ ex )dx = 2 sin x βˆ’ ex + c 35. Finding the antiderivative, x2 f (x) = 3ex + + c. ex 2 25. dx = ln | ex + 3| + c ex + 3 Since f (0) = 4, ex + 3 we have 4 = f (0) = 3 + c. 26. dx = (1 + 3eβˆ’x )dx Therefore, ex = x βˆ’ 3eβˆ’x + c x2 f (x) = 3ex + + 1. 2 27. x1/4 (x5/4 βˆ’ 4)dx = (x3/2 βˆ’ 4x1/4 )dx 36. Finding the antiderivative, 2 5/2 16 5/4 f (x) = 4 sin x + c. = x βˆ’ x +c Since f (0) = 3, 5 5 we have 3 = f (0) = c. Therefore, 28. x2/3 (xβˆ’4/3 βˆ’ 3)dx = (xβˆ’2/3 βˆ’ 3x2/3 )dx f (x) = 4 sin x + 3. 9 = 3x1/3 βˆ’ x5/3 + c 37. Finding the antiderivative 5 f (x) = 4x3 + 2ex + c1 . d Since, f (0) = 2. 29. ln |sec x + tan x| dx We have 2 = f (0) = 2 + c1 1 d = (sec x + tan x) and therefore sec x + tan x dx f (x) = 4x3 + 2ex . 2 sec x tan x + sec x = Finding the antiderivative, sec x + tan x f (x) = x4 + 2ex + c2 . sec x (tan x + sec x) = Since f (0) = 3, sec x + tan x = sec x We have 3 = f (0) = 2 + c2 Therefore,
  • 3. 242 CHAPTER 4. INTEGRATION f (x) = x4 + 2ex + 1. 1 f (x) = βˆ’3 sin x + x4 + c1 x + c2 . 3 42. Taking antiderivatives, 38. Finding the antiderivative, f (x) = x1/2 βˆ’ 2 cos x f (x) = 5x4 + e2x + c1 . 2 Since f (0) = βˆ’3, f (x) = x3/2 βˆ’ 2 sin x + c1 3 we have βˆ’3 = f (0) = 1 + c1 4 5/2 f (x) = x + 2 cos x + c1 x + c2 . Therefore, 15 f (x) = 5x4 + e2x βˆ’ 4. 43. Taking antiderivatives, Finding the antiderivative, f (x) = 4 βˆ’ 2/x3 e2x f (x) = x5 + βˆ’ 4x + c2 . f (x) = 4x + xβˆ’2 + c1 2 f (x) = 2x2 βˆ’ xβˆ’1 + c1 x + c2 Since f (0) = 2, 1 2 c1 We have 2 = f (0) = + c2 f (x) = x3 βˆ’ ln |x| + x2 + c2 x + c3 2 3 2 Therefore, 44. Taking antiderivatives, e2x 3 f (x) = sin x βˆ’ ex f (x) = x5 + βˆ’ 4x + . 2 2 f (x) = βˆ’ cos x βˆ’ ex + c1 f (x) = βˆ’ sin x βˆ’ ex + c1 x + c2 c1 39. Taking antiderivatives, f (x) = cos x βˆ’ ex + x2 + c2 x + c3 f (t) = 2t + t2 + c1 2 t3 45. Position is the antiderivative of velocity, f (t) = t2 + + c1 t + c2 3 s(t) = 3t βˆ’ 6t2 + c. Since f (0) = 2, Since s(0) = 3, we have c = 3. Thus, we have 2 = f (0) = c2 s(t) = 3t βˆ’ 6t2 + 3. Therefore, t3 46. Position is the antiderivative of velocity, f (t) = t2 + + c1 t + 2. 3 s(t) = βˆ’3eβˆ’t βˆ’ 2t + c. Since f (3) = 2, Since s(0) = 0, we have βˆ’3 + c = 0 and there- we have fore c = 3. Thus, 2 = f (3) = 9 + 9 + 3c1 + 2 s(t) = βˆ’3eβˆ’t βˆ’ 2t + 3. βˆ’ 6 = c1 Therefore, 47. First we find velocity, which is the antideriva- t3 tive of acceleration, f (t) = + t2 βˆ’ 6t + 2. 3 v(t) = βˆ’3 cos t + c1 . Since v(0) = 0 we have βˆ’3 + c1 = 0, c1 = 3 and 40. Taking antiderivatives, v(t) = βˆ’3 cos t + 3. f (t) = 4t + 3t2 + c1 Position is the antiderivative of velocity, f (t) = 2t2 + t3 + c1 t + c2 s(t) = βˆ’3 sin t + 3t + c2 . Since f (1) = 3, Since s(0) = 4, we have c2 = 4. Thus, we have 3 = f (1) = 2 + 1 + c1 + c2 s(t) = βˆ’3 sin t + 3t + 4. Therefore, c1 + c2 = 0 48. First we find velocity, which is the antideriva- Since f (βˆ’1) = βˆ’2, tive of acceleration, we have βˆ’2 = f (βˆ’1) = 2 βˆ’ 1 βˆ’ c1 + c2 1 v(t) = t3 + t + c1 . Therefore, βˆ’c1 + c2 = βˆ’3. 3 So, c1 = 2 and c2 = βˆ’ 3 3 2 Since v(0) = 4 we have c1 = 4 and Hence, 1 3 3 v(t) = t3 + t + 4. f (t) = t3 + 2t2 + t βˆ’ . 3 2 2 Position is the antiderivative of velocity, 1 4 1 2 41. Taking antiderivatives, s(t) = t + t + 4t + c2 . 12 2 f (x) = 3 sin x + 4x2 Since s(0) = 0, we have c2 = 0. Thus, 4 1 4 1 2 f (x) = βˆ’3 cos x + x3 + c1 s(t) = t + t + 4t. 3 12 2
  • 4. 4.1. ANTIDERIVATIVES 243 49. (a) There are many correct answers, but any 15 correct answer will be a vertical shift of these answers. 10 10.0 5 7.5 0 5.0 y βˆ’3 βˆ’2 βˆ’1 0 1 2 3 x βˆ’5 2.5 0.0 βˆ’10 βˆ’4.0 βˆ’3.2 βˆ’2.4 βˆ’1.6 βˆ’0.8 0.0 0.8 1.6 2.4 3.2 x βˆ’2.5 51. We start by taking antiderivatives: βˆ’5.0 f (x) = x2 /2 βˆ’ x + c1 f (x) = x3 /6 βˆ’ x2 /2 + c1 x + c2 . Now, we use the data that we are given. We (b) There are many correct answers, but any know that f (1) = 2 and f (1) = 3, which gives correct answer will be a vertical shift of us these answers. 3 = f (1) = 1/2 βˆ’ 1 + c1 , and 8.8 1 = f (1) = 1/6 βˆ’ 1/2 + c1 + c2 . 8.0 Therefore c1 = 7/2 and c2 = βˆ’13/6 and the 7.2 function is 6.4 x3 x2 7x 13 f (x) = βˆ’ + βˆ’ . 5.6 6 2 2 6 4.8 4.0 52. We start by taking antiderivatives: 3.2 f (x) = 3x2 + 4x + c1 2.4 f (x) = x3 + 2x2 + c1 x + c2 . Now, we use the data that we are given. We βˆ’3 βˆ’2 βˆ’1 0 1 2 3 x know that f (βˆ’1) = 1 and f (βˆ’1) = 2, which gives us 2 = f (βˆ’1) = βˆ’1 + c1 , and 1 = f (βˆ’1) = 1 βˆ’ c1 + c2 . 50. (a) There are many correct answers, but any Therefore c1 = 3 and c2 = 3 and the function correct answer will be a vertical shift of is these answers. f (x) = x3 + 2x2 + 3x βˆ’ 3. 14 d 12 53. sin x2 = 2x cos x2 dx 10 Therefore, 8 y 6 2x cos x2 dx = sin x2 + c 4 2 d 9 54. (x3 + 2)3/2 = x2 (x3 + 2)1/2 βˆ’4 βˆ’2 0 0 2 dx 2 x βˆ’2 Therefore, βˆ’4 2 x2 x3 + 2dx = (x3 + 2)3/2 + c 9 (b) There are many correct answers, but any d 55. x2 sin 2x = 2(x sin 2x + x2 cos 2x) correct answer will be a vertical shift of dx these answers. Therefore,
  • 5. 244 CHAPTER 4. INTEGRATION 1 36 x2 x sin 2x + x2 cos 2x dx = 3βˆ’ = 2 9 12 βˆ’ 9x 2 3x βˆ’ 4 1 2 For 33(a): Almost the same as in Exercise 59, = x sin 2x + c 2 example 1.11 (b). 1 xβˆ’1 d x2 2xe3x βˆ’ 3x2 e3x For 34(b): ln +c 56. = 2 x+1 dx e 3x e6x Verify: Therefore, d 1 xβˆ’1 ln 2xe3x βˆ’ 3x2 e3x x2 dx 2 x + 1 6x dx = 3x + c 1 x + 1 (x + 1) βˆ’ (x βˆ’ 1) e e = Β· Β· 2 xβˆ’1 (x + 1)2 x cos(x2 ) 1 57. dx = sin(x2 ) + c = 2 sin(x2 ) x βˆ’1 61. Use a CAS to find antiderivatives and verify by d √ √ 1 computing the derivatives: 58. 2 x sin x = 2 x cos x + √ sin x dx x √ 1 3 1 3 2 x cos x + √ sin x dx (a) x2 eβˆ’x dx = βˆ’ eβˆ’x + c x 3 √ Verify: = 2 x sin x + c d 1 3 βˆ’ eβˆ’x dx 3 59. Use a CAS to find antiderivatives and verify by 1 3 = βˆ’ eβˆ’x Β· (βˆ’3x2 ) computing the derivatives: 3 3 For 11.1(b): = x2 eβˆ’x 1 sec xdx = ln | sec x + tan x| + c (b) dx = ln |x βˆ’ 1| βˆ’ ln |x| + c Verify: x2 βˆ’ x Verify: d (ln |x βˆ’ 1| βˆ’ ln |x|) d dx ln | sec x + tan x| 1 1 x βˆ’ (x βˆ’ 1) dx = βˆ’ = sec x tan x + sec2 x xβˆ’1 x x(x βˆ’ 1) = = sec x 1 1 sec x + tan x = = 2 For 11.1(f): x(x βˆ’ 1) x βˆ’x sin 2x x cos 2x x sin 2xdx = βˆ’ +c (c) sec xdx = ln | sec x + tan x| + c 4 2 Verify: Verify: d sin 2x x cos 2x d βˆ’ [ln | sec x + tan x|] dx 4 2 dx 2 cos 2x cos 2x βˆ’ 2x sin 2x sec x tan x + sec2 x = βˆ’ = 4 2 sec x + tan x = x sin 2x sec x(sec x + tan x) = = sec x sec x + tan x 60. Use a CAS to find antiderivatives and verify by computing the derivatives: 62. Use a CAS to find antiderivatives and verify For 31(a): The answer is too complicated to be by computing the derivatives: presented here. √ 1 √ 2 3 βˆ’ 3x x 1 For 32(b): 3x + 3 ln √ +c (a) dx = arctan x2 + c 9 2 3 + 3x x4 + 1 2 Verify: Verify: √ d 1 d 1 √ 2 3 βˆ’ 3x arctan x2 3x + 3 ln √ dx 2 dx 9 2 3 + 3x √ 1 1 x 1 2 3 + 3x = Β· 4 Β· 2x = 4 = 3+ √ Β· 2 x +1 x +1 9 2 3 βˆ’ 3x √ √ (b) 3x sin 2xdx βˆ’3(2 3 + 3x) βˆ’ 3(2 3 βˆ’ 3x) √ 3 3x (2 3 + 3x)2 = sin 2x βˆ’ cos 2x + c 4 2
  • 6. 4.1. ANTIDERIVATIVES 245 Verify: 67. The key is to find the velocity and position d 3 3x functions. We start with constant acceleration sin 2x βˆ’ cos 2x dx 4 2 a, a constant. Then, v(t) = at + v0 where v0 3 3 is the initial velocity. The initial velocity is 30 = cos 2x βˆ’ cos 2x + 3x sin 2x 2 2 miles per hour, but since our time is in seconds, = 3x sin 2x it is probably best to work in feet per second (30mph = 44ft/s). v(t) = at + 44. (c) ln xdx = x ln x βˆ’ x + c We know that the car accelerates to 50 mph Verify: (50mph = 73ft/s) in 4 seconds, so v(4) = 73. d 29 (x ln x βˆ’ x) = ln x + 1 βˆ’ 1 Therefore, a Β· 4 + 44 = 73 and a = ft/s dx 4 = ln x So, 29 βˆ’1 v(t) = t + 44 and 63. √ dx = cosβˆ’1 (x) + c1 4 1 βˆ’ x2 29 2 s(t) = t + 44t + s0 βˆ’1 8 √ dx = βˆ’ sinβˆ’1 (x) + c2 where s0 is the initial position. We can assume 1 βˆ’ x2 the the starting position is s0 = 0. Therefore, 29 2 cosβˆ’1 x + c1 = βˆ’ sinβˆ’1 x + c2 Then, s(t) = t + 44t and the distance 8 Therefore, traveled by the car during the 4 seconds is sinβˆ’1 x + cosβˆ’1 x = constant s(4) = 234 feet. To find the value of the constant, let x be any convenient value. 68. The key is to find the velocity and position Suppose x = 0; then sinβˆ’1 0 = 0 and cosβˆ’1 0 = functions. We start with constant acceleration Ο€/2, so a, a constant. Then, v(t) = at + v0 where v0 Ο€ is the initial velocity. The initial velocity is 60 sinβˆ’1 x + cosβˆ’1 x = 2 miles per hour, but since our time is in seconds, it is probably best to work in feet per second 64. To derive these formulas, all that needs to be (60mph = 88ft/s). v(t) = at + 88. done is to take the derivatives to see that the We know that the car comes to rest in 3 sec- integrals are correct: d onds, so v(3) = 0. (tan x) = sec2 x Therefore, dx d a(3) + 88 = 0 and a = βˆ’88/3ft/s (the accelera- (sec x) = sec x tan x tion should be negative since the car is actually dx decelerating. 65. To derive these formulas, all that needs to be So, done is to take the derivatives to see that the 88 integrals are correct: v(t) = βˆ’ t + 88 and 3 d x 44 (e ) = ex s(t) = βˆ’ t2 + 88t + s0 where s0 is the initial dx 3 d position. We can assume the the starting po- βˆ’eβˆ’x = eβˆ’x dx sition is s0 = 0. 44 1 1 1 Then, s(t) = βˆ’ t2 + 88t and the stopping 66. (a) dx = dx 3 kx k x distance is s(3) = 132 feet. 1 = ln |x| + c1 69. To estimate the acceleration over each inter- k val, we estimate v (t) by computing the slope 1 1 k (b) dx = dx of the tangent lines. For example, for the in- kx k kx terval [0, 0.5]: 1 = ln |kx| + c2 v(0.5) βˆ’ v(0) k aβ‰ˆ = βˆ’31.6 m/s2 . 0.5 βˆ’ 0 Because Notice, acceleration should be negative since 1 1 ln |kx| = (ln |k| + ln |x|) the object is falling. k k 1 1 1 To estimate the distance traveled over the in- = ln |x| + ln |k| = ln |x| + c terval, we estimate the velocity and multiply k k k The two antiderivatives are both correct. by the time (distance is rate times time). For
  • 7. 246 CHAPTER 4. INTEGRATION an estimate for the velocity, we will use the Time Speed Dist average of the velocities at the endpoints. For 0 70 0 example, for the interval [0, 0.5], the time inter- 0.5 69.55 34.89 val is 0.5 and the velocity is βˆ’11.9. Therefore 1.0 70.3 69.85 the position changed is (βˆ’11.9)(0.5) = βˆ’5.95 1.5 70.35 105.01 meters. The distance traveled will be 5.95 me- 2.0 70.65 104.26 ters (distance should be positive). Interval Accel Dist 72. To estimate the speed over the interval, we first [0.0, 0.5] βˆ’31.6 5.95 approximate the acceleration over the interval [0.5, 1.0] βˆ’2 12.925 by averaging the acceleration at the endpoint [1.0, 1.5] βˆ’11.6 17.4 of the interval. Then, the velocity will be the [1.5, 2.0] βˆ’3.6 19.3 acceleration times the length of time. the slope of the tangent lines. For example, for the in- terval [0.0, 0.5] the average acceleration is βˆ’0.8 and v(0.5) = 20+(βˆ’0.8)(.5) = 19.6. Of course, speed is the absolute value of the velocity. 70. To estimate the acceleration over each inter- And, the distance traveled is the average speed val, we estimate v (t) by computing the slope times the length of time. For the time t = 0.5, of the tangent lines. For example, for the in- 20 + 19.6 terval [0, 1.0]: the distance would be Γ— 0.5 = 9.9 2 v(1.0) βˆ’ v(0) meters. aβ‰ˆ = βˆ’9.8 m/s2 . Time Speed Dist 1.0 βˆ’ 0 Notice, acceleration should be negative since 0 20 0 the object is falling. 0.5 19.6 9.9 To estimate the distance traveled over the in- 1.0 17.925 19.281 terval, we estimate the velocity and multiply 1.5 16.5 27.888 by the time (distance is rate times time). For 2.0 16.125 34.044 an estimate for the velocity, we will use the av- erage of the velocities at the endpoints. For example, for the interval [0, 1.0], the time in- 4.2 Sums And Sigma Notation terval is 1.0 and the velocity is βˆ’4.9. Therefore the position changed is (βˆ’4.9)(1.0) = βˆ’4.9 me- 1. The given sum is the sum of twice the ters. The distance traveled will be 4.9 meters squares of the integers from 1 to 14. (distance should be positive). 14 2 2 2 2 Interval Accel Dist 2(1) + 2(2) + 2(3) + . . . + 2(14) = 2i2 i=1 [0.0, 1.0] βˆ’9.8 4.9 [1.0, 2.0] βˆ’8.8 14.2 2. The given sum is the sum of squares [2.0, 3.0] βˆ’6.3 21.75 roots of √the integers from 1 to 14. √ √ √ [3.0, 4.0] βˆ’3.6 26.7 2 βˆ’ 1 + 3 βˆ’ 1 + 4 βˆ’ 1 + . . . + 15 βˆ’ 1 √ √ √ √ √ = 1 + 2 + 3 + ... + 13 + 14 14 √ = i 71. To estimate the speed over the interval, we i=1 first approximate the acceleration over the in- terval by averaging the acceleration at the end- 50 (50)(51)(101) point of the interval. Then, the velocity will be 3. (a) i2 = = 42, 925 6 the acceleration times the length of time. The i=1 slope of the tangent lines. For example, for the 50 2 2 50(51) interval [0, 0.5] the average acceleration is βˆ’0.9 (b) i = = 1, 625, 625 and v(0.5) = 70 + (βˆ’0.9)(0.5) = 69.55. i=1 2 And, the distance traveled is the speed times 10 the length of time. For the time t = 0.5, the √ 70 + 69.55 4. (a) i distance would be Γ—0.5 β‰ˆ 34.89 me- i=1 2 √ √ √ √ √ ters. =1+ 2+ 3+ 4+ 5+ 6
  • 8. 4.2. SUMS AND SIGMA NOTATION 247 √ √ √ √ + 7 + 8 + 9 + 10 = 338, 350 βˆ’ 15, 150 + 200 = 323, 400 β‰ˆ 22.47 10 140 10(11) √ (b) i= = 55 14. n2 + 2n βˆ’ 4 i=1 2 n=1 140 140 140 6 = n2 + 2 nβˆ’ 4 5. 3i2 = 3 + 12 + 27 + 48 + 75 + 108 n=1 n=1 n=1 i=1 (140)(141)(281) 140(141) = 273 = +2 βˆ’ 4 (140) 6 2 7 = 943, 670 6. i2 + i = 12 + 20 + 30 + 42 + 56 i=3 30 = 160 2 15. (i βˆ’ 3) + i βˆ’ 3 10 i=3 7. (4i + 2) 30 30 2 i=6 = (i βˆ’ 3) + (i βˆ’ 3) = (4(6) + 2) + (4(7) + 2) + (4(8) + 2) i=3 i=3 + (4(9) + 2) + (4(10) + 2) 27 27 = 26 + 30 + 34 + 38 + 42 = n2 + n (substitute i βˆ’ 3 = n) = 170 n=0 n=0 27 27 8 2 =0+ n2 + 0 + n 8. (i + 2) n=1 n=1 i=6 27 (28) (55) 27 (28) = (62 + 2) + (72 + 2) + (82 + 2) = + = 7308 6 2 = 38 + 51 + 66 = 155 70 70 20 20 9. (3i βˆ’ 1) = 3 Β· i βˆ’ 70 16. (i βˆ’ 3) (i + 3) = i2 βˆ’ 9 i=1 i=1 i=4 i=4 70(71) 20 20 =3Β· βˆ’ 70 = 7, 385 2 = i2 βˆ’ 9 1 45 45 45 i=4 i=4 10. (3i βˆ’ 4) = 3 iβˆ’4 1 20 3 20 i=1 i=1 i=1 = i2 βˆ’ i2 βˆ’9 1 45(46) i=1 i=1 i=4 =3 βˆ’ 4(45) = 2925 2 20 (21) (41) = βˆ’ 1 βˆ’ 4 βˆ’ 9 βˆ’ 9 (17) 40 40 6 11. (4 βˆ’ i2 ) = 160 βˆ’ i2 = 2703 i=1 i=1 (40)(41)(81) n = 160 βˆ’ 6 17. k2 βˆ’ 3 = 160 βˆ’ 22, 140 = βˆ’21, 980 k=3 n n 50 50 50 12. (8 βˆ’ i) = 8 1βˆ’ i = k2 + (βˆ’3) k=3 k=3 i=1 i=1 i=1 n 2 50(51) = 8(50) βˆ’ = βˆ’875 = k2 βˆ’ k2 2 k=1 k=1 100 n 2 13. n2 βˆ’ 3n + 2 + (βˆ’3) βˆ’ (βˆ’3) n=1 k=1 k=1 100 100 100 n (n + 1) (2n + 1) = βˆ’1βˆ’4 = n2 βˆ’ 3 n+ 2 6 n=1 n=1 n=1 + (βˆ’3) n βˆ’ (βˆ’3) (2) (100)(101)(201) 100(101) n (n + 1) (2n + 1) = βˆ’3 + 200 = βˆ’ 5 βˆ’ 3n + 6 6 2 6
  • 9. 248 CHAPTER 4. INTEGRATION n (n + 1) (2n + 1) = ((2.05)3 + 4)(0.1) + . . . = βˆ’ 3n + 1 6 + ((2.95)3 + 4)(0.1) n = (202.4375)(0.1) 18. k2 + 5 = 20.24375 k=0 n 2 n n 1 i i 23. +2 = k2 + 5 n n n i=1 k=0 k=0 n n n n 1 i2 i =0+ k2 + 5 + 5 = +2 k=1 k=1 n i=1 n2 i=1 n n (n + 1) (2n + 1) n n = + 5 + 5n 1 1 2 6 = i2 + i n n2 i=1 n i=1 n 19. f (xi )βˆ†x 1 1 n(n + 1)(2n + 1) = i=1 n n2 6 5 = (x2 + 4xi ) Β· 0.2 i 2 n(n + 1) + i=1 n 2 = (0.22 + 4(0.2))(0.2) + . . . n(n + 1)(2n + 1) n(n + 1) + (12 + 4)(0.2) = + 6n3 n2 = (0.84)(0.2) + (1.76)(0.2) n 2 + (2.76)(0.2) + (3.84)(0.2) 1 i i lim +2 + (5)(0.2) nβ†’βˆž n n n i=1 = 2.84 n n(n + 1)(2n + 1) n(n + 1) = lim + 20. f (xi )βˆ†x nβ†’βˆž 6n3 n2 i=1 2 4 5 = +1= = (3xi + 5) Β· 0.4 6 3 i=1 n 2 = (3(0.4) + 5)(0.4) + . . . 1 i i 24. βˆ’5 + (3(2) + 5)(0.4) i=1 n n n = (6.2)(0.4) + (7.4)(0.4) n n + (8.6)(0.4) + (9.8)(0.4) 1 i2 i = βˆ’5 + (11)(0.4) n i=1 n2 i=1 n = 17.2 n n n 1 1 5 = i2 βˆ’ i 21. f (xi )βˆ†x n n2 i=1 n i=1 i=1 10 1 1 n(n + 1)(2n + 1) = = (4x2 βˆ’ 2) Β· 0.1 i n n2 6 i=1 = (4(2.1)2 βˆ’ 2)(0.1) + . . . 5 n(n + 1) βˆ’ + (4(3)2 βˆ’ 2)(0.1) n 2 = (15.64)(0.1) + (17.36)(0.1) n(n + 1)(2n + 1) 5n(n + 1) + (19.16)(0.1) + (21.04)(0.1) = βˆ’ 6n3 2n2 + (23)(0.1) + (25.04)(0.1) 2 βˆ’13n βˆ’ 12n + 1 + (27.16)(0.1) + (29.36)(0.1) = 6n2 + (31.64)(0.1) + (34)(0.1) n 2 1 i i = 24.34 lim βˆ’5 n nβ†’βˆž i=1 n n n 22. f (xi )βˆ†x βˆ’13n2 βˆ’ 12n + 1 i=1 = lim 10 nβ†’βˆž 6n2 = (x3 + 4) Β· 0.1 13 12 1 = lim βˆ’ βˆ’ + 2 i=1 nβ†’βˆž 6 6n 6n
  • 10. 4.2. SUMS AND SIGMA NOTATION 249 13 n =βˆ’ n2 (n + 1)2 6 i3 = i=1 4 n 1 2i 2 2i is true for all integers n β‰₯ 1. 25. 4 βˆ’ For n = 1, we have n n n 1 i=1 12 (1 + 1)2 n n i3 = 1 = , 1 i2 i i=1 4 = 16 βˆ’2 n i=1 n2 i=1 n as desired. So the proposition is true for n = 1. n n 1 16 2 Next, assume that = i2 βˆ’ i k n n2 n k 2 (k + 1)2 i=1 i=1 i3 = , 1 16 n(n + 1)(2n + 1) i=1 4 = for some integer k β‰₯ 1. n n2 6 In this case, we have by the induction assump- 2 n(n + 1) tion that for n = k + 1, βˆ’ n 2 n k+1 k i3 = i3 = i3 + (k + 1)3 16n(n + 1)(2n + 1) n(n + 1) = βˆ’ i=1 i=1 i=1 6n3 n2 k 2 (k + 1)2 n 2 = + (k + 1)3 1 2i 2i 4 lim 4 βˆ’ k 2 (k + 1)2 + 4(k + 1)3 nβ†’βˆž i=1 n n n = 4 16n(n + 1)(2n + 1) n(n + 1) (k + 1)2 (k 2 + 4k + 4) = lim βˆ’ = nβ†’βˆž 6n3 n2 4 (k + 1)2 (k + 2)2 16 13 = = βˆ’1= 4 3 3 n2 (n + 1)2 = n 2 4 1 2i i as desired. 26. +4 i=1 n n n 28. Want to prove that n n n 1 4i2 i n2 (n + 1)2 (2n2 + 2n βˆ’ 1) = +4 i5 = n i=1 n2 i=1 n 12 i=1 n n is true for all integers n β‰₯ 1. 1 4 4 For n = 1, we have = i2 + i n n2 i=1 n i=1 1 12 (1 + 1)2 (2 + 2 βˆ’ 1) i3 = 1 = , 1 4 n(n + 1)(2n + 1) i=1 12 = n n2 6 as desired. So the proposition is true for n = 1. 4 n(n + 1) + Next, assume that n 2 k k 2 (k + 1)2 (2k 2 + 2k βˆ’ 1) 4n(n + 1)(2n + 1) 4n(n + 1) i5 = , = + i=1 12 6n3 2n2 for some integer k β‰₯ 1. 2 10n + 12n + 2 In this case, we have by the induction assump- = 3n2 tion that for n = k + 1, n 2 n k+1 k 1 2i i lim +4 i5 = i5 = i5 + (k + 1)5 nβ†’βˆž i=1 n n n i=1 i=1 i=1 k 2 (k + 1)2 (2k 2 + 2k βˆ’ 1) 10n + 12n + 2 2 = + (k + 1)5 = lim 12 nβ†’βˆž 3n2 10 12 2 10 k 2 (k + 1)2 (2k 2 + 2k βˆ’ 1) + 12(k + 1)5 = lim + + = = nβ†’βˆž 3 3n 3n2 3 12 (k + 1)2 [k 2 (2k 2 + 2k βˆ’ 1) + 12(k + 1)3 ] 27. Want to prove that = 12
  • 11. 250 CHAPTER 4. INTEGRATION (k + 1)2 [2k 4 + 14k 3 + 35k 2 + 36k + 12] a βˆ’ ar = 34. When n = 0, a = . 12 1βˆ’r Assume the formula holds for n = k βˆ’ 1, which (k + 1) (k + 4k + 4)(2k 2 + 6k + 3) 2 2 gives = 12 a βˆ’ ark a + ar + Β· Β· Β· arkβˆ’1 = . n2 (n + 1)2 (2n2 + 2n βˆ’ 1) 1βˆ’r = Then for n = k, 12 as desired. we have a + ar + Β· Β· Β· ark 10 = a + ar + Β· Β· Β· arkβˆ’1 + ark a βˆ’ ark 29. (i3 βˆ’ 3i + 1) = + ark 1βˆ’r i=1 10 10 a βˆ’ ark + ark (1 βˆ’ r) = = i3 βˆ’ 3 i + 10 1βˆ’r i=1 i=1 a βˆ’ ark + ark βˆ’ ark+1 = 100(11)2 10(11) 1βˆ’r = βˆ’3 + 10 a βˆ’ ark+1 4 2 = = 2, 870 1βˆ’r a βˆ’ arn+1 = 20 1βˆ’r 30. (i3 + 2i) as desired. i=1 20 20 n = i3 + 2 i 6 35. e6i/n i=1 i=1 i=1 n 400(21)2 20(21) n = +2 = 44, 520 6 4 2 = e6i/n n i=1 100 31. (i5 βˆ’ 2i2 ) 6 e6/n βˆ’ e6 = i=1 n 1 βˆ’ e6/n 100 100 = 5 i βˆ’2 i2 6 1 βˆ’ e6 = βˆ’1 i=1 i=1 n 1 βˆ’ e6/n (100 )(1012 )[2(1002 ) + 2(100) βˆ’ 1] 2 6 1 βˆ’ e6 6 = = βˆ’ 12 n 1 βˆ’ e6/n n 6 100(101)(201) Now lim = 0, and βˆ’2 xβ†’βˆž n 6 = 171, 707, 655, 800 6 1 βˆ’ e6 lim xβ†’βˆž n 1 βˆ’ e6/n 100 1/n 32. (2i5 + 2i + 1) = 6(1 βˆ’ e6 ) lim xβ†’βˆž 1 βˆ’ e6/n i=1 100 100 1 = 6(1 βˆ’ e6 ) lim =2 i5 + 2 i + 100 xβ†’βˆž βˆ’6e6/n i=1 i=1 = e6 βˆ’ 1. 2 2 2 n (100 )(101 )[2(100 ) + 2(100) βˆ’ 1] 6 =2 Thus lim e6i/n = e6 βˆ’ 1. 12 xβ†’βˆž n i=1 100(101) +2Β· + 100 2 n = 343, 416, 675, 200 2 36. e(2i)/n i=1 n n n n 33. (cai + dbi ) = cai + dbi 2 e2/n βˆ’ e2 = i=1 i=1 i=1 n 1 βˆ’ e2/n n n =c ai + d bi 2 1 βˆ’ e2 = βˆ’1 i=1 i=1 n 1 βˆ’ e2/n
  • 12. 4.3. AREA 251 2 1 βˆ’ e2 2 Notice that βˆ†x = 0.25. = βˆ’ n 1 βˆ’ e2/n n A4 = [f (0.125) + f (0.375) + f (0.625) 2 + f (0.875)](0.25) Now lim = 0, and xβ†’βˆž n = [(0.125)2 + 1 + (0.375)2 + 1 2 1 βˆ’ e2 + (0.625)2 + 1 + (0.875)2 + 1](0.25) lim xβ†’βˆž n 1 βˆ’ e2/n = 1.38125. 1/n = 2(1 βˆ’ e2 ) lim 2 xβ†’βˆž 1 βˆ’ e2/n 1 = 2(1 βˆ’ e2 ) lim 1.5 xβ†’βˆž βˆ’2e2/n = e2 βˆ’ 1. 1 n 2 Thus lim e2i/n = e2 βˆ’ 1. xβ†’βˆž i=1 n 0.5 37. Distance 0 = 50(2) + 60(1) + 70(1/2) + 60(3) 0 0.2 0.4 0.6 x 0.8 1 1.2 = 375 miles. 38. Distance = 50(1) + 40(1) + 60(1/2) + 55(3) = 285 miles. (b) Evaluation points: 0.25, 0.75, 1.25, 1.75. 39. On the time interval [0, 0.25], the estimated ve- Notice that βˆ†x = 0.5. 120 + 116 A4 = [f (0.25) + f (0.75) + f (1.25) locity is the average velocity = 118 2 + f (1.75)](0.5) feet per second. = [(0.25)2 + 1 + (0.75)2 + 1 + (1.25)2 We estimate the distance traveled during the + 1 + (1.75)2 + 1](0.5) time interval [0, 0.25] to be = 4.625. (118)(0.25 βˆ’ 0) = 29.5 feet. Altogether, the distance traveled is estimated 7 as 6 = (236/2)(0.25) + (229/2)(0.25) + (223/2)(0.25) + (218/2)(0.25) 5 + (214/2)(0.25) + (210/2)(0.25) 4 + (207/2)(0.25) + (205/2)(0.25) 3 = 217.75 feet. 2 40. On the time interval [0, 0.5], the estimated ve- 1 10 + 14.9 0 locity is the average velocity = 12.45 -0.5 0 0.5 1 1.5 2 2.5 2 x meters per second. We estimate the distance fallen during the time interval [0, 0.5] to be (12.45)(0.5 βˆ’ 0) = 6.225 meters. Altogether, the distance fallen (estimated) = (12.45)(0.5) + (17.35)(0.5) + (22.25)(0.5) + (27.15)(0.5) + (32.05)(0.5) + (36.95)(0.5) + (41.85)(0.5) + (46.75)(0.5) 2. (a) Evaluation points: = 118.4 meters. 1.125, 1.375, 1.625, 1.875. Notice that βˆ†x = 0.25. A4 = [f (1.125) + f (1.375) + f (1.625) 4.3 Area + f (1.875)](0.25) = [(1.125)3 βˆ’ 1 + (1.375)3 βˆ’ 1 1. (a) Evaluation points: + (1.625)3 βˆ’ 1 + (1.875)3 βˆ’ 1](0.25) 0.125, 0.375, 0.625, 0.875. = 2.7265625.
  • 13. 252 CHAPTER 4. INTEGRATION 11Ο€/16, 13Ο€/16, 15Ο€/16. 7 Notice that βˆ†x = Ο€/8. 6 A4 = [f (Ο€/16) + f (3Ο€/16) + f (5Ο€/16) 5 + f (7Ο€/16) + f (9Ο€/16) + f (11Ο€/16) 4 + f (13Ο€/16) + f (15Ο€/16)](Ο€/8) = [sin(Ο€/16) + sin(3Ο€/16) + sin(5Ο€/16) 3 + sin(7Ο€/16) + sin(9Ο€/16) 2 + sin(11Ο€/16) + sin(13Ο€/16) 1 + sin(15Ο€/16)](Ο€/8) = 2.0129. 0 1 1.2 1.4 1.6 1.8 2 x 1 (b) Evaluation points: 0.8 1.25, 1.75, 2.25, 2.75. Notice that βˆ†x = 0.5. 0.6 A4 = [f (1.25) + f (1.75) + f (2.25) + f (2.75)](0.5) 0.4 = [(1.25)3 βˆ’ 1 + (1.75)3 βˆ’ 1 + (2.25)3 βˆ’ 1 + (2.75)3 βˆ’ 1](0.5) 0.2 = 17.75. 0 0 0.5 1 1.5 2 2.5 3 x 30 25 20 15 4. (a) Evaluation points: βˆ’0.75, βˆ’0.25, 0.25, 0.75. 10 Notice that βˆ†x = 0.5. 5 A4 = [f (βˆ’0.75) + f (βˆ’0.25) + f (0.25) 0 + f (0.75)](0.5) 1 1.5 2 2.5 3 x = [4 βˆ’ (βˆ’0.75)2 + 4 βˆ’ (βˆ’0.25)2 + 4 βˆ’ (0.25)2 + 4 βˆ’ (0.75)2 ](0.5) 3. (a) Evaluation points: = 7.375. Ο€/8, 3Ο€/8, 5Ο€/8, 7Ο€/8. 4 Notice that βˆ†x = Ο€/4. A4 = [f (Ο€/8) + f (3Ο€/8) + f (5Ο€/8) 3 + f (7Ο€/8)](Ο€/4) = [sin(Ο€/8) + sin(3Ο€/8) + sin(5Ο€/8) 2 + sin(7Ο€/8)](Ο€/4) = 2.05234. 1 1 0 0.8 -1 -0.5 0 0.5 1 x 0.6 0.4 (b) Evaluation points: βˆ’2.75, βˆ’2.25, βˆ’1.75, βˆ’1.25. 0.2 Notice that βˆ†x = 0.5. 0 A4 = [f (βˆ’2.75) + f (βˆ’2.25) + f (βˆ’1.75) 0 0.5 1 1.5 x 2 2.5 3 + f (βˆ’1.25)](0.5) = [4 βˆ’ (βˆ’2.75)2 + 4 βˆ’ (βˆ’2.25)2 + 4 (b) Evaluation points: βˆ’ (βˆ’1.75)2 + 4 βˆ’ (βˆ’1.25)2 ](0.5) Ο€/16, 3Ο€/16, 5Ο€/16, 7Ο€/16, 9Ο€/16, = βˆ’0.625.
  • 14. 4.3. AREA 253 15 A16 = βˆ†x f (ci ) 2 i=0 15 2 x 1 i 1 -3 -2.5 -2 -1.5 -1 = + + 1 β‰ˆ 4.6640 0 8 i=0 8 16 -2 (c) There are 16 rectangles and the evalua- tion points are given by ci = iβˆ†x + βˆ†x -4 where i is from 0 to 15. 15 -6 A16 = βˆ†x f (ci ) i=0 15 2 1 i 1 = + + 1 β‰ˆ 4.9219 5. (a) There are 16 rectangles and the evalua- 8 i=0 8 8 tion points are given by ci = iβˆ†x where i is from 0 to 15. 7. (a) There are 16 rectangles and the evalua- 15 tion points are the left endpoints which A16 = βˆ†x f (ci ) are given by i=0 15 2 ci = 1 + iβˆ†x where i is from 0 to 15. 1 i 15 = + 1 β‰ˆ 1.3027 16 16 A16 = βˆ†x f (ci ) i=0 i=0 (b) There are 16 rectangles and the evalua- 3 15 3i βˆ†x = 1+ + 2 β‰ˆ 6.2663 tion points are given by ci = iβˆ†x + 16 16 2 i=0 where i is from 0 to 15. 15 (b) There are 16 rectangles and the evalua- A16 = βˆ†x f (ci ) tion points are the midpoints which are i=0 given by 15 2 βˆ†x 1 i 1 ci = 1 + iβˆ†x + where i is from 0 to = + +1 2 16 i=0 16 32 15. 15 β‰ˆ 1.3330 A16 = βˆ†x f (ci ) (c) There are 16 rectangles and the evalua- i=0 15 tion points are given by ci = iβˆ†x + βˆ†x 3 3i 3 = 1+ + +2 where i is from 0 to 15. 16 16 32 15 i=0 A16 = βˆ†x f (ci ) β‰ˆ 6.3340 i=0 15 2 (c) There are 16 rectangles and the evalua- 1 i 1 = + +1 tion points are the right endpoints which 16 i=0 16 16 are given by β‰ˆ 1.3652 ci = 1 + iβˆ†x where i is from 1 to 16. 16 A16 = βˆ†x f (ci ) 6. (a) There are 16 rectangles and the evalua- i=1 tion points are given by ci = iβˆ†x where i 16 3 3i is from 0 to 15. = 1+ + 2 β‰ˆ 6.4009 15 16 i=1 16 A16 = βˆ†x f (ci ) i=0 15 2 8. (a) There are 16 rectangles and the evalua- 1 i tion points are the left endpoints which = + 1 β‰ˆ 4.4219 8 i=0 8 are given by ci = βˆ’1 + iβˆ†x βˆ’ βˆ†x (b) There are 16 rectangles and the evalua- where i is from 1 to 16. βˆ†x 16 tion points are given by ci = iβˆ†x + 2 A16 = βˆ†x f (ci ) where i is from 0 to 15. i=1
  • 15. 254 CHAPTER 4. INTEGRATION 16 1 i 1 given by ci = βˆ’1 + iβˆ†x βˆ’ βˆ†x where i is = eβˆ’2(βˆ’1+ 8 βˆ’ 8 ) β‰ˆ 4.0991 from 1 to 100. 8 i=1 100 (b) There are 16 rectangles and the evalua- A100 = βˆ†x f (ci ) tion points are the midpoints which are i=1 100 3 given by 2 2i 2 βˆ†x = βˆ’1 + βˆ’ βˆ’1 ci = βˆ’1 + iβˆ†x βˆ’ 100 i=1 100 100 2 where i is from 1 to 16. β‰ˆ βˆ’2.02 16 A16 = βˆ†x f (ci ) (b) There are 100 rectangles and the evalua- i=1 tion points are midpoints which are given 16 βˆ†x 1 i 1 by ci = βˆ’1 + iβˆ†x βˆ’ where i is from 1 = eβˆ’2(βˆ’1+ 8 βˆ’ 16 ) β‰ˆ 3.6174 2 8 to 100. i=1 100 (c) There are 16 rectangles and the evalua- A100 = βˆ†x f (ci ) tion points are the right endpoints which i=1 100 3 are given by 2 2i 1 ci = βˆ’1 + iβˆ†x where i is from 1 to 16. = βˆ’1 + βˆ’ βˆ’1 100 i=1 100 100 16 A16 = βˆ†x f (ci ) = βˆ’2 i=1 16 (c) There are 100 rectangles and the evalua- 1 i tion points are right endpoints which are = eβˆ’2(βˆ’1+ 8 ) β‰ˆ 3.1924 8 i=1 given by ci = βˆ’1 + iβˆ†x where i is from 1 to 100. 9. (a) There are 50 rectangles and the evalua- 100 tion points are given by ci = iβˆ†x where i A100 = βˆ†x f (ci ) is from 0 to 49. i=1 50 100 3 2 2i A50 = βˆ†x f (ci ) = βˆ’1 + βˆ’ 1 β‰ˆ βˆ’1.98 100 i=1 100 i=0 50 Ο€ Ο€i 1 = cos β‰ˆ 1.0156 11. (a) βˆ†x = . We will use right endpoints as 100 i=0 100 n i (b) There are 50 rectangles and the evalua- evaluation points, xi = . n βˆ†x n tion points are given by ci = + iβˆ†x An = f (xi )βˆ†x 2 where i is from 0 to 49. i=1 50 n 2 n 1 i 1 A50 = βˆ†x f (ci ) = +1 = 3 i2 + 1 i=0 n i=1 n n i=1 50 1 n(n + 1)(2n + 1) Ο€ Ο€ Ο€i = 3 +1 = cos + n 6 100 i=0 200 100 β‰ˆ 1.00004 8n2 + 3n + 1 = 6n2 (c) There are 50 rectangles and the evalua- Now to compute the exact area, we take tion points are given by ci = βˆ†x + iβˆ†x the limit as n β†’ ∞: where i is from 0 to 49. 8n2 + 3n + 1 50 A = lim An = lim nβ†’βˆž nβ†’βˆž 6n2 A50 = βˆ†x f (ci ) 8 3 1 4 i=0 = lim + + = 50 nβ†’βˆž 6 6n 6n2 3 Ο€ Ο€ Ο€i 2 = cos + (b) βˆ†x = . We will use right endpoints as 100 i=0 100 100 n 2i β‰ˆ 0.9842 evaluation points, xi = . n n 10. (a) There are 100 rectangles and the evalu- An = f (xi )βˆ†x ation points are left endpoints which are i=1