P1: FCH/FFX    P2: FCH/FFX          QC: FCH/FFX       T1: FCH
GTBL001-back˙end     GTBL001-Smith-v16.cls          October 17, 2005      20:2




                       Derivative Formulas
              General Rules
               d                                                       d                                                 d
                  [ f (x) + g(x)] = f (x) + g (x)                         [ f (x) − g(x)] = f (x) − g (x)                   [c f (x)] = c f (x)
               dx                                                      dx                                                dx
               d                                                       d                                                 d      f (x)   f (x)g(x) − f (x)g (x)
                  [ f (g(x))] = f (g(x))g (x)                             [ f (x)g(x)] = f (x)g(x) + f (x)g (x)                       =
               dx                                                      dx                                                dx     g(x)           [g(x)]2


              Power Rules
               d n                                       d                                      d                               d √       1
                  (x ) = nx n−1                             (c) = 0                                (cx) = c                        ( x) = √
               dx                                        dx                                     dx                              dx       2 x


              Exponential
               d x                                       d x                                    d                               d
                  [e ] = e x                                [a ] = a x ln a                        eu(x) = eu(x) u (x)             er x = r er x
               dx                                        dx                                     dx                              dx


              Trigonometric
               d                                                          d                                                d
                  (sin x) = cos x                                            (cos x) = −sin x                                 (tan x) = sec2 x
               dx                                                         dx                                               dx
               d                                                          d                                                d
                  (cot x) = −csc2 x                                          (sec x) = sec x tan x                            (csc x) = −csc x cot x
               dx                                                         dx                                               dx


              Inverse Trigonometric
               d                 1                                        d                    1                              d                1
                  (sin−1 x) = √                                              (cos−1 x) = − √                                     (tan−1 x) =
               dx              1 − x2                                     dx                 1 − x2                           dx             1 + x2
               d                  1                                       d                   1                               d                   1
                  (cot−1 x) = −                                              (sec−1 x) =    √                                    (csc−1 x) = − √
               dx               1 + x2                                    dx             |x| x 2 − 1                          dx              |x| x 2 − 1


              Hyperbolic
               d                                                          d                                                   d
                  (sinh x) = cosh x                                          (cosh x) = sinh x                                   (tanh x) = sech2 x
               dx                                                         dx                                                  dx
               d                                                          d                                                   d
                  (coth x) = −csch2 x                                        (sech x) = −sech x tanh x                           (csch x) = −csch x coth x
               dx                                                         dx                                                  dx


              Inverse Hyperbolic
               d                   1                                      d                  1                                d                 1
                  (sinh−1 x) = √                                             (cosh−1 x) = √                                      (tanh−1 x) =
               dx                1 + x2                                   dx                x2 − 1                            dx              1 − x2
               d                 1                                        d                   1                               d                    1
                  (coth−1 x) =                                               (sech−1 x) = − √                                    (csch−1 x) = − √
               dx              1 − x2                                     dx               x 1 − x2                           dx               |x| x 2 + 1




                                                                                                                    3
P1: FCH/FFX         P2: FCH/FFX     QC: FCH/FFX          T1: FCH
GTBL001-back˙end        GTBL001-Smith-v16.cls          October 17, 2005     20:2




                       Table of Integrals

           Forms Involving a + bu
                          1       1
               1.             du = ln |a + bu| + c
                       a + bu     b

                         u         1
               2.             du = 2 (a + bu − a ln |a + bu|) + c
                       a + bu     b

                         u2        1
               3.             du = 3 [(a + bu)2 − 4a(a + bu) + 2a 2 ln |a + bu|] + c
                       a + bu     2b

                           1         1     u
               4.                du = ln        +c
                       u(a + bu)     a   a + bu

                              1          b    a + bu    1
               5.                   du = 2 ln        −    +c
                       u 2 (a + bu)     a       u      au



           Forms Involving (a + bu)2
                           1             −1
               6.                du =           +c
                       (a + bu)2      b(a + bu)

                           u          1       a
               7.                du = 2            + ln |a + bu| + c
                       (a + bu)2     b      a + bu

                          u2          1                  a2
               8.                du = 3     a + bu −          − 2a ln |a + bu| + c
                       (a + bu)2     b                 a + bu

                           1               1       1      u
               9.                 du =           + 2 ln        +c
                       u(a + bu)2      a(a + bu)  a     a + bu

                              1          2b    a + bu    a + 2bu
              10.                    du = 3 ln        − 2          +c
                       u 2 (a + bu)2     a       u     a u(a + bu)




           Forms Involving                     a + bu
                        √               2
              11.      u a + bu du =        (3bu − 2a)(a + bu)3/2 + c
                                       15b2

                          √                2
              12.      u 2 a + bu du =         (15b2 u 2 − 12abu + 8a 2 )(a + bu)3/2 + c
                                         105b3

                          √                  2                          2na             √
              13.      u n a + bu du =             u n (a + bu)3/2 −               u n−1 a + bu du
                                         b(2n + 3)                   b(2n + 3)

                       √
                        a + bu       √                      1
              14.              du = 2 a + bu + a          √       du
                          u                              u a + bu
                       √                                                     √
                        a + bu        −1 (a + bu)3/2   (2n − 5)b              a + bu
              15.              du =                  −                               du, n = 1
                         u n        a(n − 1) u n−1     2a(n − 1)               u n−1




                                                                                                     4
P1: FCH/FFX    P2: FCH/FFX       QC: FCH/FFX         T1: FCH
GTBL001-back˙end     GTBL001-Smith-v16.cls        October 17, 2005      20:2




                                          √        √
                          1           1    a + bu − a
              16a.      √       du = √ ln √        √ + c, a > 0
                       u a + bu        a   a + bu + a


                          1           2                 a + bu
              16b.      √       du = √   tan−1                 + c, a < 0
                       u a + bu       −a                  −a

                                                   √
                            1            −1         a + bu (2n − 3)b                 1
               17.        √       du =                    −                         √       du, n = 1
                       u n a + bu      a(n − 1)     u n−1   2a(n − 1)          u n−1 a + bu

                          u         2          √
               18.     √       du = 2 (bu − 2a) a + bu + c
                        a + bu     3b

                         u2          2                           √
               19.     √       du =      (3b2 u 2 − 4abu + 8a 2 ) a + bu + c
                        a + bu      15b3

                         un             2        √            2na                 u n−1
               20.     √       du =           u n a + bu −                      √       du
                        a + bu      (2n + 1)b              (2n + 1)b             a + bu


              Forms Involving                   a 2 + u 2, a > 0
                                           √                        √
               21.       a 2 + u 2 du = 1 u a 2 + u 2 + 1 a 2 ln u + a 2 + u 2 + c
                                        2               2

                                                          √                        √
               22.     u 2 a 2 + u 2 du = 1 u(a 2 + 2u 2 ) a 2 + u 2 − 1 a 4 ln u + a 2 + u 2 + c
                                          8                            8

                       √                                          √
                        a2 + u2                              a+    a2 + u2
               23.              du =      a 2 + u 2 − a ln                 +c
                          u                                         u
                       √                                       √
                        a2 + u2                                 a2 + u2
               24.              du = ln u +       a2 + u2 −             +c
                         u2                                       u

                          1
               25.     √        du = ln u +       a2 + u2 + c
                        a2 + u2

                         u2         1             1
               26.     √        du = u a 2 + u 2 − a 2 ln u +          a2 + u2 + c
                        a2 + u2     2             2

                            1           1           u
               27.       √         du = ln        √      +c
                       u a2 + u2        a    a + a2 + u2
                                           √
                            1               a2 + u2
               28.        √         du = −            +c
                       u 2 a2 + u2           a2 u


              Forms Involving                   a 2 ¯¯ u 2 , a > 0
                                           √                       u
               29.       a 2 − u 2 du = 1 u a 2 − u 2 + 1 a 2 sin−1 + c
                                        2               2          a
                                                          √                       u
               30.     u 2 a 2 − u 2 du = 1 u(2u 2 − a 2 ) a 2 − u 2 + 1 a 4 sin−1 + c
                                          8                            8          a
                       √                                          √
                        a2 − u2                              a+    a2 − u2
               31.              du =      a 2 − u 2 − a ln                 +c
                          u                                         u
                       √               √
                        a2 − u2         a2 − u2        u
               32.              du = −          − sin−1 + c
                         u2               u            a




                                                                                                        5
P1: FCH/FFX         P2: FCH/FFX             QC: FCH/FFX          T1: FCH
GTBL001-back˙end         GTBL001-Smith-v16.cls                October 17, 2005           20:2




                          1               u
              33.      √        du = sin−1 + c
                        a2 − u2           a
                                                              √
                          1            1   a+                  a2 − u2
              34.       √        du = − ln                             +c
                       u a2 − u2       a                        u

                         u2           1             1         u
              35.      √        du = − u a 2 − u 2 + a 2 sin−1 + c
                        a2 − u2       2             2         a
                                         √
                                1         a2 − u2
              36.        √        du = −          +c
                       u2 a2 − u2          a2 u


           Forms Involving                              u 2 ¯¯ a 2 , a > 0
                                           √                        √
              37.        u 2 − a 2 du = 1 u u 2 − a 2 − 1 a 2 ln u + u 2 − a 2 + c
                                        2               2


                                                          √                        √
              38.      u 2 u 2 − a 2 du = 1 u(2u 2 − a 2 ) u 2 − a 2 − 1 a 4 ln u + u 2 − a 2 + c
                                          8                            8

                       √
                        u2 − a2                                         |u|
              39.               du =              u 2 − a 2 − a sec−1       +c
                          u                                              a
                       √                                                √
                           u2 − a2                                          u2 − a2
              40.                  du = ln u +           u2 − a2 −                  +c
                            u2                                                u

                             1
              41.      √               du = ln u +       u2 − a2 + c
                           u2 − a2

                            u2                 1              1
              42.      √               du =      u u 2 − a 2 + a 2 ln u +        u2 − a2 + c
                           u2   − a2           2              2

                          1          1      |u|
              43.       √        du = sec−1     +c
                       u u2 − a2     a       a
                                                  √
                                1                  u2 − a2
              44.          √               du =            +c
                       u2 u2 − a2                   a2 u


           Forms Involving                              2au ¯¯ u 2
                                               1                    1                     a−u
              45.        2au − u 2 du =          (u − a) 2au − u 2 + a 2 cos−1                  +c
                                               2                    2                      a

                                                  1                                1             a−u
              46.      u 2au − u 2 du =             (2u 2 − au − 3a 2 ) 2au − u 2 + a 3 cos−1          +c
                                                  6                                2              a
                       √
                        2au − u 2                                            a−u
              47.                 du =             2au − u 2 + a cos−1               +c
                          u                                                   a
                       √                  √
                        2au − u 2        2 2au − u 2                           a−u
              48.                 du = −             − cos−1                             +c
                          u2                 u                                  a

                                1                         a−u
              49.      √                   du = cos−1             +c
                           2au − u 2                       a

                                u                                              a−u
              50.      √                   du = − 2au − u 2 + a cos−1                 +c
                           2au      − u2                                        a




                                                                                                            6
P1: FCH/FFX    P2: FCH/FFX         QC: FCH/FFX                  T1: FCH
GTBL001-back˙end     GTBL001-Smith-v16.cls                   October 17, 2005        20:2




                             u2              1                    3                           a−u
               51.     √               du = − (u + 3a) 2au − u 2 + a 2 cos−1                        +c
                           2au − u 2         2                    2                            a
                                                     √
                              1                          2au − u 2
               52.      √                  du = −                  +c
                       u 2au      − u2                     au



              Forms Involving sin u OR cos u
               53.     sin u du = −cos u + c


               54.     cos u du = sin u + c


               55.     sin2 u du = 1 u −
                                   2
                                              1
                                              2    sin u cos u + c


               56.     cos2 u du = 1 u +
                                   2
                                               1
                                               2   sin u cos u + c


               57.     sin3 u du = − 2 cos u −
                                     3
                                                         1
                                                         3   sin2 u cos u + c


               58.     cos3 u du =     2
                                       3   sin u +   1
                                                     3   sin u cos2 u + c

                                           1                  n−1
               59.     sinn u du = −         sinn−1 u cos u +                   sinn−2 u du
                                           n                   n

                                         1                  n−1
               60.     cosn u du =         cosn−1 u sin u +                 cosn−2 u du
                                         n                   n

               61.     u sin u du = sin u − u cos u + c


               62.     u cos u du = cos u + u sin u + c


               63.     u n sin u du = −u n cos u + n              u n−1 cos u du + c


               64.     u n cos u du = u n sin u − n             u n−1 sin u du + c

                          1
               65.               du = tan u − sec u + c
                       1 + sin u

                          1
               66.               du = tan u + sec u + c
                       1 − sin u

                           1
               67.               du = −cot u + csc u + c
                       1 + cos u

                           1
               68.               du = −cot u − csc u + c
                       1 − cos u

                                                     sin(m − n)u   sin(m + n)u
               69.     sin(mu) sin(nu) du =                      −             +c
                                                       2(m − n)      2(m + n)

                                                      sin(m − n)u   sin(m + n)u
               70.     cos(mu) cos(nu) du =                       +             +c
                                                        2(m − n)      2(m + n)




                                                                                                         7
P1: FCH/FFX         P2: FCH/FFX          QC: FCH/FFX               T1: FCH
GTBL001-back˙end         GTBL001-Smith-v16.cls                   October 17, 2005         20:2




                                                 cos(n − m)u   cos(m + n)u
              71.      sin(mu) cos(nu) du =                  −             +c
                                                  2(n − m)      2(m + n)

                                                sinm−1 u cosn+1 u   m−1
              72.      sinm u cosn u du = −                       +                       sinm−2 u cosn u du
                                                     m+n            m+n



           Forms Involving Other Trigonometric Functions
              73.      tan u du = −ln |cos u| + c = ln |sec u| + c


              74.      cot u du = ln |sin u| + c


              75.      sec u du = ln |sec u + tan u| + c


              76.      csc u du = ln |csc u − cot u| + c


              77.      tan2 u du = tan u − u + c


              78.      cot2 u du = −cot u − u + c


              79.      sec2 u du = tan u + c


              80.      csc2 u du = −cot u + c


              81.      tan3 u du =   1
                                     2   tan2 u + ln |cos u| + c


              82.      cot3 u du = − 1 cot2 u − ln |sin u| + c
                                     2



              83.      sec3 u du =   1
                                     2   sec u tan u +   1
                                                         2   ln |sec u + tan u| + c


              84.      csc3 u du = − 1 csc u cot u +
                                     2
                                                             1
                                                             2   ln |csc u − cot u| + c


                                      1
              85.      tann u du =       tann−1 u −               tann−2 u du, n = 1
                                     n−1

                                          1
              86.      cotn u du = −         cotn−1 u −             cotn−2 u du, n = 1
                                         n−1

                                      1                   n−2
              87.      secn u du =       secn−2 u tan u +                      secn−2 u du, n = 1
                                     n−1                  n−1

                                          1                   n−2
              88.      cscn u du = −         cscn−2 u cot u +                    cscn−2 u du, n = 1
                                         n−1                  n−1

                          1
              89.                du = 1 u ± ln |cos u ± sin u| + c
                       1 ± tan u      2


                          1
              90.                du = 1 u ∓ ln |sin u ± cos u| + c
                       1 ± cot u      2




                                                                                                               8
P1: FCH/FFX    P2: FCH/FFX        QC: FCH/FFX         T1: FCH
GTBL001-back˙end     GTBL001-Smith-v16.cls          October 17, 2005        20:2




                          1
               91.               du = u + cot u ∓ csc u + c
                       1 ± sec u

                          1
               92.               du = u − tan u ± sec u + c
                       1 ± csc u


              Forms Involving Inverse Trigonometric Functions
               93.     sin−1 u du = u sin−1 u +     1 − u2 + c


               94.     cos−1 u du = u cos−1 u −      1 − u2 + c


               95.     tan−1 u du = u tan−1 u − ln 1 + u 2 + c


               96.     cot−1 u du = u cot−1 u + ln 1 + u 2 + c


               97.     sec−1 u du = u sec−1 u − ln |u +      u 2 − 1| + c


               98.     csc−1 u du = u csc−1 u + ln |u +      u 2 − 1| + c

                                                                √
               99.     u sin−1 u du = 1 (2u 2 − 1) sin−1 u + 1 u 1 − u 2 + c
                                      4                      4


                                                                √
              100.     u cos−1 u du = 1 (2u 2 − 1) cos−1 u − 1 u 1 − u 2 + c
                                      4                      4




              Forms Involving eu
                                  1 au
              101.     eau du =     e +c
                                  a

                                      1    1
              102.     ueau du =        u− 2      eau + c
                                      a   a

                                      1 2   2   2
              103.     u 2 eau du =     u − 2u+ 3           eau + c
                                      a    a   a

                                      1 n au n
              104.     u n eau du =     u e −         u n−1 eau du
                                      a       a

                                             1
              105.     eau sin bu du =            (a sin bu − b cos bu)eau + c
                                         a 2 + b2

                                             1
              106.     eau cos bu du =            (a cos bu + b sin bu)eau + c
                                         a 2 + b2


              Forms Involving ln u
              107.     ln u du = u ln u − u + c


              108.     u ln u du = 1 u 2 ln u − 1 u 2 + c
                                   2            4




                                                                                   9
P1: FCH/FFX       P2: FCH/FFX         QC: FCH/FFX        T1: FCH
GTBL001-back˙end       GTBL001-Smith-v16.cls          October 17, 2005     20:2




                                      1                  1
           109.      u n ln u du =       u n+1 ln u −          u n+1 + c
                                     n+1              (n + 1)2

                        1
           110.             du = ln |ln u| + c
                     u ln u


           111.     (ln u)2 du = u(ln u)2 − 2u ln u + 2u + c


           112.     (ln u)n du = u(ln u)n − n     (ln u)n−1 du



           Forms Involving Hyperbolic Functions
           113.     sinh u du = cosh u + c

           114.      cosh u du = sinh u + c

           115.     tanh u du = ln (cosh u) + c

           116.     coth u du = ln |sinh u| + c

           117.     sech u du = tan−1 |sinh u| + c

           118.      csch u du = ln |tanh 1 u| + c
                                          2


           119.     sech2 u du = tanh u + c

           120.      csch2 u du = −coth u + c

           121.     sech u tanh u du = −sech u + c

           122.      csch u coth u du = −csch u + c

                        1
           123.      √        da = sinh−1 a + c
                       a2 + 1
                        1
           124.      √        da = cosh−1 a + c
                       a2 − 1
                       1
           125.             da = tanh−1 a + c
                     1 − a2
                            1
           126.          √        da = −csch−1 a + c
                      |a| a 2 + 1
                          1
           127.        √        da = −sech−1 a + c
                     a 1 − a2




                                                                                  10

Formulas

  • 1.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 Derivative Formulas General Rules d d d [ f (x) + g(x)] = f (x) + g (x) [ f (x) − g(x)] = f (x) − g (x) [c f (x)] = c f (x) dx dx dx d d d f (x) f (x)g(x) − f (x)g (x) [ f (g(x))] = f (g(x))g (x) [ f (x)g(x)] = f (x)g(x) + f (x)g (x) = dx dx dx g(x) [g(x)]2 Power Rules d n d d d √ 1 (x ) = nx n−1 (c) = 0 (cx) = c ( x) = √ dx dx dx dx 2 x Exponential d x d x d d [e ] = e x [a ] = a x ln a eu(x) = eu(x) u (x) er x = r er x dx dx dx dx Trigonometric d d d (sin x) = cos x (cos x) = −sin x (tan x) = sec2 x dx dx dx d d d (cot x) = −csc2 x (sec x) = sec x tan x (csc x) = −csc x cot x dx dx dx Inverse Trigonometric d 1 d 1 d 1 (sin−1 x) = √ (cos−1 x) = − √ (tan−1 x) = dx 1 − x2 dx 1 − x2 dx 1 + x2 d 1 d 1 d 1 (cot−1 x) = − (sec−1 x) = √ (csc−1 x) = − √ dx 1 + x2 dx |x| x 2 − 1 dx |x| x 2 − 1 Hyperbolic d d d (sinh x) = cosh x (cosh x) = sinh x (tanh x) = sech2 x dx dx dx d d d (coth x) = −csch2 x (sech x) = −sech x tanh x (csch x) = −csch x coth x dx dx dx Inverse Hyperbolic d 1 d 1 d 1 (sinh−1 x) = √ (cosh−1 x) = √ (tanh−1 x) = dx 1 + x2 dx x2 − 1 dx 1 − x2 d 1 d 1 d 1 (coth−1 x) = (sech−1 x) = − √ (csch−1 x) = − √ dx 1 − x2 dx x 1 − x2 dx |x| x 2 + 1 3
  • 2.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 Table of Integrals Forms Involving a + bu 1 1 1. du = ln |a + bu| + c a + bu b u 1 2. du = 2 (a + bu − a ln |a + bu|) + c a + bu b u2 1 3. du = 3 [(a + bu)2 − 4a(a + bu) + 2a 2 ln |a + bu|] + c a + bu 2b 1 1 u 4. du = ln +c u(a + bu) a a + bu 1 b a + bu 1 5. du = 2 ln − +c u 2 (a + bu) a u au Forms Involving (a + bu)2 1 −1 6. du = +c (a + bu)2 b(a + bu) u 1 a 7. du = 2 + ln |a + bu| + c (a + bu)2 b a + bu u2 1 a2 8. du = 3 a + bu − − 2a ln |a + bu| + c (a + bu)2 b a + bu 1 1 1 u 9. du = + 2 ln +c u(a + bu)2 a(a + bu) a a + bu 1 2b a + bu a + 2bu 10. du = 3 ln − 2 +c u 2 (a + bu)2 a u a u(a + bu) Forms Involving a + bu √ 2 11. u a + bu du = (3bu − 2a)(a + bu)3/2 + c 15b2 √ 2 12. u 2 a + bu du = (15b2 u 2 − 12abu + 8a 2 )(a + bu)3/2 + c 105b3 √ 2 2na √ 13. u n a + bu du = u n (a + bu)3/2 − u n−1 a + bu du b(2n + 3) b(2n + 3) √ a + bu √ 1 14. du = 2 a + bu + a √ du u u a + bu √ √ a + bu −1 (a + bu)3/2 (2n − 5)b a + bu 15. du = − du, n = 1 u n a(n − 1) u n−1 2a(n − 1) u n−1 4
  • 3.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 √ √ 1 1 a + bu − a 16a. √ du = √ ln √ √ + c, a > 0 u a + bu a a + bu + a 1 2 a + bu 16b. √ du = √ tan−1 + c, a < 0 u a + bu −a −a √ 1 −1 a + bu (2n − 3)b 1 17. √ du = − √ du, n = 1 u n a + bu a(n − 1) u n−1 2a(n − 1) u n−1 a + bu u 2 √ 18. √ du = 2 (bu − 2a) a + bu + c a + bu 3b u2 2 √ 19. √ du = (3b2 u 2 − 4abu + 8a 2 ) a + bu + c a + bu 15b3 un 2 √ 2na u n−1 20. √ du = u n a + bu − √ du a + bu (2n + 1)b (2n + 1)b a + bu Forms Involving a 2 + u 2, a > 0 √ √ 21. a 2 + u 2 du = 1 u a 2 + u 2 + 1 a 2 ln u + a 2 + u 2 + c 2 2 √ √ 22. u 2 a 2 + u 2 du = 1 u(a 2 + 2u 2 ) a 2 + u 2 − 1 a 4 ln u + a 2 + u 2 + c 8 8 √ √ a2 + u2 a+ a2 + u2 23. du = a 2 + u 2 − a ln +c u u √ √ a2 + u2 a2 + u2 24. du = ln u + a2 + u2 − +c u2 u 1 25. √ du = ln u + a2 + u2 + c a2 + u2 u2 1 1 26. √ du = u a 2 + u 2 − a 2 ln u + a2 + u2 + c a2 + u2 2 2 1 1 u 27. √ du = ln √ +c u a2 + u2 a a + a2 + u2 √ 1 a2 + u2 28. √ du = − +c u 2 a2 + u2 a2 u Forms Involving a 2 ¯¯ u 2 , a > 0 √ u 29. a 2 − u 2 du = 1 u a 2 − u 2 + 1 a 2 sin−1 + c 2 2 a √ u 30. u 2 a 2 − u 2 du = 1 u(2u 2 − a 2 ) a 2 − u 2 + 1 a 4 sin−1 + c 8 8 a √ √ a2 − u2 a+ a2 − u2 31. du = a 2 − u 2 − a ln +c u u √ √ a2 − u2 a2 − u2 u 32. du = − − sin−1 + c u2 u a 5
  • 4.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 1 u 33. √ du = sin−1 + c a2 − u2 a √ 1 1 a+ a2 − u2 34. √ du = − ln +c u a2 − u2 a u u2 1 1 u 35. √ du = − u a 2 − u 2 + a 2 sin−1 + c a2 − u2 2 2 a √ 1 a2 − u2 36. √ du = − +c u2 a2 − u2 a2 u Forms Involving u 2 ¯¯ a 2 , a > 0 √ √ 37. u 2 − a 2 du = 1 u u 2 − a 2 − 1 a 2 ln u + u 2 − a 2 + c 2 2 √ √ 38. u 2 u 2 − a 2 du = 1 u(2u 2 − a 2 ) u 2 − a 2 − 1 a 4 ln u + u 2 − a 2 + c 8 8 √ u2 − a2 |u| 39. du = u 2 − a 2 − a sec−1 +c u a √ √ u2 − a2 u2 − a2 40. du = ln u + u2 − a2 − +c u2 u 1 41. √ du = ln u + u2 − a2 + c u2 − a2 u2 1 1 42. √ du = u u 2 − a 2 + a 2 ln u + u2 − a2 + c u2 − a2 2 2 1 1 |u| 43. √ du = sec−1 +c u u2 − a2 a a √ 1 u2 − a2 44. √ du = +c u2 u2 − a2 a2 u Forms Involving 2au ¯¯ u 2 1 1 a−u 45. 2au − u 2 du = (u − a) 2au − u 2 + a 2 cos−1 +c 2 2 a 1 1 a−u 46. u 2au − u 2 du = (2u 2 − au − 3a 2 ) 2au − u 2 + a 3 cos−1 +c 6 2 a √ 2au − u 2 a−u 47. du = 2au − u 2 + a cos−1 +c u a √ √ 2au − u 2 2 2au − u 2 a−u 48. du = − − cos−1 +c u2 u a 1 a−u 49. √ du = cos−1 +c 2au − u 2 a u a−u 50. √ du = − 2au − u 2 + a cos−1 +c 2au − u2 a 6
  • 5.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 u2 1 3 a−u 51. √ du = − (u + 3a) 2au − u 2 + a 2 cos−1 +c 2au − u 2 2 2 a √ 1 2au − u 2 52. √ du = − +c u 2au − u2 au Forms Involving sin u OR cos u 53. sin u du = −cos u + c 54. cos u du = sin u + c 55. sin2 u du = 1 u − 2 1 2 sin u cos u + c 56. cos2 u du = 1 u + 2 1 2 sin u cos u + c 57. sin3 u du = − 2 cos u − 3 1 3 sin2 u cos u + c 58. cos3 u du = 2 3 sin u + 1 3 sin u cos2 u + c 1 n−1 59. sinn u du = − sinn−1 u cos u + sinn−2 u du n n 1 n−1 60. cosn u du = cosn−1 u sin u + cosn−2 u du n n 61. u sin u du = sin u − u cos u + c 62. u cos u du = cos u + u sin u + c 63. u n sin u du = −u n cos u + n u n−1 cos u du + c 64. u n cos u du = u n sin u − n u n−1 sin u du + c 1 65. du = tan u − sec u + c 1 + sin u 1 66. du = tan u + sec u + c 1 − sin u 1 67. du = −cot u + csc u + c 1 + cos u 1 68. du = −cot u − csc u + c 1 − cos u sin(m − n)u sin(m + n)u 69. sin(mu) sin(nu) du = − +c 2(m − n) 2(m + n) sin(m − n)u sin(m + n)u 70. cos(mu) cos(nu) du = + +c 2(m − n) 2(m + n) 7
  • 6.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 cos(n − m)u cos(m + n)u 71. sin(mu) cos(nu) du = − +c 2(n − m) 2(m + n) sinm−1 u cosn+1 u m−1 72. sinm u cosn u du = − + sinm−2 u cosn u du m+n m+n Forms Involving Other Trigonometric Functions 73. tan u du = −ln |cos u| + c = ln |sec u| + c 74. cot u du = ln |sin u| + c 75. sec u du = ln |sec u + tan u| + c 76. csc u du = ln |csc u − cot u| + c 77. tan2 u du = tan u − u + c 78. cot2 u du = −cot u − u + c 79. sec2 u du = tan u + c 80. csc2 u du = −cot u + c 81. tan3 u du = 1 2 tan2 u + ln |cos u| + c 82. cot3 u du = − 1 cot2 u − ln |sin u| + c 2 83. sec3 u du = 1 2 sec u tan u + 1 2 ln |sec u + tan u| + c 84. csc3 u du = − 1 csc u cot u + 2 1 2 ln |csc u − cot u| + c 1 85. tann u du = tann−1 u − tann−2 u du, n = 1 n−1 1 86. cotn u du = − cotn−1 u − cotn−2 u du, n = 1 n−1 1 n−2 87. secn u du = secn−2 u tan u + secn−2 u du, n = 1 n−1 n−1 1 n−2 88. cscn u du = − cscn−2 u cot u + cscn−2 u du, n = 1 n−1 n−1 1 89. du = 1 u ± ln |cos u ± sin u| + c 1 ± tan u 2 1 90. du = 1 u ∓ ln |sin u ± cos u| + c 1 ± cot u 2 8
  • 7.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 1 91. du = u + cot u ∓ csc u + c 1 ± sec u 1 92. du = u − tan u ± sec u + c 1 ± csc u Forms Involving Inverse Trigonometric Functions 93. sin−1 u du = u sin−1 u + 1 − u2 + c 94. cos−1 u du = u cos−1 u − 1 − u2 + c 95. tan−1 u du = u tan−1 u − ln 1 + u 2 + c 96. cot−1 u du = u cot−1 u + ln 1 + u 2 + c 97. sec−1 u du = u sec−1 u − ln |u + u 2 − 1| + c 98. csc−1 u du = u csc−1 u + ln |u + u 2 − 1| + c √ 99. u sin−1 u du = 1 (2u 2 − 1) sin−1 u + 1 u 1 − u 2 + c 4 4 √ 100. u cos−1 u du = 1 (2u 2 − 1) cos−1 u − 1 u 1 − u 2 + c 4 4 Forms Involving eu 1 au 101. eau du = e +c a 1 1 102. ueau du = u− 2 eau + c a a 1 2 2 2 103. u 2 eau du = u − 2u+ 3 eau + c a a a 1 n au n 104. u n eau du = u e − u n−1 eau du a a 1 105. eau sin bu du = (a sin bu − b cos bu)eau + c a 2 + b2 1 106. eau cos bu du = (a cos bu + b sin bu)eau + c a 2 + b2 Forms Involving ln u 107. ln u du = u ln u − u + c 108. u ln u du = 1 u 2 ln u − 1 u 2 + c 2 4 9
  • 8.
    P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH GTBL001-back˙end GTBL001-Smith-v16.cls October 17, 2005 20:2 1 1 109. u n ln u du = u n+1 ln u − u n+1 + c n+1 (n + 1)2 1 110. du = ln |ln u| + c u ln u 111. (ln u)2 du = u(ln u)2 − 2u ln u + 2u + c 112. (ln u)n du = u(ln u)n − n (ln u)n−1 du Forms Involving Hyperbolic Functions 113. sinh u du = cosh u + c 114. cosh u du = sinh u + c 115. tanh u du = ln (cosh u) + c 116. coth u du = ln |sinh u| + c 117. sech u du = tan−1 |sinh u| + c 118. csch u du = ln |tanh 1 u| + c 2 119. sech2 u du = tanh u + c 120. csch2 u du = −coth u + c 121. sech u tanh u du = −sech u + c 122. csch u coth u du = −csch u + c 1 123. √ da = sinh−1 a + c a2 + 1 1 124. √ da = cosh−1 a + c a2 − 1 1 125. da = tanh−1 a + c 1 − a2 1 126. √ da = −csch−1 a + c |a| a 2 + 1 1 127. √ da = −sech−1 a + c a 1 − a2 10