Tutorial MTH 3201
Linear Algebras
Tutorial 4
IMPORTANT!
        Let 𝑢 = 𝑢1 , 𝑢2 , 𝑢3 and 𝑣 = 𝑣1 , 𝑣2 , 𝑣3 are vectors in 𝑅 𝑛



         𝑢, 𝑣 = 𝑢 ∙ 𝑣 = 𝑢1 𝑣1 + 𝑢2 𝑣2 + 𝑢3 𝑣3


        Euclidean inner product on 𝑅 𝑛



*Please develop your writing skills in mathematics
Let 𝑢 = 𝑢1 , 𝑢2 , 𝑢3 and 𝑤 =   𝑤1 , 𝑤2 , 𝑤3
                                             Since 𝑢, 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3
                                                  𝑘𝑢, 𝑤 = 𝑘𝑢2 𝑤2 + 𝑘𝑢3 𝑤3
 𝑢, 𝑤 = 𝑢 ∙ 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3
              = 𝑤2 𝑢2 + 𝑤3 𝑢3                               = 𝑘𝑤2 𝑢2 + 𝑘𝑤3 𝑢3
              = 𝑤∙ 𝑢                                        = 𝑘 𝑤2 𝑢2 + 𝑤3 𝑢3
              = 𝑤, 𝑢                                        = 𝑘 𝑤, 𝑢
             𝑢, 𝑤 =    𝑤, 𝑢    Symmetry Homogeneity           𝑘𝑢, 𝑤 = 𝑘 𝑤, 𝑢
                                          Axiom
  𝑢 + 𝑤, 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣       Additivity      Positivity     𝑤, 𝑤 ≥ 0 𝑎𝑛𝑑
                                                              𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤 = 0
Since 𝑢, 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3
                                               𝑤, 𝑤 = 𝑤 ∙ 𝑤 = 𝑤2 𝑤2 + 𝑤3 𝑤3
  𝑢 + 𝑤, 𝑣 = 𝑢2 + 𝑤2 𝑣2 + 𝑢3 + 𝑤3 𝑣3
          = 𝑢2 𝑣2 + 𝑤2 𝑣2 + 𝑢3 𝑣3 + 𝑤3 𝑣3       𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤2 = 𝑤3 = 0
          = 𝑢2 𝑣2 + 𝑢3 𝑣3 + 𝑤2 𝑣2 + 𝑤3 𝑣3      𝐵𝑢𝑡, 𝑤1 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒, ≠ 0
          = 𝑢∙ 𝑣 +      𝑤∙ 𝑣
          = 𝑢, 𝑣 + 𝑤, 𝑣
            ∴ 𝑢, 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3 are not inner product on 𝑅3
Let 𝑢 = 𝑢1 , 𝑢2 , 𝑢3 and 𝑤 =   𝑤1 , 𝑤2 , 𝑤3


                                                Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3
                                                     𝑘𝑢, 𝑤 = 𝑘𝑢1 𝑤1 + 2𝑘𝑢2 𝑤2 + 3𝑘𝑢3 𝑤3
 𝑢, 𝑤 = 𝑢 ∙ 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3
              = 𝑤1 𝑢1 + 2𝑤2 𝑢2 + 3𝑤3 𝑢3                    = 𝑘𝑤1 𝑢1 + 2𝑘𝑤2 𝑢2 + 3𝑘𝑤3 𝑢3
               = 𝑤∙ 𝑢                                         = 𝑘 𝑤1 𝑢1 + 2𝑤2 𝑢2 + 3𝑤3 𝑢3
               = 𝑤, 𝑢                                         = 𝑘 𝑤, 𝑢
              𝑢, 𝑤 =    𝑤, 𝑢   Symmetry Homogeneity               𝑘𝑢, 𝑤 = 𝑘 𝑤, 𝑢
                                          Axiom
   𝑢 + 𝑤, 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣      Additivity      Positivity         𝑤, 𝑤 ≥ 0 𝑎𝑛𝑑
Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3                              𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤 = 0
 𝑢 + 𝑤, 𝑣 = 𝑢1 + 𝑤1 𝑣1                           𝑤, 𝑤 = 𝑤 ∙ 𝑤 = 𝑤1 𝑤1 + 2𝑤2 𝑤2 + 3𝑤3 𝑤3
           +2 𝑢2 + 𝑤2 𝑣2 + 3 𝑢3 + 𝑤3 𝑣3
     = 𝑢1 𝑣1 + 𝑤1 𝑣1 + 2𝑢2 𝑣2 + 2𝑤2 𝑣2                𝑤, 𝑤 = 0 𝑖𝑓𝑓𝑤1 = 𝑤2 = 𝑤3 = 0
             +3𝑢3 𝑣3 + 3𝑤3 𝑣3
           = 𝑢1 𝑣1 + 2𝑢2 𝑣2 + 3𝑢3 𝑣3
          + 𝑤1 𝑣1 + 2𝑤2 𝑣2 + 3𝑤3 𝑣3
            = 𝑢∙ 𝑣 + 𝑤∙ 𝑣
            = 𝑢, 𝑣 + 𝑤, 𝑣
        ∴ 𝑢, 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3 are inner product on 𝑅3
Let 𝑢 = 𝑢1 , 𝑢2 , 𝑢3 and 𝑤 =    𝑤1 , 𝑤2 , 𝑤3


                                                 Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 𝑢2 𝑤2 − 𝑢3 𝑤3
                                                      𝑘𝑢, 𝑤 = 𝑘𝑢1 𝑤1 + 𝑘𝑢2 𝑤2 − 𝑘𝑢3 𝑤3
    𝑢, 𝑤 = 𝑢 ∙ 𝑤 = 𝑢1 𝑤1 + 𝑢2 𝑤2 − 𝑢3 𝑤3
                                                            = 𝑘𝑤1 𝑢1 + 𝑘𝑤2 𝑢2 − 𝑘𝑤3 𝑢3
                 = 𝑤1 𝑢1 + 𝑤2 𝑢2 − 𝑤3 𝑢3
                  = 𝑤∙ 𝑢                                        = 𝑘 𝑤1 𝑢1 + 𝑤2 𝑢2 − 𝑤3 𝑢3
                  = 𝑤, 𝑢                                        = 𝑘 𝑤, 𝑢
                 𝑢, 𝑤 =    𝑤, 𝑢    Symmetry Homogeneity            𝑘𝑢, 𝑤 = 𝑘 𝑤, 𝑢
                                              Axiom
     𝑢 + 𝑤, 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣        Additivity      Positivity     𝑤, 𝑤 ≥ 0 𝑎𝑛𝑑
                                                                  𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤 = 0
  Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 𝑢2 𝑤2 − 𝑢3 𝑤3
                                                   𝑤, 𝑤 = 𝑤 ∙ 𝑤 = 𝑤1 𝑤1 + 𝑤2 𝑤2 − 𝑤3 𝑤3
   𝑢 + 𝑤, 𝑣 = 𝑢1 + 𝑤1 𝑣1
                 + 𝑢2 + 𝑤2 𝑣2 − 𝑢3 + 𝑤3 𝑣3          𝑤, 𝑤 ≥ 0,
                                                    𝑤1 2 + 𝑤2 2 − 𝑤3 2 ≥ 0
= 𝑢1 𝑣1 + 𝑤1 𝑣1 + 𝑢2 𝑣2 + 𝑤2 𝑣2 − 𝑢3 𝑣3 − 𝑤3 𝑣3
= 𝑢1 𝑣1 + 𝑢2 𝑣2 − 𝑢3 𝑣3 + 𝑤1 𝑣1 + 𝑤2 𝑣2 − 𝑤3 𝑣3     𝑤1 2 + 𝑤2 2 ≥ 𝑤3 2
                                                𝑤1 2 + 𝑤2 2 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑤3 2
               = 𝑢∙ 𝑣 + 𝑤∙ 𝑣
                                                   𝑤1 2 + 𝑤2 2 < 𝑤3 2
               = 𝑢, 𝑣 + 𝑤, 𝑣
              ∴ 𝑢, 𝑤 = 𝑤1 𝑤1 + 𝑤2 𝑤2 − 𝑤3 𝑤3 are not inner product on 𝑅3
1/2   =   𝑤1 2 + 𝑤2 2
𝑤 =    𝑤, 𝑤                           =   22 + (−5)2   = 29




𝑤 =     5(2) 2 + 2(−5)2 = 70




              −2    3 2    −19
      𝐴𝑤 =               =
               2    7 −5   −31

      𝐴𝑤 =     (−19) 2 + (−31)2 = 1322
𝑑 𝑢, 𝑤 =   𝑢 − 𝑤 = 𝑢 − 𝑤, 𝑢 − 𝑤   1/2   =    −1 − 3    2   + 3−5   2   = 20



𝑑 𝑢, 𝑤 =   𝑢 − 𝑤 = 𝑢 − 𝑤, 𝑢 − 𝑤   1/2
                                        =   5 −1 − 3   2   +2 3−5      2   = 88




  𝑢 − 𝑤 = −1,3 − 3,5 = −4, −2

                −2   3 −4    2
   𝐴∙ 𝑢− 𝑤 =              =
                 2   7 −2   −22
  𝐴∙ 𝑢− 𝑤 =     (2) 2 + (−22)2 = 488
1/2
             1/2        2   4   2 4
  𝐴 = 𝐴, 𝐴         =          ,               =   22 + 42 + (−3)2 +1 = 30
                       −3   1 −3 1
𝑑 𝐴, 𝐵 =   𝐴 − 𝐵 = 𝐴 − 𝐵, 𝐴 − 𝐵   1/2
                                        =     (2 + 4)2 +(4 − 2)2 +(−3 − 5)2 + 1 − 1 = 104



             1/2   −1 6 −1 1/2
                       6
   𝐴 = 𝐴, 𝐴   =         ,           = 62 + (−1)2 +72 + 42 = 102
                    4  7  7 4
𝑑 𝐴, 𝐵 = 𝐴 − 𝐵 = 𝐴 − 𝐵, 𝐴 − 𝐵 1/2 = (6 + 1)2 +(−1 − 8)2 +72 + (4 − 2)2
                                        = 183
1/2
                         1                                  1
           1/2
𝑝 = 𝑝, 𝑝         =           𝑝 𝑥 𝑝 𝑥 𝑑𝑥               =         3𝑥 2 − 2 3𝑥 2 − 2 𝑑𝑥
                         0                                 0

                             1                                                          1
                                                                  9𝑥 5 12𝑥 3                    9
                 =               9𝑥 4   −   12𝑥 2   + 4 𝑑𝑥 =          −      + 4𝑥           =
                         0                                         5    3           0
                                                                                                5


𝑝 − 𝑞 = 2𝑥 2 − x − 2
𝑑 𝑝, 𝑞 =     𝑝− 𝑞
                                                                                        1/2
                                                1
                                     1/2
       = 𝑝 − 𝑞, 𝑝 − 𝑞                      =        (2𝑥 2 − x − 2) 2𝑥 2 − x − 2 𝑑𝑥
                                               0
                                 1
                                                                             52
                     =               4𝑥 4 − 4𝑥 3 − 7𝑥 2 + 4𝑥 + 4 𝑑𝑥 =
                                 0                                           15
1/2
                          1                                1
           1/2
𝑝 = 𝑝, 𝑝         =            𝑝 𝑥 𝑝 𝑥 𝑑𝑥               =       𝑥2 + 𝑥 + 1       𝑥 2 + 𝑥 + 1 𝑑𝑥
                          0                                0

             1                                                                                             1
                                                                    𝑥 5 2𝑥 4 3𝑥 3 2𝑥 2                             37
     =               𝑥4   +   2𝑥 3   +   3𝑥 2   + 2𝑥 + 1 𝑑𝑥 =          +    +    +     + 𝑥                     =
             0                                                      5    4    3    2                   0
                                                                                                                   10


𝑝 − 𝑞 = −4𝑥 2 + 2x − 2
𝑑 𝑝, 𝑞 =     𝑝− 𝑞
                                                                                                 1/2
                                                 1
                                     1/2
      = 𝑝 − 𝑞, 𝑝 − 𝑞                       =        (−4𝑥 2 + 2x − 2 ) −4𝑥 2 + 2x − 2 𝑑𝑥
                                                0
                                                                                1
                                16𝑥 5 16𝑥 4 20𝑥 3 8𝑥 2                                  88
                          =          −     +     −     + 4𝑥                         =
                                 5     4     3     2                        0
                                                                                        15
2𝑢, 𝑣 − 𝑤 + 𝑣, 𝑣 − 𝑤 = 2𝑢, 𝑣 − 2𝑢, 𝑤 + 𝑣, 𝑣 − 𝑣 − 𝑤
                         = 2 𝑢, 𝑣 − 2 𝑢, 𝑤 +   𝑣   2   − 𝑣 − 𝑤 = 2 3 − 2 7 + 25 + 2 = 19

  𝑢, 𝑣 + 3𝑤 − 𝑣, 𝑣 + 3𝑤 + 2𝑤, 𝑣 + 3𝑤
                        = 𝑢, 𝑣 + 𝑢, 3𝑤 − 𝑣, 𝑣 − 𝑣, 3𝑤 + 2𝑤, 𝑣 + 2𝑤, 3𝑤
                             = 3 + 3 7 − 52 − 3(−2) + 2(−2) + 6(8)2 = 385

                   1/2
  2𝑢 + 𝑤, 2𝑢 + 𝑤         = 2𝑢, 2𝑢 + 𝑤 + 𝑤, 2𝑢 + 𝑤 1/2
                         = 4 𝑢, 𝑢 + 2 𝑢, 𝑤 + 2 𝑤, 𝑢 + 𝑤, 𝑤 1/2
                         = 4(2)2 + 2(7) + 2(7) + 82 1/2 = 108

𝑢 − 3𝑣 + 𝑤, 𝑢 − 3𝑣 + 𝑤 1/2
        = 𝑢 , 𝑢 − 3𝑣 + 𝑤 − 3𝑣, 𝑢 − 3𝑣 + 𝑤 + 𝑤, 𝑢 − 3𝑣 + 𝑤 1/2
= ( 𝑢, 𝑢 − 3 𝑢, 𝑣 + 𝑢, 𝑤 − 3 𝑣, 𝑢 + 9 𝑣, 𝑣 − 3 𝑣, 𝑤 + 𝑤, 𝑢 − 3 𝑤, 𝑣
                            + 𝑤, 𝑤 )1/2
= (2)2 −3 3 + 7 − 3 3 + 9 5 2 − 3 −2 + 7 − 3(−2) + 82 1/2 = 301
𝑢, 𝑘𝑣 = 𝑘𝑣, 𝑢    symmetry      𝑢 − 𝑣, 𝑤 = 𝑤, 𝑢 − 𝑣        symmetry
      = 𝑘 𝑣, 𝑢   homogeneity           = 𝑤, 𝑢 + 𝑤, −𝑣     additivity
      = 𝑘 𝑣, 𝑢   symmetry              = 𝑤, 𝑢 + (−1) 𝑤, 𝑣 homogeneity
                                       = 𝑢, 𝑤 − 𝑣, 𝑤       symmetry
𝑢, 𝑣 = 5𝑢1 𝑣1 + 2𝑢2 𝑣2 = 5 2 0 + 2 3 −1           = −6 = 6 = 36

𝑢 = 𝑢, 𝑢   1/2   =   5(2)2 + 2(3)2 = 38
           1/2
𝑣 = 𝑣, 𝑣         =   5(0)2 + 2(−1)2 = 2
                                                             compare
𝑢 ∙   𝑣 = 38 2 = 76

                         36 < 76

                     ∴   𝑢, 𝑣 ≤    𝑢 ∙   𝑣



                             Cauchy-Schwarz inequality
2    6    −3 1
 𝑢, 𝑣 =          ,          = −6 + 6 + 4 − 6 = −2 = 2 = 4
          1   −3    4 2
                   2 6     2 6
 𝑢 = 𝑢, 𝑢 1/2 =          ,        = 4 + 36 + 1 + 9 = 50
                   1 −3 1 −3
                 −3 1 −3 1
𝑣 = 𝑣, 𝑣 1/2 =         ,         = 9 + 1 + 16 + 4 = 30 compare
                  4 2      4 2
𝑢 ∙ 𝑣 = 50 30 = 1500

                   4 < 1500

               ∴   𝑢, 𝑣 ≤     𝑢 ∙   𝑣



                       Cauchy-Schwarz inequality
• Do as your exercise
𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(𝑏)
𝑣 =0 iff 𝑣 = 0

 𝑣 = 𝑣, 𝑣 1/2 = 𝑣1 2 + 𝑣2 2 + ⋯ + 𝑣 𝑛 2 ≥ 0
𝑣 = 𝑣, 𝑣 1/2 = 𝑣1 2 + 𝑣2 2 + ⋯ + 𝑣 𝑛 2 = 0 iff         𝑣1 = 𝑣2 = ⋯ = 𝑣 𝑛 = 0 → 𝑣 = 0

             ∴   𝑣 =0 iff 𝑣 = 0

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(𝑐)
 𝑘𝑣 = 𝑘 𝑣

  𝑘𝑣 = 𝑘𝑣, 𝑘𝑣    1/2   = 𝑘 𝑣, 𝑘𝑣   1/2   = 𝑘 2 𝑣, 𝑣   1/2   = 𝑘 𝑣, 𝑣   1/2   = 𝑘 𝑣
𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(𝑓)
𝑑 𝑢 , 𝑣 =0 iff 𝑢 = 𝑣
𝑑 𝑢, 𝑣 =    𝑢 − 𝑣 = 𝑢 − 𝑣, 𝑢 − 𝑣 1/2
                  =   𝑢1 − 𝑣1 2 + 𝑢2 − 𝑣2          2   + ⋯+ 𝑢 𝑛 − 𝑣𝑛   2   ≥0
𝑑 𝑢, 𝑣 =    𝑢− 𝑣 =       𝑢1 − 𝑣1   2   + 𝑢2 − 𝑣2   2   +⋯+ 𝑢 𝑛 − 𝑣𝑛    2   = 0 iff
                 𝑢1 = 𝑣1 , … 𝑢 𝑛 = 𝑣 𝑛 → 𝑢 = 𝑣
                       ∴ 𝑑 𝑢, 𝑣 =0 iff 𝑢 = 𝑣
 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(ℎ)
 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑤 + 𝑑 𝑤, 𝑣

 𝑑 𝑢, 𝑣 =   𝑢− 𝑣 =      𝑢+ 𝑤− 𝑤− 𝑣 =           𝑢− 𝑤 + 𝑤− 𝑣
                                             ≤ 𝑢− 𝑤 + 𝑤− 𝑣
                                              = 𝑑 𝑢, 𝑤 + 𝑑 𝑤, 𝑣


                       ∴ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑤 + 𝑑 𝑤, 𝑣
-dr Radz

Tutorial 4 mth 3201

  • 1.
  • 2.
  • 3.
    IMPORTANT! Let 𝑢 = 𝑢1 , 𝑢2 , 𝑢3 and 𝑣 = 𝑣1 , 𝑣2 , 𝑣3 are vectors in 𝑅 𝑛 𝑢, 𝑣 = 𝑢 ∙ 𝑣 = 𝑢1 𝑣1 + 𝑢2 𝑣2 + 𝑢3 𝑣3 Euclidean inner product on 𝑅 𝑛 *Please develop your writing skills in mathematics
  • 4.
    Let 𝑢 =𝑢1 , 𝑢2 , 𝑢3 and 𝑤 = 𝑤1 , 𝑤2 , 𝑤3 Since 𝑢, 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3 𝑘𝑢, 𝑤 = 𝑘𝑢2 𝑤2 + 𝑘𝑢3 𝑤3 𝑢, 𝑤 = 𝑢 ∙ 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3 = 𝑤2 𝑢2 + 𝑤3 𝑢3 = 𝑘𝑤2 𝑢2 + 𝑘𝑤3 𝑢3 = 𝑤∙ 𝑢 = 𝑘 𝑤2 𝑢2 + 𝑤3 𝑢3 = 𝑤, 𝑢 = 𝑘 𝑤, 𝑢 𝑢, 𝑤 = 𝑤, 𝑢 Symmetry Homogeneity 𝑘𝑢, 𝑤 = 𝑘 𝑤, 𝑢 Axiom 𝑢 + 𝑤, 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣 Additivity Positivity 𝑤, 𝑤 ≥ 0 𝑎𝑛𝑑 𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤 = 0 Since 𝑢, 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3 𝑤, 𝑤 = 𝑤 ∙ 𝑤 = 𝑤2 𝑤2 + 𝑤3 𝑤3 𝑢 + 𝑤, 𝑣 = 𝑢2 + 𝑤2 𝑣2 + 𝑢3 + 𝑤3 𝑣3 = 𝑢2 𝑣2 + 𝑤2 𝑣2 + 𝑢3 𝑣3 + 𝑤3 𝑣3 𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤2 = 𝑤3 = 0 = 𝑢2 𝑣2 + 𝑢3 𝑣3 + 𝑤2 𝑣2 + 𝑤3 𝑣3 𝐵𝑢𝑡, 𝑤1 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒, ≠ 0 = 𝑢∙ 𝑣 + 𝑤∙ 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣 ∴ 𝑢, 𝑤 = 𝑢2 𝑤2 + 𝑢3 𝑤3 are not inner product on 𝑅3
  • 5.
    Let 𝑢 =𝑢1 , 𝑢2 , 𝑢3 and 𝑤 = 𝑤1 , 𝑤2 , 𝑤3 Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3 𝑘𝑢, 𝑤 = 𝑘𝑢1 𝑤1 + 2𝑘𝑢2 𝑤2 + 3𝑘𝑢3 𝑤3 𝑢, 𝑤 = 𝑢 ∙ 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3 = 𝑤1 𝑢1 + 2𝑤2 𝑢2 + 3𝑤3 𝑢3 = 𝑘𝑤1 𝑢1 + 2𝑘𝑤2 𝑢2 + 3𝑘𝑤3 𝑢3 = 𝑤∙ 𝑢 = 𝑘 𝑤1 𝑢1 + 2𝑤2 𝑢2 + 3𝑤3 𝑢3 = 𝑤, 𝑢 = 𝑘 𝑤, 𝑢 𝑢, 𝑤 = 𝑤, 𝑢 Symmetry Homogeneity 𝑘𝑢, 𝑤 = 𝑘 𝑤, 𝑢 Axiom 𝑢 + 𝑤, 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣 Additivity Positivity 𝑤, 𝑤 ≥ 0 𝑎𝑛𝑑 Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3 𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤 = 0 𝑢 + 𝑤, 𝑣 = 𝑢1 + 𝑤1 𝑣1 𝑤, 𝑤 = 𝑤 ∙ 𝑤 = 𝑤1 𝑤1 + 2𝑤2 𝑤2 + 3𝑤3 𝑤3 +2 𝑢2 + 𝑤2 𝑣2 + 3 𝑢3 + 𝑤3 𝑣3 = 𝑢1 𝑣1 + 𝑤1 𝑣1 + 2𝑢2 𝑣2 + 2𝑤2 𝑣2 𝑤, 𝑤 = 0 𝑖𝑓𝑓𝑤1 = 𝑤2 = 𝑤3 = 0 +3𝑢3 𝑣3 + 3𝑤3 𝑣3 = 𝑢1 𝑣1 + 2𝑢2 𝑣2 + 3𝑢3 𝑣3 + 𝑤1 𝑣1 + 2𝑤2 𝑣2 + 3𝑤3 𝑣3 = 𝑢∙ 𝑣 + 𝑤∙ 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣 ∴ 𝑢, 𝑤 = 𝑢1 𝑤1 + 2𝑢2 𝑤2 + 3𝑢3 𝑤3 are inner product on 𝑅3
  • 6.
    Let 𝑢 =𝑢1 , 𝑢2 , 𝑢3 and 𝑤 = 𝑤1 , 𝑤2 , 𝑤3 Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 𝑢2 𝑤2 − 𝑢3 𝑤3 𝑘𝑢, 𝑤 = 𝑘𝑢1 𝑤1 + 𝑘𝑢2 𝑤2 − 𝑘𝑢3 𝑤3 𝑢, 𝑤 = 𝑢 ∙ 𝑤 = 𝑢1 𝑤1 + 𝑢2 𝑤2 − 𝑢3 𝑤3 = 𝑘𝑤1 𝑢1 + 𝑘𝑤2 𝑢2 − 𝑘𝑤3 𝑢3 = 𝑤1 𝑢1 + 𝑤2 𝑢2 − 𝑤3 𝑢3 = 𝑤∙ 𝑢 = 𝑘 𝑤1 𝑢1 + 𝑤2 𝑢2 − 𝑤3 𝑢3 = 𝑤, 𝑢 = 𝑘 𝑤, 𝑢 𝑢, 𝑤 = 𝑤, 𝑢 Symmetry Homogeneity 𝑘𝑢, 𝑤 = 𝑘 𝑤, 𝑢 Axiom 𝑢 + 𝑤, 𝑣 = 𝑢, 𝑣 + 𝑤, 𝑣 Additivity Positivity 𝑤, 𝑤 ≥ 0 𝑎𝑛𝑑 𝑤, 𝑤 = 0 𝑖𝑓𝑓 𝑤 = 0 Since 𝑢, 𝑤 = 𝑢1 𝑤1 + 𝑢2 𝑤2 − 𝑢3 𝑤3 𝑤, 𝑤 = 𝑤 ∙ 𝑤 = 𝑤1 𝑤1 + 𝑤2 𝑤2 − 𝑤3 𝑤3 𝑢 + 𝑤, 𝑣 = 𝑢1 + 𝑤1 𝑣1 + 𝑢2 + 𝑤2 𝑣2 − 𝑢3 + 𝑤3 𝑣3 𝑤, 𝑤 ≥ 0, 𝑤1 2 + 𝑤2 2 − 𝑤3 2 ≥ 0 = 𝑢1 𝑣1 + 𝑤1 𝑣1 + 𝑢2 𝑣2 + 𝑤2 𝑣2 − 𝑢3 𝑣3 − 𝑤3 𝑣3 = 𝑢1 𝑣1 + 𝑢2 𝑣2 − 𝑢3 𝑣3 + 𝑤1 𝑣1 + 𝑤2 𝑣2 − 𝑤3 𝑣3 𝑤1 2 + 𝑤2 2 ≥ 𝑤3 2 𝑤1 2 + 𝑤2 2 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑤3 2 = 𝑢∙ 𝑣 + 𝑤∙ 𝑣 𝑤1 2 + 𝑤2 2 < 𝑤3 2 = 𝑢, 𝑣 + 𝑤, 𝑣 ∴ 𝑢, 𝑤 = 𝑤1 𝑤1 + 𝑤2 𝑤2 − 𝑤3 𝑤3 are not inner product on 𝑅3
  • 7.
    1/2 = 𝑤1 2 + 𝑤2 2 𝑤 = 𝑤, 𝑤 = 22 + (−5)2 = 29 𝑤 = 5(2) 2 + 2(−5)2 = 70 −2 3 2 −19 𝐴𝑤 = = 2 7 −5 −31 𝐴𝑤 = (−19) 2 + (−31)2 = 1322
  • 8.
    𝑑 𝑢, 𝑤= 𝑢 − 𝑤 = 𝑢 − 𝑤, 𝑢 − 𝑤 1/2 = −1 − 3 2 + 3−5 2 = 20 𝑑 𝑢, 𝑤 = 𝑢 − 𝑤 = 𝑢 − 𝑤, 𝑢 − 𝑤 1/2 = 5 −1 − 3 2 +2 3−5 2 = 88 𝑢 − 𝑤 = −1,3 − 3,5 = −4, −2 −2 3 −4 2 𝐴∙ 𝑢− 𝑤 = = 2 7 −2 −22 𝐴∙ 𝑢− 𝑤 = (2) 2 + (−22)2 = 488
  • 9.
    1/2 1/2 2 4 2 4 𝐴 = 𝐴, 𝐴 = , = 22 + 42 + (−3)2 +1 = 30 −3 1 −3 1 𝑑 𝐴, 𝐵 = 𝐴 − 𝐵 = 𝐴 − 𝐵, 𝐴 − 𝐵 1/2 = (2 + 4)2 +(4 − 2)2 +(−3 − 5)2 + 1 − 1 = 104 1/2 −1 6 −1 1/2 6 𝐴 = 𝐴, 𝐴 = , = 62 + (−1)2 +72 + 42 = 102 4 7 7 4 𝑑 𝐴, 𝐵 = 𝐴 − 𝐵 = 𝐴 − 𝐵, 𝐴 − 𝐵 1/2 = (6 + 1)2 +(−1 − 8)2 +72 + (4 − 2)2 = 183
  • 10.
    1/2 1 1 1/2 𝑝 = 𝑝, 𝑝 = 𝑝 𝑥 𝑝 𝑥 𝑑𝑥 = 3𝑥 2 − 2 3𝑥 2 − 2 𝑑𝑥 0 0 1 1 9𝑥 5 12𝑥 3 9 = 9𝑥 4 − 12𝑥 2 + 4 𝑑𝑥 = − + 4𝑥 = 0 5 3 0 5 𝑝 − 𝑞 = 2𝑥 2 − x − 2 𝑑 𝑝, 𝑞 = 𝑝− 𝑞 1/2 1 1/2 = 𝑝 − 𝑞, 𝑝 − 𝑞 = (2𝑥 2 − x − 2) 2𝑥 2 − x − 2 𝑑𝑥 0 1 52 = 4𝑥 4 − 4𝑥 3 − 7𝑥 2 + 4𝑥 + 4 𝑑𝑥 = 0 15
  • 11.
    1/2 1 1 1/2 𝑝 = 𝑝, 𝑝 = 𝑝 𝑥 𝑝 𝑥 𝑑𝑥 = 𝑥2 + 𝑥 + 1 𝑥 2 + 𝑥 + 1 𝑑𝑥 0 0 1 1 𝑥 5 2𝑥 4 3𝑥 3 2𝑥 2 37 = 𝑥4 + 2𝑥 3 + 3𝑥 2 + 2𝑥 + 1 𝑑𝑥 = + + + + 𝑥 = 0 5 4 3 2 0 10 𝑝 − 𝑞 = −4𝑥 2 + 2x − 2 𝑑 𝑝, 𝑞 = 𝑝− 𝑞 1/2 1 1/2 = 𝑝 − 𝑞, 𝑝 − 𝑞 = (−4𝑥 2 + 2x − 2 ) −4𝑥 2 + 2x − 2 𝑑𝑥 0 1 16𝑥 5 16𝑥 4 20𝑥 3 8𝑥 2 88 = − + − + 4𝑥 = 5 4 3 2 0 15
  • 12.
    2𝑢, 𝑣 −𝑤 + 𝑣, 𝑣 − 𝑤 = 2𝑢, 𝑣 − 2𝑢, 𝑤 + 𝑣, 𝑣 − 𝑣 − 𝑤 = 2 𝑢, 𝑣 − 2 𝑢, 𝑤 + 𝑣 2 − 𝑣 − 𝑤 = 2 3 − 2 7 + 25 + 2 = 19 𝑢, 𝑣 + 3𝑤 − 𝑣, 𝑣 + 3𝑤 + 2𝑤, 𝑣 + 3𝑤 = 𝑢, 𝑣 + 𝑢, 3𝑤 − 𝑣, 𝑣 − 𝑣, 3𝑤 + 2𝑤, 𝑣 + 2𝑤, 3𝑤 = 3 + 3 7 − 52 − 3(−2) + 2(−2) + 6(8)2 = 385 1/2 2𝑢 + 𝑤, 2𝑢 + 𝑤 = 2𝑢, 2𝑢 + 𝑤 + 𝑤, 2𝑢 + 𝑤 1/2 = 4 𝑢, 𝑢 + 2 𝑢, 𝑤 + 2 𝑤, 𝑢 + 𝑤, 𝑤 1/2 = 4(2)2 + 2(7) + 2(7) + 82 1/2 = 108 𝑢 − 3𝑣 + 𝑤, 𝑢 − 3𝑣 + 𝑤 1/2 = 𝑢 , 𝑢 − 3𝑣 + 𝑤 − 3𝑣, 𝑢 − 3𝑣 + 𝑤 + 𝑤, 𝑢 − 3𝑣 + 𝑤 1/2 = ( 𝑢, 𝑢 − 3 𝑢, 𝑣 + 𝑢, 𝑤 − 3 𝑣, 𝑢 + 9 𝑣, 𝑣 − 3 𝑣, 𝑤 + 𝑤, 𝑢 − 3 𝑤, 𝑣 + 𝑤, 𝑤 )1/2 = (2)2 −3 3 + 7 − 3 3 + 9 5 2 − 3 −2 + 7 − 3(−2) + 82 1/2 = 301
  • 13.
    𝑢, 𝑘𝑣 =𝑘𝑣, 𝑢 symmetry 𝑢 − 𝑣, 𝑤 = 𝑤, 𝑢 − 𝑣 symmetry = 𝑘 𝑣, 𝑢 homogeneity = 𝑤, 𝑢 + 𝑤, −𝑣 additivity = 𝑘 𝑣, 𝑢 symmetry = 𝑤, 𝑢 + (−1) 𝑤, 𝑣 homogeneity = 𝑢, 𝑤 − 𝑣, 𝑤 symmetry
  • 14.
    𝑢, 𝑣 =5𝑢1 𝑣1 + 2𝑢2 𝑣2 = 5 2 0 + 2 3 −1 = −6 = 6 = 36 𝑢 = 𝑢, 𝑢 1/2 = 5(2)2 + 2(3)2 = 38 1/2 𝑣 = 𝑣, 𝑣 = 5(0)2 + 2(−1)2 = 2 compare 𝑢 ∙ 𝑣 = 38 2 = 76 36 < 76 ∴ 𝑢, 𝑣 ≤ 𝑢 ∙ 𝑣 Cauchy-Schwarz inequality
  • 15.
    2 6 −3 1 𝑢, 𝑣 = , = −6 + 6 + 4 − 6 = −2 = 2 = 4 1 −3 4 2 2 6 2 6 𝑢 = 𝑢, 𝑢 1/2 = , = 4 + 36 + 1 + 9 = 50 1 −3 1 −3 −3 1 −3 1 𝑣 = 𝑣, 𝑣 1/2 = , = 9 + 1 + 16 + 4 = 30 compare 4 2 4 2 𝑢 ∙ 𝑣 = 50 30 = 1500 4 < 1500 ∴ 𝑢, 𝑣 ≤ 𝑢 ∙ 𝑣 Cauchy-Schwarz inequality
  • 16.
    • Do asyour exercise
  • 17.
    𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(𝑏) 𝑣 =0iff 𝑣 = 0 𝑣 = 𝑣, 𝑣 1/2 = 𝑣1 2 + 𝑣2 2 + ⋯ + 𝑣 𝑛 2 ≥ 0 𝑣 = 𝑣, 𝑣 1/2 = 𝑣1 2 + 𝑣2 2 + ⋯ + 𝑣 𝑛 2 = 0 iff 𝑣1 = 𝑣2 = ⋯ = 𝑣 𝑛 = 0 → 𝑣 = 0 ∴ 𝑣 =0 iff 𝑣 = 0 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(𝑐) 𝑘𝑣 = 𝑘 𝑣 𝑘𝑣 = 𝑘𝑣, 𝑘𝑣 1/2 = 𝑘 𝑣, 𝑘𝑣 1/2 = 𝑘 2 𝑣, 𝑣 1/2 = 𝑘 𝑣, 𝑣 1/2 = 𝑘 𝑣
  • 18.
    𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(𝑓) 𝑑 𝑢, 𝑣 =0 iff 𝑢 = 𝑣 𝑑 𝑢, 𝑣 = 𝑢 − 𝑣 = 𝑢 − 𝑣, 𝑢 − 𝑣 1/2 = 𝑢1 − 𝑣1 2 + 𝑢2 − 𝑣2 2 + ⋯+ 𝑢 𝑛 − 𝑣𝑛 2 ≥0 𝑑 𝑢, 𝑣 = 𝑢− 𝑣 = 𝑢1 − 𝑣1 2 + 𝑢2 − 𝑣2 2 +⋯+ 𝑢 𝑛 − 𝑣𝑛 2 = 0 iff 𝑢1 = 𝑣1 , … 𝑢 𝑛 = 𝑣 𝑛 → 𝑢 = 𝑣 ∴ 𝑑 𝑢, 𝑣 =0 iff 𝑢 = 𝑣 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 1.5.3(ℎ) 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑤 + 𝑑 𝑤, 𝑣 𝑑 𝑢, 𝑣 = 𝑢− 𝑣 = 𝑢+ 𝑤− 𝑤− 𝑣 = 𝑢− 𝑤 + 𝑤− 𝑣 ≤ 𝑢− 𝑤 + 𝑤− 𝑣 = 𝑑 𝑢, 𝑤 + 𝑑 𝑤, 𝑣 ∴ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑤 + 𝑑 𝑤, 𝑣
  • 19.