SlideShare a Scribd company logo
MICROBIAL ECOLOGY
Organization of Ecosystems
Biosphere – thick envelope of life that surrounds the earth’s surface
• Made up of:
• hydrosphere (water)
• lithosphere (soil)
• atmosphere (air)
• Maintains and creates the conditions of temperature, light, gases,
moisture, and minerals required for life processes
• Biomes- particular climatic regions
• Terrestrial biomes- grassland, tropical rainforest, temperate and tundra.
• Aquatic biomes- freshwater biomes and marine biomes.
• Communities – the association of organisms that live together and
that exhibit well-defined nutritional or behavioral interrelationships
• Population – organisms of the same species within a community
• Habitat – the physical location in the environment to which an
organism has adapted
• Niche – overall role that a species, or population, serves in a
community; nutritional intake, position in the community, and rate of
population growth
Ecology (oicos – house, hold, logos - doctrine) - science about legitimacies of creation and
functioning of biological systems and their mutual relation with an environment.
The microecology is the science about places of invading of microorganisms and their
ecological links.
At learning a microbial ecology use the same concepts, as well as in a common ecology.
Main of them are the following: population - an elementary evolutional unit (structure) of
a definite species;
biotope - site, habitation of a population, for parasites - place of their localization in an
organism;
microbiocenosis - microbial assemblage, association, that is collection of populations of
different species of microorganisms, which dwell(live) in the defined biotope (for example,
in an oral cavity, reservoir);
Ecosystem - system, in which enters a biotope and microbiocenosis
• Is the study of numerous interrelationships between microorganisms
and the world around them;
how microbes interact with other microbes
how microbes interact with organisms other than microbes
and how microbes interact with the non-living world around them
From old times it is known, that the microorganisms are omnipresent that is
ubiquitous organisms.
Huge quantities of them meet in soil, water and air.
The environment of their habitation is plants, animal, man.
Everywhere bacteria are existed as microbiocenoses.
The modern microbial biocenoses were generated as a result of durable evolution.
Mutual relation (cohabitation) of different species of microbes among
themselves and with other forms of life are called symbiosis.
Types of symbioses
1. Neutralism - the populations, existing in one biotope do not stimulate and do not
oppress each other.
2. Mutualism - mutually advantageous cohabitation; one population synthesizes
materials (matter), which are the basis of power supply for another (for example,
legume bacteria and bean plants, aerobic and anaerobic bacteria in an organism of
the man).
3. Commensalism - such form of symbiosis, at which one of jointly living
populations extracts for herself advantage(benefit), but does not put a harm of
other population. The commensalism is characteristic for many inhabitants of
human body.
Types of symbioses
4. Antagonism - oppression of one population another. The microbes –
antagonists produce antibiotics, bacteriocines, fatty acids, which cause
destruction of bacteria or delay their reproduction.
5. Parasitism - such kind of symbiosis, at which one population (parasite) brings
harm to the host, and for itself has a benefit. The causative agents of bacterial,
virus and fungi illnesses concern to microbes - parasites.
6. Synergism- the interaction or cooperation of two or more organizations, substances,
or other agents to produce a combined effect greater than the sum of their separate
effects.
Soil is alive…
For example, in 1g of soil:
>100,000,000 bacterial cells
>11,000 species of bacteria
Also fungi and larger animals
Microflora of the soil
The soil is the major environment for a habitation of microorganisms.
The first bacteria, as well as all alive ones, have appeared in water. However in more later geological
periods, when on a surface of globe the soil was derived, it became main habitation of microorganisms and
main arena of their vital activity.
The amount of bacteria in one gram of soil can be very great - from 200 millions up to 10 billions.
Manured and ploughing ground are stocked with microorganisms most densely.
The soil of woods, moor, the sands of desert contain few microbes.
The most surface sphere of soil (crust by width of 2-3 mm) is very poor by microorganisms. A desiccation
and the solar rays perniciously influence them.
The ground mass of bacteria is on depth 10-20 cm.
The microflora of soil includes hundreds of species of bacteria, viruses, protozoa, actinomyces and
fungi.
It is various species of putrefactiving, nitrifying, denitrifying, nitrogen-fixing bacteria.
The most often inhabitants of soil are the representatives of genus Azotobacter, Nocardia, and
Clostridium.
Many bacteria of genus Rhisobium, Nitrosomonas, Nitrosospira, Nitrobacter, Pseudomonas are very
often found.
Almost always there are denitrifying bacteria (B.denitrificans), ammonifying microbes (Urobacillus
pasteurii, Urobacillus leybii), numerous iron bacteria and sulphur-bacteria.
All of them play the great role in a turnover of materials in a nature, improve productivity of our fields,
provide life on the Earth.
The microorganisms of soil take an active part in all processes of transformation of materials and energy:
synthesis of a biomass, biological nitrogen fixation, fermentation, denitrification of the cycle sulfur,
iron lactas, phosphorum, carboneum and other elements.
SOILS AS AN ENVIRONMENT FOR MICROORGANISMS
A soil scientist would describe soil as weathered rock combined with organic matter and
nutrients.
An agronomist would point out that soil supports plant life.
However, a microbial ecologist knows that the formation of organic matter and the growth
of plants depend on the microbial community within the soil.
Microbial activities can lead to the formation of minerals such as dolomite; microbial
activity also occurs in deep continental oil reservoirs, in stones, and even in rocky
outcrops. These microbes are dependent on energy sources from photosynthetic protists
and nutrients in rainfall and dust.
A typical soil habitat contains a mixture
of clay, silt, and sand along with soil
organic matter.
Roots, animals (e.g., nematodes and
mites), as well as chemoorganotrophic
bacteria consume oxygen, which is
rapidly replaced by diffusion within the
soil pores where the microbes live.
Soil Habitat
The Composition of the Lithosphere
• Soil is a dynamic, complex ecosystem with a vast array of microbes,
animals, and plants.
• Lichens – symbiotic associations between a fungus and a
cyanobacterium or green algae
• produce acid that releases minerals from rocks
• Humus – rich moist layer of soil containing plant and animal debris being
decomposed by microbes
• Rhizosphere – zone of soil around plant roots contains associated
bacteria, fungi and protozoa
• Mycorrhizae – symbiotic organs formed between fungi and certain plant
roots
What Are Microbes Doing For Plants?
• Providing nutrition
• Mycorrhiza – absorb water and nutrients
• Nitrogen fixation– rhizobacteria
• Decomposition of dead material into plant usable
• Store nutrients in their cells
• Preventing pathogens
• Bacteriocins and antibiotics
• Competition
• Molding the architecture of the soil
• Aeration
• Aggregates that enhance water retention
What does the plant do to encourage the microbiota?
• Secretes small molecules such as sugars and amino acids, peptides
• Far more life in the rhizosphere than away from it.
• A large part of the plants energy stores are secreted into the soil.
• Protection: allows some bacteria to live in plant cells.
Food sources of Soil Microbes
Bacteria
• -are more dominant group of microorganisms in the soil and equal to
one half of the microbial biomass in soil.
• Population 100,000 to several hundred millions for gram of soil -
Autochthonous - Zymogenous groups.
• Majority are Heterotrophs. (Common soil bacteria - Arthrobacter,
Bacillus, Clostridium, Micrococcus).
Plant Growth Enhancing by Bacteria
• Certain strains of the soil bacteria Pseudomonas fluorescens have anti-fungal
activity that inhibits some plant pathogens.
• P. fluorescens and other Pseudomonas and Xanthomonas species can increase plant
growth in several ways.
• They may produce a compound that inhibits the growth of pathogens or reduces
invasion of the plant by a pathogen. They may also produce compounds (growth
factors) that directly increase plant growth.
• In the future, farmers may be able to inoculate seeds with anti-fungal bacteria, such
as P. fluorescens, to ensure that the bacteria reduce pathogens around the seed and
root of the crop.
• - intermediate group between bacteria and fungi. Numerous and widely
distributed in soil.
• Abundance is next to bacteria. 104 - 108/g soil.
• 70% of soil actinomycetes are Streptomyces.
• Many of them are known to produce antibiotics. (e.g. S. antibioticus)
• Population increases with depth of soil.
Characteristics of Actinomycetes
• Similarities to bacteria
– Prokaryotic
– sensitive to anti-bacterials
– resemble bacteria in size, shape and gram-staining properties.
• Similarities to fungi
– shape and branching properties, spore formation
– Reproduction mechanism
Actinomycetes, such as this Streptomyces, give soil its
"earthy" smell.
Fungi
• More numerous in surface layers of well-aerated and cultivated soils-dominant in
acid soils.
• Common genera in soil are Aspergillus, Mucor, Penicillium Trichoderma, Alternaria,
Rhizopus.
• Algae – found in most of the soils in number ranges from 100 to 10,000 per g
• Decomposers – saprophytic fungi – convert dead organic material into fungal
biomass, carbon dioxide (CO2), and small molecules, such as organic acids. Like
bacteria, fungi are important for immobilizing, or retaining, nutrients in the soil.
• In addition, many of the secondary metabolites of fungi are organic acids, so they
help increase the accumulation of humic-acid rich organic matter that is resistant to
degradation and may stay in the soil for hundreds of years.
• Mutualists – the mycorrhizal fungi – colonize plant roots. In exchange for carbon from
the plant, mycorrhizal fungi help solubilize phosphorus and bring soil nutrients
(phosphorus, nitrogen, micronutrients, and perhaps water) to the plant.
• Pathogens or parasites, cause reduced production or death when they colonize roots
and other organisms. Root-pathogenic fungi, such as Verticillium, Pythium, and
Rhizoctonia, cause major economic losses in agriculture each year.
• Many fungi help control diseases. For example, nematode-trapping fungi that
parasitize disease-causing nematodes, and fungi that feed on insects may be useful as
biocontrol agents.
Fungi
• abundant after bacteria
• food sources for other organisms
• beneficial symbiotic relationships with plants or other organisms
• reduce crop residues
• biochemically process nutrients to improve the soil
Factors effecting growth of fungi
• quality as well as quantity of organic matter in the soil has a direct correlation to the
growth of fungi
• Fungi are abundant in acidic areas compared to bacteria
• Fungi also grows well in dry, arid soils (aerobic, or dependent on oxygen)
Algae
• Algae can make its own nutrients through a process known as photosynthesis
• distributed evenly wherever sunlight and moderate moisture is available
– do not have to be on the soil surface or directly exposed to sun rays
– can live below the soil surface as long as the algae has uniform temperature and
moisture conditions.
• Possess the character of symbiotic nitrogen fixation in association with other organisms
like fungi, mosses, and liverworts
• Association fix nitrogen symbiotically in rice fields.
• Plays important role in the maintenance of soil fertility especially in tropical soils.
• Add organic matter to soil when die and thus increase the amount of organic carbon in
soil
• Most of soil algae (especially BGA) act as cementing agent in binding soil particles and
thereby reduce/prevent soil erosion
• Mucilage secreted by the BGA is hygroscopic in nature and thus helps in increasing
water retention capacity of soil for longer time/period
• Soil algae through the process of photosynthesis liberate large quantity of oxygen in
the soil environment and thus facilitate the aeration in submerged soils or oxygenate
the soil environment
• Help in checking the loss of nitrates through leaching and drainage especially in un-
cropped soils
• They help in weathering of rocks and building up of soil structure
Soil Protozoa
• Unicellular – population ranges from 10,000 to 100,000 per g of soil.
• Most of the soil forms are flagellates, amoebae or ciliates.
• Derive their nutrition by devouring soil bacteria.
• Abundant in upper larger of the soil.
• They are regulating the biological equilibrium in soil.
• Ciliates –paramecia eat bacteria and each other
• Amoeba – feeds on bacteria and parmecia
• Release nitrogen from bacteria
• Protozoa can be split up into three categories: flagellates, amoebae, and
ciliates
Types of flagellates
• smallest members of the protozoa group, and can be divided
further based on whether
– Non chlorophyll-containing flagellates found mostly in soil and
flagellates that contain chlorophyll typically occur in aquatic
conditions.
– distinguished by their flagella
Amoeba
• larger than flagellates and move in a different way
• slug-like properties and pseudopodia
• does not have permanent appendages
Ciliates
• largest of the protozoa group
• move by means of short, numerous cilia
Importance of soil microorganisms
• Involved in nutrient transformation process
• Decomposition of resistant components of plant and animal tissue
• Role in microbial antagonism
• Participate in humus formation
• Predator to nematodes
• Surface blooming reduces erosion losses
• Improves soil structure
• Maintenance of biological equilibrium
Soil sample under microscope
Assignment (1 page each)
• Cold moist soil (Soils in cold environments; Arctic, Antarctic, or
alpine regions)
• Desert soil
• Geologically Heated Hyperthermal Soils (-found in such areas
as Iceland, the Kamchatka peninsula in eastern Russia,
Yellowstone National Park, and at many mining waste sites)
• State the Microorganisms found in each

More Related Content

What's hot

Rhizosphere
RhizosphereRhizosphere
Rhizosphere
Narpat Singh
 
Rhizosphere & phyllosphere
Rhizosphere & phyllosphereRhizosphere & phyllosphere
Rhizosphere & phyllosphere
Rachana Choudhary
 
soil characteristics influencing growth and activity of microflora
 soil characteristics influencing growth and activity of microflora soil characteristics influencing growth and activity of microflora
soil characteristics influencing growth and activity of microflora
IGKV
 
Presentation on microbial flora of soil by rahul
Presentation on microbial flora of soil by rahulPresentation on microbial flora of soil by rahul
Presentation on microbial flora of soil by rahul
Education Bhaskar
 
Soil microbiology
Soil microbiologySoil microbiology
Soil microbiology
X S
 
Terrestrial Environment Microbiology/ Soil Microbiology
Terrestrial Environment Microbiology/ Soil MicrobiologyTerrestrial Environment Microbiology/ Soil Microbiology
Terrestrial Environment Microbiology/ Soil Microbiology
RuchiRawal1
 
Soil microorganisms
Soil microorganismsSoil microorganisms
Soil microorganisms
Prof. A.Balasubramanian
 
SOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYSOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITY
ChaUhan Ar Shi
 
Rhizosphere effect
Rhizosphere effectRhizosphere effect
Rhizosphere effect
snehaljikamade
 
aeromicrobiology
aeromicrobiologyaeromicrobiology
aeromicrobiology
Microbiology
 
Soil microbiology biotic and abiotic
Soil microbiology biotic and abioticSoil microbiology biotic and abiotic
Soil microbiology biotic and abiotic
AnuKiruthika
 
Microbial Ecology of Soil
Microbial Ecology of SoilMicrobial Ecology of Soil
Microbial Ecology of Soil
Alizay Shahid
 
Microbial habitats
Microbial habitatsMicrobial habitats
Microbial habitats
Microbiology
 
Azotobacter beneficial microbes
Azotobacter  beneficial microbesAzotobacter  beneficial microbes
Azotobacter beneficial microbes
khushbushastri
 
bio-degradation of organic matter
bio-degradation of organic matterbio-degradation of organic matter
bio-degradation of organic matter
IGKV
 
Plant microbe interaction by dr. ashwin cheke
Plant microbe interaction by dr. ashwin chekePlant microbe interaction by dr. ashwin cheke
Plant microbe interaction by dr. ashwin cheke
Ashwin Cheke
 
AZOTOBACTER & AZOSPIRIILUM.pptx
AZOTOBACTER & AZOSPIRIILUM.pptxAZOTOBACTER & AZOSPIRIILUM.pptx
AZOTOBACTER & AZOSPIRIILUM.pptx
Kaviya Lakshmi
 
Microbial diversity of soil
Microbial diversity of soilMicrobial diversity of soil
Microbial diversity of soil
CHANDANA K
 

What's hot (20)

Rhizosphere
RhizosphereRhizosphere
Rhizosphere
 
Rhizosphere & phyllosphere
Rhizosphere & phyllosphereRhizosphere & phyllosphere
Rhizosphere & phyllosphere
 
soil characteristics influencing growth and activity of microflora
 soil characteristics influencing growth and activity of microflora soil characteristics influencing growth and activity of microflora
soil characteristics influencing growth and activity of microflora
 
Presentation on microbial flora of soil by rahul
Presentation on microbial flora of soil by rahulPresentation on microbial flora of soil by rahul
Presentation on microbial flora of soil by rahul
 
Soil microbiology
Soil microbiologySoil microbiology
Soil microbiology
 
Terrestrial Environment Microbiology/ Soil Microbiology
Terrestrial Environment Microbiology/ Soil MicrobiologyTerrestrial Environment Microbiology/ Soil Microbiology
Terrestrial Environment Microbiology/ Soil Microbiology
 
Soil microorganisms
Soil microorganismsSoil microorganisms
Soil microorganisms
 
SOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYSOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITY
 
Rhizosphere effect
Rhizosphere effectRhizosphere effect
Rhizosphere effect
 
aeromicrobiology
aeromicrobiologyaeromicrobiology
aeromicrobiology
 
Soil microbiology biotic and abiotic
Soil microbiology biotic and abioticSoil microbiology biotic and abiotic
Soil microbiology biotic and abiotic
 
PGPR
PGPRPGPR
PGPR
 
Microbial Ecology of Soil
Microbial Ecology of SoilMicrobial Ecology of Soil
Microbial Ecology of Soil
 
Microbial habitats
Microbial habitatsMicrobial habitats
Microbial habitats
 
Azotobacter beneficial microbes
Azotobacter  beneficial microbesAzotobacter  beneficial microbes
Azotobacter beneficial microbes
 
bio-degradation of organic matter
bio-degradation of organic matterbio-degradation of organic matter
bio-degradation of organic matter
 
Azotobacter spp.
Azotobacter spp.Azotobacter spp.
Azotobacter spp.
 
Plant microbe interaction by dr. ashwin cheke
Plant microbe interaction by dr. ashwin chekePlant microbe interaction by dr. ashwin cheke
Plant microbe interaction by dr. ashwin cheke
 
AZOTOBACTER & AZOSPIRIILUM.pptx
AZOTOBACTER & AZOSPIRIILUM.pptxAZOTOBACTER & AZOSPIRIILUM.pptx
AZOTOBACTER & AZOSPIRIILUM.pptx
 
Microbial diversity of soil
Microbial diversity of soilMicrobial diversity of soil
Microbial diversity of soil
 

Similar to Soil as microbial habitat

Agricultural Microbiology Assignment.pptx
Agricultural Microbiology Assignment.pptxAgricultural Microbiology Assignment.pptx
Agricultural Microbiology Assignment.pptx
SarthakMoharana
 
Agricultural Microbiology: Role of microbes in soil fertility
Agricultural Microbiology: Role of microbes in soil fertilityAgricultural Microbiology: Role of microbes in soil fertility
Agricultural Microbiology: Role of microbes in soil fertility
SarthakMoharana
 
B.sc. agri sem ii agricultural microbiology unit 2 soil microorganisms
B.sc. agri sem ii agricultural microbiology unit 2 soil microorganismsB.sc. agri sem ii agricultural microbiology unit 2 soil microorganisms
B.sc. agri sem ii agricultural microbiology unit 2 soil microorganisms
Rai University
 
Microbial ecology and Hierarchy
Microbial ecology and HierarchyMicrobial ecology and Hierarchy
Microbial ecology and Hierarchy
Saajida Sultaana
 
Soil Biota and Organic Residue Decomposition Methods
Soil Biota and Organic Residue Decomposition MethodsSoil Biota and Organic Residue Decomposition Methods
Soil Biota and Organic Residue Decomposition Methods
SOUVIKGANGULY11
 
living inhabitants of soil by Sarah Ashfaq 5th Semester.pptx
living inhabitants of soil by Sarah Ashfaq 5th Semester.pptxliving inhabitants of soil by Sarah Ashfaq 5th Semester.pptx
living inhabitants of soil by Sarah Ashfaq 5th Semester.pptx
SarahAshfaq4
 
Soil food web and its utility for ecology
Soil food web and its utility for ecologySoil food web and its utility for ecology
Soil food web and its utility for ecology
Dr. Ishwar Prakash Sharma
 
Rhizosphere effect.pptx
Rhizosphere effect.pptxRhizosphere effect.pptx
Rhizosphere effect.pptx
MATHANraj69
 
统考生物 Chapter 20 Ecosystem
统考生物 Chapter 20 Ecosystem统考生物 Chapter 20 Ecosystem
统考生物 Chapter 20 Ecosystem
Yee Sing Ong
 
Soil microbiology- Microbes Associated with Soil
Soil microbiology- Microbes Associated with SoilSoil microbiology- Microbes Associated with Soil
Soil microbiology- Microbes Associated with Soil
SruthyPB3
 
Introduction to Microbiology Lecture _II.ppt
Introduction to Microbiology Lecture _II.pptIntroduction to Microbiology Lecture _II.ppt
Introduction to Microbiology Lecture _II.ppt
SimonNyarko
 
MICROBIOLOGY slides 2-1.pdf
MICROBIOLOGY  slides 2-1.pdfMICROBIOLOGY  slides 2-1.pdf
MICROBIOLOGY slides 2-1.pdf
GanashreeTN
 
Soil organisms
Soil organismsSoil organisms
Soil organisms
SulemanQuresi
 
SAC101 Unit 5 Lecture.pptx
SAC101 Unit 5 Lecture.pptxSAC101 Unit 5 Lecture.pptx
SAC101 Unit 5 Lecture.pptx
KishanMishra52
 
Ess topic 2.1 ecosystem structures
Ess topic 2.1   ecosystem structuresEss topic 2.1   ecosystem structures
Ess topic 2.1 ecosystem structuresBrad Kremer
 
Soil biota
Soil biotaSoil biota
Soil biota
IGKV
 
Environmental application of microbes.pptx
 Environmental application of microbes.pptx Environmental application of microbes.pptx
Environmental application of microbes.pptx
berciyalgolda1
 
ENVIRONMENTAL MICROFLORA
ENVIRONMENTAL MICROFLORAENVIRONMENTAL MICROFLORA
ENVIRONMENTAL MICROFLORA
Afra Fathima
 
biological diversity
 biological diversity biological diversity
biological diversityhilary farlow
 
1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt
1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt
1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt
mesfin69
 

Similar to Soil as microbial habitat (20)

Agricultural Microbiology Assignment.pptx
Agricultural Microbiology Assignment.pptxAgricultural Microbiology Assignment.pptx
Agricultural Microbiology Assignment.pptx
 
Agricultural Microbiology: Role of microbes in soil fertility
Agricultural Microbiology: Role of microbes in soil fertilityAgricultural Microbiology: Role of microbes in soil fertility
Agricultural Microbiology: Role of microbes in soil fertility
 
B.sc. agri sem ii agricultural microbiology unit 2 soil microorganisms
B.sc. agri sem ii agricultural microbiology unit 2 soil microorganismsB.sc. agri sem ii agricultural microbiology unit 2 soil microorganisms
B.sc. agri sem ii agricultural microbiology unit 2 soil microorganisms
 
Microbial ecology and Hierarchy
Microbial ecology and HierarchyMicrobial ecology and Hierarchy
Microbial ecology and Hierarchy
 
Soil Biota and Organic Residue Decomposition Methods
Soil Biota and Organic Residue Decomposition MethodsSoil Biota and Organic Residue Decomposition Methods
Soil Biota and Organic Residue Decomposition Methods
 
living inhabitants of soil by Sarah Ashfaq 5th Semester.pptx
living inhabitants of soil by Sarah Ashfaq 5th Semester.pptxliving inhabitants of soil by Sarah Ashfaq 5th Semester.pptx
living inhabitants of soil by Sarah Ashfaq 5th Semester.pptx
 
Soil food web and its utility for ecology
Soil food web and its utility for ecologySoil food web and its utility for ecology
Soil food web and its utility for ecology
 
Rhizosphere effect.pptx
Rhizosphere effect.pptxRhizosphere effect.pptx
Rhizosphere effect.pptx
 
统考生物 Chapter 20 Ecosystem
统考生物 Chapter 20 Ecosystem统考生物 Chapter 20 Ecosystem
统考生物 Chapter 20 Ecosystem
 
Soil microbiology- Microbes Associated with Soil
Soil microbiology- Microbes Associated with SoilSoil microbiology- Microbes Associated with Soil
Soil microbiology- Microbes Associated with Soil
 
Introduction to Microbiology Lecture _II.ppt
Introduction to Microbiology Lecture _II.pptIntroduction to Microbiology Lecture _II.ppt
Introduction to Microbiology Lecture _II.ppt
 
MICROBIOLOGY slides 2-1.pdf
MICROBIOLOGY  slides 2-1.pdfMICROBIOLOGY  slides 2-1.pdf
MICROBIOLOGY slides 2-1.pdf
 
Soil organisms
Soil organismsSoil organisms
Soil organisms
 
SAC101 Unit 5 Lecture.pptx
SAC101 Unit 5 Lecture.pptxSAC101 Unit 5 Lecture.pptx
SAC101 Unit 5 Lecture.pptx
 
Ess topic 2.1 ecosystem structures
Ess topic 2.1   ecosystem structuresEss topic 2.1   ecosystem structures
Ess topic 2.1 ecosystem structures
 
Soil biota
Soil biotaSoil biota
Soil biota
 
Environmental application of microbes.pptx
 Environmental application of microbes.pptx Environmental application of microbes.pptx
Environmental application of microbes.pptx
 
ENVIRONMENTAL MICROFLORA
ENVIRONMENTAL MICROFLORAENVIRONMENTAL MICROFLORA
ENVIRONMENTAL MICROFLORA
 
biological diversity
 biological diversity biological diversity
biological diversity
 
1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt
1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt
1587473792ENVIRONMENTAL_MICROBIOLOGY_LECTURE.ppt
 

More from Rinaldo John

Virtual machine
Virtual machineVirtual machine
Virtual machine
Rinaldo John
 
Handling fermenters and troubleshooting
Handling fermenters and troubleshootingHandling fermenters and troubleshooting
Handling fermenters and troubleshooting
Rinaldo John
 
Fermenter designs and setup
Fermenter designs and setupFermenter designs and setup
Fermenter designs and setup
Rinaldo John
 
Bioprocessing and its significance
Bioprocessing and its significanceBioprocessing and its significance
Bioprocessing and its significance
Rinaldo John
 
Luke 18:18-30
Luke 18:18-30Luke 18:18-30
Luke 18:18-30
Rinaldo John
 
Lost in communication
Lost in communicationLost in communication
Lost in communication
Rinaldo John
 
Role of Environmental Biotechnology
Role of Environmental BiotechnologyRole of Environmental Biotechnology
Role of Environmental Biotechnology
Rinaldo John
 
Molecular analysis of Microbial Community
Molecular analysis of Microbial CommunityMolecular analysis of Microbial Community
Molecular analysis of Microbial Community
Rinaldo John
 
Social entrepreneurship
Social entrepreneurshipSocial entrepreneurship
Social entrepreneurship
Rinaldo John
 
Genetic counselling
Genetic counsellingGenetic counselling
Genetic counselling
Rinaldo John
 
Journal Club Presentation PPT Format
Journal Club Presentation PPT FormatJournal Club Presentation PPT Format
Journal Club Presentation PPT Format
Rinaldo John
 
Microbial loop
Microbial loopMicrobial loop
Microbial loop
Rinaldo John
 
Distribution of microbes in aquatic environment
Distribution of microbes in aquatic environmentDistribution of microbes in aquatic environment
Distribution of microbes in aquatic environment
Rinaldo John
 
Microbial contamination
Microbial contamination Microbial contamination
Microbial contamination
Rinaldo John
 
Antibiotics and Synthetic Antimicrobial agents
Antibiotics and Synthetic Antimicrobial agentsAntibiotics and Synthetic Antimicrobial agents
Antibiotics and Synthetic Antimicrobial agents
Rinaldo John
 
Antibiotics part 4
Antibiotics part 4Antibiotics part 4
Antibiotics part 4
Rinaldo John
 
Antibiotics part 3
Antibiotics part 3Antibiotics part 3
Antibiotics part 3
Rinaldo John
 
Antibiotics part 2
Antibiotics part 2Antibiotics part 2
Antibiotics part 2
Rinaldo John
 
Proverbs 2
Proverbs 2Proverbs 2
Proverbs 2
Rinaldo John
 
Sulphur cycle
Sulphur cycleSulphur cycle
Sulphur cycle
Rinaldo John
 

More from Rinaldo John (20)

Virtual machine
Virtual machineVirtual machine
Virtual machine
 
Handling fermenters and troubleshooting
Handling fermenters and troubleshootingHandling fermenters and troubleshooting
Handling fermenters and troubleshooting
 
Fermenter designs and setup
Fermenter designs and setupFermenter designs and setup
Fermenter designs and setup
 
Bioprocessing and its significance
Bioprocessing and its significanceBioprocessing and its significance
Bioprocessing and its significance
 
Luke 18:18-30
Luke 18:18-30Luke 18:18-30
Luke 18:18-30
 
Lost in communication
Lost in communicationLost in communication
Lost in communication
 
Role of Environmental Biotechnology
Role of Environmental BiotechnologyRole of Environmental Biotechnology
Role of Environmental Biotechnology
 
Molecular analysis of Microbial Community
Molecular analysis of Microbial CommunityMolecular analysis of Microbial Community
Molecular analysis of Microbial Community
 
Social entrepreneurship
Social entrepreneurshipSocial entrepreneurship
Social entrepreneurship
 
Genetic counselling
Genetic counsellingGenetic counselling
Genetic counselling
 
Journal Club Presentation PPT Format
Journal Club Presentation PPT FormatJournal Club Presentation PPT Format
Journal Club Presentation PPT Format
 
Microbial loop
Microbial loopMicrobial loop
Microbial loop
 
Distribution of microbes in aquatic environment
Distribution of microbes in aquatic environmentDistribution of microbes in aquatic environment
Distribution of microbes in aquatic environment
 
Microbial contamination
Microbial contamination Microbial contamination
Microbial contamination
 
Antibiotics and Synthetic Antimicrobial agents
Antibiotics and Synthetic Antimicrobial agentsAntibiotics and Synthetic Antimicrobial agents
Antibiotics and Synthetic Antimicrobial agents
 
Antibiotics part 4
Antibiotics part 4Antibiotics part 4
Antibiotics part 4
 
Antibiotics part 3
Antibiotics part 3Antibiotics part 3
Antibiotics part 3
 
Antibiotics part 2
Antibiotics part 2Antibiotics part 2
Antibiotics part 2
 
Proverbs 2
Proverbs 2Proverbs 2
Proverbs 2
 
Sulphur cycle
Sulphur cycleSulphur cycle
Sulphur cycle
 

Recently uploaded

Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptx
sidjena70
 
DRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving togetherDRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving together
Robin Grant
 
Characterization and the Kinetics of drying at the drying oven and with micro...
Characterization and the Kinetics of drying at the drying oven and with micro...Characterization and the Kinetics of drying at the drying oven and with micro...
Characterization and the Kinetics of drying at the drying oven and with micro...
Open Access Research Paper
 
UNDERSTANDING WHAT GREEN WASHING IS!.pdf
UNDERSTANDING WHAT GREEN WASHING IS!.pdfUNDERSTANDING WHAT GREEN WASHING IS!.pdf
UNDERSTANDING WHAT GREEN WASHING IS!.pdf
JulietMogola
 
ppt on beauty of the nature by Palak.pptx
ppt on  beauty of the nature by Palak.pptxppt on  beauty of the nature by Palak.pptx
ppt on beauty of the nature by Palak.pptx
RaniJaiswal16
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation Strategy
Robin Grant
 
Navigating the complex landscape of AI governance
Navigating the complex landscape of AI governanceNavigating the complex landscape of AI governance
Navigating the complex landscape of AI governance
Piermenotti Mauro
 
Willie Nelson Net Worth: A Journey Through Music, Movies, and Business Ventures
Willie Nelson Net Worth: A Journey Through Music, Movies, and Business VenturesWillie Nelson Net Worth: A Journey Through Music, Movies, and Business Ventures
Willie Nelson Net Worth: A Journey Through Music, Movies, and Business Ventures
greendigital
 
Prevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patientsPrevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patients
Open Access Research Paper
 
Alert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
Alert-driven Community-based Forest monitoring: A case of the Peruvian AmazonAlert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
Alert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
CIFOR-ICRAF
 
Bhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of deathBhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of death
upasana742003
 
Q&A with the Experts: The Food Service Playbook
Q&A with the Experts: The Food Service PlaybookQ&A with the Experts: The Food Service Playbook
Q&A with the Experts: The Food Service Playbook
World Resources Institute (WRI)
 
Sustainable farming practices in India .pptx
Sustainable farming  practices in India .pptxSustainable farming  practices in India .pptx
Sustainable farming practices in India .pptx
chaitaliambole
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
ipcc-media
 
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Open Access Research Paper
 
"Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for...
"Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for..."Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for...
"Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for...
MMariSelvam4
 
International+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shopInternational+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shop
laozhuseo02
 
AGRICULTURE Hydrophonic FERTILISER PPT.pptx
AGRICULTURE Hydrophonic FERTILISER PPT.pptxAGRICULTURE Hydrophonic FERTILISER PPT.pptx
AGRICULTURE Hydrophonic FERTILISER PPT.pptx
BanitaDsouza
 
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdfPresentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Innovation and Technology for Development Centre
 
Celebrating World-environment-day-2024.pdf
Celebrating  World-environment-day-2024.pdfCelebrating  World-environment-day-2024.pdf
Celebrating World-environment-day-2024.pdf
rohankumarsinghrore1
 

Recently uploaded (20)

Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptx
 
DRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving togetherDRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving together
 
Characterization and the Kinetics of drying at the drying oven and with micro...
Characterization and the Kinetics of drying at the drying oven and with micro...Characterization and the Kinetics of drying at the drying oven and with micro...
Characterization and the Kinetics of drying at the drying oven and with micro...
 
UNDERSTANDING WHAT GREEN WASHING IS!.pdf
UNDERSTANDING WHAT GREEN WASHING IS!.pdfUNDERSTANDING WHAT GREEN WASHING IS!.pdf
UNDERSTANDING WHAT GREEN WASHING IS!.pdf
 
ppt on beauty of the nature by Palak.pptx
ppt on  beauty of the nature by Palak.pptxppt on  beauty of the nature by Palak.pptx
ppt on beauty of the nature by Palak.pptx
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation Strategy
 
Navigating the complex landscape of AI governance
Navigating the complex landscape of AI governanceNavigating the complex landscape of AI governance
Navigating the complex landscape of AI governance
 
Willie Nelson Net Worth: A Journey Through Music, Movies, and Business Ventures
Willie Nelson Net Worth: A Journey Through Music, Movies, and Business VenturesWillie Nelson Net Worth: A Journey Through Music, Movies, and Business Ventures
Willie Nelson Net Worth: A Journey Through Music, Movies, and Business Ventures
 
Prevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patientsPrevalence, biochemical and hematological study of diabetic patients
Prevalence, biochemical and hematological study of diabetic patients
 
Alert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
Alert-driven Community-based Forest monitoring: A case of the Peruvian AmazonAlert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
Alert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
 
Bhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of deathBhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of death
 
Q&A with the Experts: The Food Service Playbook
Q&A with the Experts: The Food Service PlaybookQ&A with the Experts: The Food Service Playbook
Q&A with the Experts: The Food Service Playbook
 
Sustainable farming practices in India .pptx
Sustainable farming  practices in India .pptxSustainable farming  practices in India .pptx
Sustainable farming practices in India .pptx
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
 
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
 
"Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for...
"Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for..."Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for...
"Understanding the Carbon Cycle: Processes, Human Impacts, and Strategies for...
 
International+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shopInternational+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shop
 
AGRICULTURE Hydrophonic FERTILISER PPT.pptx
AGRICULTURE Hydrophonic FERTILISER PPT.pptxAGRICULTURE Hydrophonic FERTILISER PPT.pptx
AGRICULTURE Hydrophonic FERTILISER PPT.pptx
 
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdfPresentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
 
Celebrating World-environment-day-2024.pdf
Celebrating  World-environment-day-2024.pdfCelebrating  World-environment-day-2024.pdf
Celebrating World-environment-day-2024.pdf
 

Soil as microbial habitat

  • 2. Organization of Ecosystems Biosphere – thick envelope of life that surrounds the earth’s surface • Made up of: • hydrosphere (water) • lithosphere (soil) • atmosphere (air) • Maintains and creates the conditions of temperature, light, gases, moisture, and minerals required for life processes • Biomes- particular climatic regions • Terrestrial biomes- grassland, tropical rainforest, temperate and tundra. • Aquatic biomes- freshwater biomes and marine biomes.
  • 3. • Communities – the association of organisms that live together and that exhibit well-defined nutritional or behavioral interrelationships • Population – organisms of the same species within a community • Habitat – the physical location in the environment to which an organism has adapted • Niche – overall role that a species, or population, serves in a community; nutritional intake, position in the community, and rate of population growth
  • 4. Ecology (oicos – house, hold, logos - doctrine) - science about legitimacies of creation and functioning of biological systems and their mutual relation with an environment. The microecology is the science about places of invading of microorganisms and their ecological links. At learning a microbial ecology use the same concepts, as well as in a common ecology. Main of them are the following: population - an elementary evolutional unit (structure) of a definite species; biotope - site, habitation of a population, for parasites - place of their localization in an organism; microbiocenosis - microbial assemblage, association, that is collection of populations of different species of microorganisms, which dwell(live) in the defined biotope (for example, in an oral cavity, reservoir); Ecosystem - system, in which enters a biotope and microbiocenosis
  • 5. • Is the study of numerous interrelationships between microorganisms and the world around them; how microbes interact with other microbes how microbes interact with organisms other than microbes and how microbes interact with the non-living world around them
  • 6. From old times it is known, that the microorganisms are omnipresent that is ubiquitous organisms. Huge quantities of them meet in soil, water and air. The environment of their habitation is plants, animal, man. Everywhere bacteria are existed as microbiocenoses. The modern microbial biocenoses were generated as a result of durable evolution. Mutual relation (cohabitation) of different species of microbes among themselves and with other forms of life are called symbiosis.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. Types of symbioses 1. Neutralism - the populations, existing in one biotope do not stimulate and do not oppress each other. 2. Mutualism - mutually advantageous cohabitation; one population synthesizes materials (matter), which are the basis of power supply for another (for example, legume bacteria and bean plants, aerobic and anaerobic bacteria in an organism of the man). 3. Commensalism - such form of symbiosis, at which one of jointly living populations extracts for herself advantage(benefit), but does not put a harm of other population. The commensalism is characteristic for many inhabitants of human body.
  • 12. Types of symbioses 4. Antagonism - oppression of one population another. The microbes – antagonists produce antibiotics, bacteriocines, fatty acids, which cause destruction of bacteria or delay their reproduction. 5. Parasitism - such kind of symbiosis, at which one population (parasite) brings harm to the host, and for itself has a benefit. The causative agents of bacterial, virus and fungi illnesses concern to microbes - parasites. 6. Synergism- the interaction or cooperation of two or more organizations, substances, or other agents to produce a combined effect greater than the sum of their separate effects.
  • 13. Soil is alive… For example, in 1g of soil: >100,000,000 bacterial cells >11,000 species of bacteria Also fungi and larger animals
  • 14. Microflora of the soil The soil is the major environment for a habitation of microorganisms. The first bacteria, as well as all alive ones, have appeared in water. However in more later geological periods, when on a surface of globe the soil was derived, it became main habitation of microorganisms and main arena of their vital activity. The amount of bacteria in one gram of soil can be very great - from 200 millions up to 10 billions. Manured and ploughing ground are stocked with microorganisms most densely. The soil of woods, moor, the sands of desert contain few microbes. The most surface sphere of soil (crust by width of 2-3 mm) is very poor by microorganisms. A desiccation and the solar rays perniciously influence them. The ground mass of bacteria is on depth 10-20 cm.
  • 15. The microflora of soil includes hundreds of species of bacteria, viruses, protozoa, actinomyces and fungi. It is various species of putrefactiving, nitrifying, denitrifying, nitrogen-fixing bacteria. The most often inhabitants of soil are the representatives of genus Azotobacter, Nocardia, and Clostridium. Many bacteria of genus Rhisobium, Nitrosomonas, Nitrosospira, Nitrobacter, Pseudomonas are very often found. Almost always there are denitrifying bacteria (B.denitrificans), ammonifying microbes (Urobacillus pasteurii, Urobacillus leybii), numerous iron bacteria and sulphur-bacteria. All of them play the great role in a turnover of materials in a nature, improve productivity of our fields, provide life on the Earth. The microorganisms of soil take an active part in all processes of transformation of materials and energy: synthesis of a biomass, biological nitrogen fixation, fermentation, denitrification of the cycle sulfur, iron lactas, phosphorum, carboneum and other elements.
  • 16. SOILS AS AN ENVIRONMENT FOR MICROORGANISMS A soil scientist would describe soil as weathered rock combined with organic matter and nutrients. An agronomist would point out that soil supports plant life. However, a microbial ecologist knows that the formation of organic matter and the growth of plants depend on the microbial community within the soil. Microbial activities can lead to the formation of minerals such as dolomite; microbial activity also occurs in deep continental oil reservoirs, in stones, and even in rocky outcrops. These microbes are dependent on energy sources from photosynthetic protists and nutrients in rainfall and dust.
  • 17. A typical soil habitat contains a mixture of clay, silt, and sand along with soil organic matter. Roots, animals (e.g., nematodes and mites), as well as chemoorganotrophic bacteria consume oxygen, which is rapidly replaced by diffusion within the soil pores where the microbes live. Soil Habitat
  • 18. The Composition of the Lithosphere • Soil is a dynamic, complex ecosystem with a vast array of microbes, animals, and plants. • Lichens – symbiotic associations between a fungus and a cyanobacterium or green algae • produce acid that releases minerals from rocks • Humus – rich moist layer of soil containing plant and animal debris being decomposed by microbes • Rhizosphere – zone of soil around plant roots contains associated bacteria, fungi and protozoa • Mycorrhizae – symbiotic organs formed between fungi and certain plant roots
  • 19. What Are Microbes Doing For Plants? • Providing nutrition • Mycorrhiza – absorb water and nutrients • Nitrogen fixation– rhizobacteria • Decomposition of dead material into plant usable • Store nutrients in their cells • Preventing pathogens • Bacteriocins and antibiotics • Competition • Molding the architecture of the soil • Aeration • Aggregates that enhance water retention
  • 20. What does the plant do to encourage the microbiota? • Secretes small molecules such as sugars and amino acids, peptides • Far more life in the rhizosphere than away from it. • A large part of the plants energy stores are secreted into the soil. • Protection: allows some bacteria to live in plant cells.
  • 21. Food sources of Soil Microbes
  • 22. Bacteria • -are more dominant group of microorganisms in the soil and equal to one half of the microbial biomass in soil. • Population 100,000 to several hundred millions for gram of soil - Autochthonous - Zymogenous groups. • Majority are Heterotrophs. (Common soil bacteria - Arthrobacter, Bacillus, Clostridium, Micrococcus).
  • 23. Plant Growth Enhancing by Bacteria • Certain strains of the soil bacteria Pseudomonas fluorescens have anti-fungal activity that inhibits some plant pathogens. • P. fluorescens and other Pseudomonas and Xanthomonas species can increase plant growth in several ways. • They may produce a compound that inhibits the growth of pathogens or reduces invasion of the plant by a pathogen. They may also produce compounds (growth factors) that directly increase plant growth. • In the future, farmers may be able to inoculate seeds with anti-fungal bacteria, such as P. fluorescens, to ensure that the bacteria reduce pathogens around the seed and root of the crop.
  • 24. • - intermediate group between bacteria and fungi. Numerous and widely distributed in soil. • Abundance is next to bacteria. 104 - 108/g soil. • 70% of soil actinomycetes are Streptomyces. • Many of them are known to produce antibiotics. (e.g. S. antibioticus) • Population increases with depth of soil.
  • 25. Characteristics of Actinomycetes • Similarities to bacteria – Prokaryotic – sensitive to anti-bacterials – resemble bacteria in size, shape and gram-staining properties. • Similarities to fungi – shape and branching properties, spore formation – Reproduction mechanism
  • 26. Actinomycetes, such as this Streptomyces, give soil its "earthy" smell.
  • 27. Fungi • More numerous in surface layers of well-aerated and cultivated soils-dominant in acid soils. • Common genera in soil are Aspergillus, Mucor, Penicillium Trichoderma, Alternaria, Rhizopus. • Algae – found in most of the soils in number ranges from 100 to 10,000 per g • Decomposers – saprophytic fungi – convert dead organic material into fungal biomass, carbon dioxide (CO2), and small molecules, such as organic acids. Like bacteria, fungi are important for immobilizing, or retaining, nutrients in the soil. • In addition, many of the secondary metabolites of fungi are organic acids, so they help increase the accumulation of humic-acid rich organic matter that is resistant to degradation and may stay in the soil for hundreds of years.
  • 28. • Mutualists – the mycorrhizal fungi – colonize plant roots. In exchange for carbon from the plant, mycorrhizal fungi help solubilize phosphorus and bring soil nutrients (phosphorus, nitrogen, micronutrients, and perhaps water) to the plant. • Pathogens or parasites, cause reduced production or death when they colonize roots and other organisms. Root-pathogenic fungi, such as Verticillium, Pythium, and Rhizoctonia, cause major economic losses in agriculture each year. • Many fungi help control diseases. For example, nematode-trapping fungi that parasitize disease-causing nematodes, and fungi that feed on insects may be useful as biocontrol agents.
  • 29. Fungi • abundant after bacteria • food sources for other organisms • beneficial symbiotic relationships with plants or other organisms • reduce crop residues • biochemically process nutrients to improve the soil Factors effecting growth of fungi • quality as well as quantity of organic matter in the soil has a direct correlation to the growth of fungi • Fungi are abundant in acidic areas compared to bacteria • Fungi also grows well in dry, arid soils (aerobic, or dependent on oxygen)
  • 30. Algae • Algae can make its own nutrients through a process known as photosynthesis • distributed evenly wherever sunlight and moderate moisture is available – do not have to be on the soil surface or directly exposed to sun rays – can live below the soil surface as long as the algae has uniform temperature and moisture conditions. • Possess the character of symbiotic nitrogen fixation in association with other organisms like fungi, mosses, and liverworts • Association fix nitrogen symbiotically in rice fields. • Plays important role in the maintenance of soil fertility especially in tropical soils. • Add organic matter to soil when die and thus increase the amount of organic carbon in soil
  • 31. • Most of soil algae (especially BGA) act as cementing agent in binding soil particles and thereby reduce/prevent soil erosion • Mucilage secreted by the BGA is hygroscopic in nature and thus helps in increasing water retention capacity of soil for longer time/period • Soil algae through the process of photosynthesis liberate large quantity of oxygen in the soil environment and thus facilitate the aeration in submerged soils or oxygenate the soil environment • Help in checking the loss of nitrates through leaching and drainage especially in un- cropped soils • They help in weathering of rocks and building up of soil structure
  • 32. Soil Protozoa • Unicellular – population ranges from 10,000 to 100,000 per g of soil. • Most of the soil forms are flagellates, amoebae or ciliates. • Derive their nutrition by devouring soil bacteria. • Abundant in upper larger of the soil. • They are regulating the biological equilibrium in soil. • Ciliates –paramecia eat bacteria and each other • Amoeba – feeds on bacteria and parmecia • Release nitrogen from bacteria • Protozoa can be split up into three categories: flagellates, amoebae, and ciliates
  • 33. Types of flagellates • smallest members of the protozoa group, and can be divided further based on whether – Non chlorophyll-containing flagellates found mostly in soil and flagellates that contain chlorophyll typically occur in aquatic conditions. – distinguished by their flagella
  • 34. Amoeba • larger than flagellates and move in a different way • slug-like properties and pseudopodia • does not have permanent appendages Ciliates • largest of the protozoa group • move by means of short, numerous cilia
  • 35. Importance of soil microorganisms • Involved in nutrient transformation process • Decomposition of resistant components of plant and animal tissue • Role in microbial antagonism • Participate in humus formation • Predator to nematodes • Surface blooming reduces erosion losses • Improves soil structure • Maintenance of biological equilibrium
  • 36. Soil sample under microscope
  • 37. Assignment (1 page each) • Cold moist soil (Soils in cold environments; Arctic, Antarctic, or alpine regions) • Desert soil • Geologically Heated Hyperthermal Soils (-found in such areas as Iceland, the Kamchatka peninsula in eastern Russia, Yellowstone National Park, and at many mining waste sites) • State the Microorganisms found in each