SlideShare a Scribd company logo
Course: Electromagnetic Theory
paper code: EI 503
Course Coordinator: Arpan Deyasi
Department of Electronics and Communication Engineering
RCC Institute of Information Technology
Kolkata, India
Topics: Scalar and Vector Differentiation
Arpan Deyasi
Electromagnetic
Theory
Vector Differential Operator
Del is called the vector differential operator 
It is the first order differentiation
In Cartesian coordinate ˆ
ˆ ˆ
i j k
x y z
  
 = + +
  
In Cylindrical coordinate
1
ˆ
ˆ ẑ
z
 
  
  
 = + +
  
In Spherical coordinate
1 1
ˆ ˆ
ˆ
sin
r
r r r
 
  
  
 = + +
  
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Φ (x, y, z) is defined and differentiable scalar function at each
point (x, y, z) in a certain region of space
ˆ
ˆ ˆ
i j k
x y z
   
  
 = + +
  
Gradient of Φ Vector function
Significance: rate of change of scalar function in a region of space
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
n̂
Let is the arbitrary vector in a region of space where gradient
of any scalar function Φ exists
ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ
. . . .
n i i j j k k
x y z
  

  
 = + +
  
ˆ
.n
x y z
  

  
 = + +
  
Directional Derivative of Φ in the direction of n
Significance: rate of change of scalar function Φ in the direction of n
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Prob 1:
2 3 2
( , , ) 3
x y z x y y z
 = − find
( )
( )
2 2 2 3
( 1,2,1) ( 1,2,1)
ˆ
ˆ ˆ
6 3 3 2
xyi x y z j y zk

− −
 = + − −
Soln:
( )
2 3 2
ˆ
ˆ ˆ 3
i j k x y y z
x y z

 
  
 = + + −
 
  
 
( )
2 2 2 3 ˆ
ˆ ˆ
6 3 3 2
xyi x y z j y zk

 = + − −
( 1,2,1)

−

( 1,2,1)
ˆ
ˆ ˆ
12 9 16
i j k

−
 = − − −
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Prob 2: ( , , ) ln
x y z r
 = find 

Soln:
ˆ
ˆ ˆ
r xi yj zk
= + +
( )
2 2 2
1
ln ln
2
r x y z
 = = + +
( )
2 2 2
1
ln ln
2
r x y z
  
 = =  + +
 
( )
2 2 2
1 ˆ ln ....
2
i x y z
x


 
 
 = + + +
 
 

 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
( )
2 2 2
1 1
ˆ.2 . ....
2
i x
x y z

 
 
 = +
+ +
 
 
( )
2 2 2
ˆ
ˆ ˆ
ix jy kz
x y z

 
+ +
 
 =
+ +
 
 
2
r
r

 =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Prob 3: ( , , ) n
x y z r
 = find 

Soln:
ˆ
ˆ ˆ
r xi yj zk
= + +
( )
/2
2 2 2 n
n
r x y z
 = = + +
( )
/2
2 2 2 n
n
r x y z

 =  =  + +
( )
/2
2 2 2 n
n
r x y z

 =  =  + +
( )
/2
2 2 2
ˆ
ˆ ˆ
n
i j k x y z
x y z

 
  
 = + + + +
 
  
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
( )
/2
2 2 2
ˆ .........
n
i x y z
x


 
 = + + +
 

 
( )
( /2 1)
2 2 2
ˆ .2 .........
2
n
n
i x y z x

−
 
 = + + +
 
 
( )
( )
( /2 1)
2 2 2
ˆ .........
n
inx x y z

−
 = + + +
2 ( /2 1)
( ) n
n r r
 −
 =
( )
( 2)
n
n r r
 −
 =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Prob 4: Show that is a vector perpendicular to the surface Φ(x, y, z)
= K where ‘K’ is a constant


Soln:
ˆ
ˆ ˆ
r xi yj zk
= + +
ˆ
ˆ ˆ
dr dxi dyj dzk
= + +
( , , )
x y z K
 =
( , , ) 0
d x y z
 =
0
dx dy dz
x y z
  
  
+ + =
  
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
ˆ ˆ
ˆ ˆ ˆ ˆ
.( ) 0
i j k dxi dyj dzk
x y z
 
  
+ + + + =
 
  
 
. 0
dr

 =

 is perpendicular to r
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Find unit normal to the surface 4
2
2
−
+
= xz
y
x
 at (-2,2,3)
)
4
2
( 2
−
+

=
 xz
y
x



k
x
j
x
i
z
xy ˆ
2
ˆ
ˆ
)
2
2
( 2
+
+
+
=


k
j
i ˆ
4
ˆ
4
ˆ
2
)
3
,
2
,
2
(
−
+
−
=

−


Prob 5:
Soln:
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Downward unit normal
2
2
2
4
4
2
ˆ
4
ˆ
4
ˆ
2
ˆ
+
+
−
+
−

=
k
j
i
n
k
j
i
n ˆ
3
2
ˆ
3
2
ˆ
3
1
ˆ 
 
=
Unit normal to the surface
k
j
i
nup
ˆ
3
2
ˆ
3
2
ˆ
3
1
ˆ −
+
−
=
Upward unit normal
k
j
i
ndown
ˆ
3
2
ˆ
3
2
ˆ
3
1
ˆ +
−
=
( , , )
x y z

ˆup
n
ˆdown
n
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
In the direction of
)
4
( 2
2
xz
yz
x +

=




at (1,-2,1)
Find the directional derivative of
k
j
i ˆ
2
ˆ
ˆ
2 −
+
2
2
4xz
yz
x +
=

k
zx
y
x
j
z
x
i
z
xyz ˆ
)
8
(
ˆ
ˆ
)
4
2
( 2
2
2
+
+
+
+
=


k
j ˆ
4
ˆ
2
)
1
,
2
,
1
(
+
=

−


Prob 6:
Soln:
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Scalar Function
Unit vector in the direction of k
j
i ˆ
2
ˆ
ˆ
2 −
+ is
2
2
2
2
1
2
ˆ
2
ˆ
ˆ
2
ˆ
+
+
−
+
=
k
j
i
n
k
j
i
n ˆ
3
2
ˆ
3
2
ˆ
3
1
ˆ −
+
−
=
Directional derivative 





−
+
−
+
=
 k
j
i
k
j
n ˆ
3
2
ˆ
3
2
ˆ
3
1
).
ˆ
4
ˆ
2
(
ˆ
.


3
4
3
8
3
4
ˆ
. −
=






−
=
 n




n̂
2
2
4xz
yz
x +
=

Arpan Deyasi
Electromagnetic
Theory
Prob 7: Find the unit vector perpendicular to the surface
at point (4,2,3)
(4,2,3)
ˆ ˆ
ˆ ˆ ˆ ˆ
2 4 2 2 2 3 8 4 6
i j k i j k

 =  +  −  = + −
Differentiation of Scalar Function
2 2 2
( , , ) 11
x y z x y z
 = + − −
ˆ ˆ
ˆ ˆ ˆ ˆ
2 2 2
i j k i x j y k z
x y z
  

 
  
 = + + = + −
 
  
 
2 2 2
11
x y z
+ − =
Arpan Deyasi
Electromagnetic
Theory
Unit normal to the surface at (4,2,3)
ˆ
ˆ ˆ
8 4 6
ˆ
64 16 36
i j k
n
+ −
= 
+ +
Differentiation of Scalar Function
ˆ
ˆ ˆ
8 4 6
ˆ
116
i j k
n
+ −
= 
ˆ
ˆ ˆ
8 4 6
ˆ
2 29
i j k
n
+ −
= 
4 2 3 ˆ
ˆ ˆ
ˆ
29 29 29
n i j k
=  
4 2 3 ˆ
ˆ ˆ
ˆ
29 29 29
up
n i j k
= + −
4 2 3 ˆ
ˆ ˆ
ˆ
29 29 29
down
n i j k
= − − +
( , , )
x y z

ˆup
n
ˆdown
n
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
( )
1 2 3
ˆ ˆ
ˆ ˆ ˆ ˆ
. .
divP P i j k iP jP kP
x y z
 
  
=  = + + + +
 
  
 
𝑷 (x, y, z) is defined and differentiable vector function at each
point (x, y, z) in a certain region of space
1 2 3
.P P P P
x y z
  
 = + +
  
1 2 3
ˆ
ˆ ˆ
P Pi P j Pk
= + +
Divergence of P Scalar function
Arpan Deyasi
Electromagnetic
Theory
19
Differentiation of Vector Function: Divergence
Significance: volume density of net outward flux from a vector
field originated from a given point (source) where the point is
defined in the region of space
If divergence is negative, then inflow is signified and the
point becomes sink
. 0
P
 =
If
the vector becomes solenoidal/ also called incompressible vector field
A solenoidal vector field has zero divergence. That means that it has no sources or sinks; all
field lines form closed loops. It means that the total flux of the vector field through arbitrary
closed surface is zero.
Arpan Deyasi
Electromagnetic
Theory
20
∂Ax/∂x + ∂Ay/∂y
x
y
Differentiation of Vector Function: Divergence
Visualizing Divergence
+ ∂Az/∂z
Arpan Deyasi
Electromagnetic
Theory
Second order differentiation is called Laplacian
Scalar Differential Operator
2
.
 =  
In Cartesian coordinate
2 2 2
2
2 2 2
x y z
  
 = + +
  
In Cylindrical coordinate
2 2 2
2
2 2 2 2
1 1
r r r r z

   
 = + + +
   
In Spherical
coordinate
2
2 2
2 2 2 2 2
1 1 1
sin
sin sin
r
r r r r r

    
    
   
 = + +
   
    
   
Arpan Deyasi
Electromagnetic
Theory
Laplacian of scalar function V= div grad V
ˆ ˆ
ˆ ˆ ˆ ˆ
.( ) .
V V V
V i j k i j k
x y z x y z
   
     
  = + + + +
   
     
   
Laplacian operator is given as
2 2 2
2
2 2 2
x y z
  
 = + +
  
Scalar Differential Operator
.( )
V V V
V
x x y y z z
 
     
   
  = + +
   
 
     
   
 
2 2 2
2
2 2 2
V V V
V
x y z
  
 = + +
  
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
Prob 1: Find the divergence of 𝑭 where
( )
ˆ ˆ
ˆ ˆ ˆ ˆ
. . x y z
F i j k iF jF kF
x y z
 
  
 = + + + +
 
  
 
2 ˆ ˆ
F x yzi zxj
= +
( ) ( )
2
. (0) 2xyz 0 0 2xyz
F x yz xz
x y z
  
 = + + = + + =
  
. 2xyz
F
 =
Soln:
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
Prob 2: 2 3 2 ˆ
ˆ ˆ
2
A x zi y zj y zk
= − +
If
at (1,1,-1)
.A

find
( )
2 3 2
ˆ ˆ
ˆ ˆ ˆ ˆ
. . 2
A i j k ix z j y z kxy z
x y z
 
  
 = + + − +
 
  
 
( ) ( ) ( )
2 3 2
. 2
A i x z y z xy z
x y z
 
  
 = + − +
 
  
 
Soln:
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
( )
2 2
. 2 6
A xz y z xy
 = − +
( )
(1,1, 1)
. 2 6 1
A
−
 = − + +
(1,1, 1)
. 5
A
−
 =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
Prob 3:
Show that . 0
r
 =
Soln:
( )
ˆ ˆ
ˆ ˆ ˆ ˆ
. .
r i j k ix jy kz
x y z
 
  
 = + + + +
 
  
 
.r x y z
x y z
 
  
 = + +
 
  
 
. 1 1 1
r
 = + + . 3
r
 =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
Prob 4: 2 1
0
r
 
 =
 
 
Show that
Soln:
ˆ
ˆ ˆ
r xi yj zk
= + +
( )
1
2 2 2 2
1
x y z
r
−
= + +
( )
2 2 2 1
2 2 2 2 2
2 2 2
1
x y z
r x y z
−
   
  
 = + + + +
   
    
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
( )
2 1
2 2 2 2 2
2
1
.........
x y z
r x
−
   

 = + + +
   
  
 
 
( )
1
2 2 2 2 2
1
.....
x y z
r x x
−
   
 
 = + + +
   
   
 
 
( )
3
2 2 2 2 2
1
.....
x x y z
r x
−
    
 = − + + +
   
    
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
( ) ( )
5 3
2 2 2 2 2 2 2 2
2 2
1
3 .....
x x y z x y z
r
− −
 
 = + + − + + +
 
 
 
( ) ( ) ( )
2 2 2 2 2 2 2 2 2
2
5 5 5
2 2 2 2 2 2 2 2 2
2 2 2
1 2 2 2
x y z y z x z x y
r x y z x y z x y z
  − − − − − −
 = + +
 
 
  + + + + + +
2 1
0
r
 
 =
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
3
. 0
r
r
 
 =
 
 
 
Show that
Soln:
Prob 5:
&
3
1
r
 = A r
=
Let
( )
3
. .
r
A
r

 
 = 
 
 
 
( )
3 3
3
. . ( )( . )
r
r r r r
r
− −
 
 =  + 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
5 3
3
. 3 . 3( )
r
r r r r
r
− −
 
 = − +
 
 
 
5 2 3
3
. 3 3( )
r
r r r
r
− −
 
 = − +
 
 
 
3
. 0
r
r
 
 =
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
Prob 6:
Determine the constant ‘p’ so that the vector
ˆ
ˆ ˆ
( 3 ) ( 2 ) ( )
A x y i y z j x pz k
= + + − + + is solenoidal
Soln:
ˆ ˆ
ˆ ˆ ˆ ˆ
. . ( 3 ) ( 2 ) ( )
A i j k x y i y z j x pz k
x y z
 
    
 = + + + + − + +
   
  
 
. ( 3 ) ( 2 ) ( )
A x y y z x pz
x y z
 
  
 = + + − + +
 
  
 
Arpan Deyasi
Electromagnetic
Theory
For solenoidal
Differentiation of Vector Function: Divergence
. 0
A
 =
( 3 ) ( 2 ) ( ) 0
x y y z x pz
x y z
 
  
+ + − + + =
 
  
 
( )
1 1 0
p
+ + =
2
p = −
Arpan Deyasi
Electromagnetic
Theory
Prob 7: Find the Laplacian of the following scalar field sin2 cos
x
V e x y
=
2 2 2
2
2 2 2
V V V
V
x y z
  
 = + +
  
2
2
sin2 cos
x
V
e x y
x x x
  
 
=  
  
 
Differentiation of Vector Function: Divergence
Soln:
( )
 
2
2
cos sin2 2 cos2
x x
V
y e x e x
x x
 
= +
 
( )
2
2
cos sin2 2 cos2 2 cos2 4 sin2
x x x x
V
y e x e x e x e x
x

= + + −

Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
( )
2
2
cos 4 cos2 3 sin2
x x
V
y e x e x
x

= −

2
2
sin2 cos
x
V
e x y
y y y
 
  
=  
  
 
( )
 
2
2
sin2 sin
x
V
e x y
y y
 
= −
 
2
2
sin2 ( sin )
x
V
e x y
y y
 
= −
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
2
2
sin2 cos
x
V
e x y
y

= −

2
2
sin2 cos
x
V
e x y
z z z
  
 
=  
  
 
( )
( )
2
cos 4 cos2 3 sin2 sin2 cos
(cos ) 4cos2 3sin2 sin2
x x x
x
V y e x e x e x y
y e x x x
 = − −
= − −
 
2
2
0 0
V
z z
 
= =
 
Collaborating
( )
2
4(cos ) cos2 sin2
x
V y e x x
 = −
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Divergence
( )
1 2 3
ˆ ˆ
ˆ ˆ ˆ ˆ
. .
P i j k iP jP kP
x y z
 
  
 = + + + +
 
  
 
1 2 3
.P P P P
x y z
  
 = + +
  
( )
1 2 3
ˆ ˆ
ˆ ˆ ˆ ˆ
. .
P iP jP kP i j k
x y z
 
  
 = + + + +
 
  
 
1 2 3
.
P P P P
x y z
  
 = + +
  
. .
P P
  
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
𝑷 (x, y, z) is defined and differentiable vector function at each
point (x, y, z) in a certain region of space
1 2 3
ˆ
ˆ ˆ
P Pi P j Pk
= + +
( )
1 2 3
ˆ ˆ
ˆ ˆ ˆ ˆ
( )
CurlP P i j k iP jP kP
x y z
 
  
=  = + +  + +
 
  
 
1 2 3
ˆ
ˆ ˆ
i j k
P
x y z
P P P
  
 =
  
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
3 2 1 3 2 1
ˆ
ˆ ˆ
P i P P j P P k P P
y z z x x y
 
   
     
 
 = − + − + −
 
 
   
     
 
   
 
Significance: Magnitude of rotation of the vector field originated from the
point in the given region of space
Curl of P Vector function
Arpan Deyasi
Electromagnetic
Theory
0
P
 =
If
the vector becomes irrotational
Differentiation of Vector Function: Curl
Rotation of the vector field stops. So the field becomes conservative
Arpan Deyasi
Electromagnetic
Theory
41
.
+∂Ay/∂x + ∂Ax/∂y
.
.
x
y
Differentiation of Vector Function: Curl
Visualizing Curl - one component
- ∂Ax/∂y
+∂Ay/∂x
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Visualizing Curl
x
y z
.
.
-(∂Ax/∂y)
(∂Ay/∂x)
+
-(∂Ay/∂z)
(∂Az/∂y)
+
-(∂Az/∂x)
(∂Ax/∂z)
.
.
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Prob 1: If
( ) ( ) ( )
3 2 2 ˆ
ˆ ˆ
2 2 3 2
A xy z i x y j xz k
= + + + + −
Then show that 𝑨 is irrotational vector
( ) ( ) ( )
3 2 2
ˆ
ˆ ˆ
2 2 3 2
i j k
A
x y z
xy z x y xz
  
 =
  
+ + −
Soln:
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
( ) ( )
( ) ( ) ( ) ( )
2 2
2 3 2 3
ˆ 3 2 2
ˆ
ˆ 3 2 2 2 2
A i xz x y
y z
j xz xy z k x y xy z
x z x y
 
 
 = − − +
 
 
 
 
   
 
− − − + + + − +
   
   
   
Then 𝑨 is irrotational vector
( ) ( ) ( )
2 2 ˆ
ˆ ˆ
0 0 3 3 2 2
A i j z z k x x
 = − − − + −
0
A
 =
Arpan Deyasi
Electromagnetic
Theory
Prob 2: If
Differentiation of Vector Function: Curl
2 ˆ
ˆ ˆ
2 2
A x yi zxj yzk
= − + find ( )
P
 
Soln:
2
ˆ
ˆ ˆ
2 2
i j k
P
x y z
x y zx yz
  
 =
  
−
2
ˆ
ˆ(2 2 ) ( 2 )
P i x z k x z
 
 = + − +
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2
ˆ
ˆ ˆ
( )
(2 2 ) 0 ( 2 )
i j k
P
x y z
x z x z
  
  =
  
+ − +
ˆ
( ) (2 2)
P x i
  = +
Arpan Deyasi
Electromagnetic
Theory
Prob 3: Determine the relation between linear velocity and angular velocity
Differentiation of Vector Function: Curl
Say a rigid body is rotated about an axis through O with angular
velocity 𝝎. Then the velocity 𝒗 of the point P(x,y,z) is given by
v r

= 
( ) ( ) ( )
ˆ
ˆ ˆ
ˆ
ˆ ˆ
x y z y z z x x y
i j k
v i z y j x z k y x
x y z
        
= = − + − + −
Soln:
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
( ) ( ) ( )
ˆ
ˆ ˆ
y z z x x y
i j k
v
x y z
z y x z y x
     
  
 =
  
− − −
( ) ( )
( ) ( )
( ) ( )
ˆ
ˆ
ˆ
x y x z
y z x y
x z y z
v i y x z x
y z
j z y y x
z x
k z x z y
x y
   
   
   
 
 
 = − − −
 
 
 
 
 
+ − − −
 
 
 
 
 
+ − − −
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
( ) ( ) ( )
ˆ
ˆ ˆ
ˆ
ˆ ˆ
2
2
x x y y z z
x y z
v
i j k
i j k
     
  


= + − − − + +
 
= + +
 
=
( )
1
2
v

 = 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Prob 4: Show that Curl Grad Φ = 0
Soln:
( ) ˆ
ˆ ˆ
i j k
x y z
  

 
  
  =  + +
 
  
 
( )
ˆ
ˆ ˆ
i j k
x y z
x y z

  
  
   =
  
  
  
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
( )
ˆ
ˆ
ˆ
i
y z z y
j k
z x x z x y y x
 

   
 
 
 
   
 
− +
 
 
   
   
   
 
 
   =  
 
 
       
 
     
 
− + −
 
     
 
 
 
       
     
   
 
 
( )
2 2 2 2 2 2
ˆ
ˆ ˆ
i j k
y z z y z x x z x y y x
     

 
     
     
   = − + − + −
 
     
           
     
 
( ) 0

   =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Prob 5: Calculate ( )
. A r
  if 𝑨 is irrotational vector
Soln:
ˆ
ˆ ˆ
r xi yj zk
= + + 1 2 3
ˆ
ˆ ˆ
A Ai A j A k
= + +
Let
1 2 3
ˆ
ˆ ˆ
i j k
A r A A A
x y z
 =
2 3 3 1 1 2
ˆ
ˆ ˆ
( ) ( ) ( )
A r i zA yA j xA zA k yA xA
 
 = − + − + −
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 3 3 1 1 2
.( ) ( ) ( ) ( )
A r zA yA xA zA yA xA
x y z
 
  
  = − + − + −
 
  
 
2 3
3 1 1 2
.( )
z A y A
x x
A r
x A z A y A x A
y y z z
 
 
 
− +
 
 
 
 
 
  =
 
 
   
 
− + −
 
 
 
   
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 1
1 3 3 2
.( )
z A A
x y
A r
y A A x A A
z x y z
 
 
 
− +
 
 
 
 
 
  =
 
 
   
 
− + −
 
   
   
 
 
 
 
2 1
1 3 3 2
ˆ
ˆ
ˆ ˆ
.( ) ( ).
ˆ ˆ
k A A
x y
A r xi yj zk
j A A i A A
z x y z
 
 
 
− +
 
 
 
 
 
  = + +
 
 
   
 
− + −
 
   
   
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
.( ) .( )
A r r A
  = 
𝑨 is irrotational vector 0
A
 =
.( ) 0
A r
  =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Prob 6: Show that Div Curl 𝑨 = 0
Soln:
1 2 3
ˆ
ˆ ˆ
i j k
A
x y z
A A A
  
 =
  
3 2 1 3 2 1
ˆ
ˆ ˆ
A i A A j A A k A A
y z z x x y
 
   
     
 
 = − + − + −
 
 
   
     
 
   
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
3 2
1 3 2 1
.( )
A A
x y z
A
A A A A
y z x z x y
 
 
  
− +
 
 
  
 
 
  =
 
 
     
 
− + −
 
   
     
 
 
 
 
2 2
3 2
2 2 2 2
1 3 2 1
.( )
A A
x y x z
A
A A A A
y z y x z x z y
 
 
 
− +
 
 
   
 
 
  =
 
   
   
 
− + −
   
       
 
   
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 2 2
3 2 1
2 2 2
3 2 1
.( )
A A A
x y x z y z
A
A A A
y x z x z y
 
  
− +
 
     
 
  =
 
  
− + −
 
     
 
.( ) 0
A
  =
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Prob 7: Evaluate Curl Curl 𝑨
Soln:
1 2 3
ˆ
ˆ ˆ
i j k
A
x y z
A A A
  
 =
  
3 2 1 3 2 1
ˆ
ˆ ˆ
A i A A j A A k A A
y z z x x y
 
   
     
 
 = − + − + −
 
 
   
     
 
   
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
3 2 1 3 2 1
ˆ
ˆ ˆ
( )
i j k
A
x y z
A A A A A A
y z z x x y
  
  =
  
   
     
 
− − −
 
   
     
 
   
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 1 1 3
3 2 2 1
1 3 3 2
ˆ
ˆ
( )
ˆ
i A A A A
y x y z z x
A j A A A A
z y z x x y
k A A A A
x z x y y z
 
 
 
     
 
− − −
 
 
 
 
     
 
 
 
 
 
 
   
     
 
  = + − − −
 
   
 
     
   
 
 
 
 
     
 
 
+ − − −
 
   
 
     
 
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 2 2 2
2 1 1 3
2 2
2 2 2 2
3 2 2 1
2 2
2 2 2 2
1 3 3 2
2 2
ˆ
ˆ
( )
ˆ
i A A A A
y x y z z x
A j A A A A
z y z x x y
k A A A A
x z x y y z
 
 
 
   
− − +
 
 
 
     
 
 
 
 
 
 
   
 
  = + − − +
 
 
 
     
 
 
 
 
 
 
   
+ − − +
 
 
 
     
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 2 2 2 2 2
2 3 1 1 1 1
2 2 2
2 2 2 2 2 2
3 1 2 2 2 2
2 2 2
2 2 2 2 2 2
1 2 3 3 3 3
2 2 2
ˆ
ˆ
ˆ
i A A A A A A
y x z x x x x y z
LHS j A A A A A A
z y x y y y z y x
k A A A A A A
x z y z z z x y z
  
 
     
+ + − − −
 
 
        
 
 
 
 
     
= + + + − − −
 
 
        
 
 
 
 
     
+ + + − − −
 
 
        
 
 


 
 
 
 
 
 
 
 
 

Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2 2 2
1 2 3
2 2 2
1 2 3
1 2 3
1 2 3
ˆ
ˆ ˆ
( )
ˆ
ˆ
ˆ
Ai A j A k
x y z
i A A A
x x y z
LHS
j A A A
y x y z
k A A A
z x y z
 
 
  
− + + + +
 
 
  
 
 
 
 
 
   
 
+ +
 
 
   
 
 
 
=  
 
 
   
 
+ + +
 
 
 
   
 
 
 
 
 
 
   
+ + +
 
 
 
   
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
2
1 2 3
( )
A A A A A
x y z
 
 
  
  = − +  + +
 
 
  
 
 
2
( ) ( . )
A A A
 
  = − +  
 
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
Prob 8: I𝐟 𝑨 is irrotational, then evaluate the constants where
Soln:
( ) ( ) ( ) ˆ
ˆ ˆ
2 8 3 4
A x y z i x y z j x y z k
  
= + + + − + + − −
ˆ
ˆ ˆ
( 2 ) ( 8 ) (3 4 )
i j k
A
x y z
x y z x y z x y z
  
  
 =
  
+ + − + − −
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
ˆ
ˆ ˆ
( 1) ( 3) ( 2)
A i j k
  
 = − − + − + −
As 𝑨 is irrotational
0
A
 =
ˆ
ˆ ˆ
( 1) ( 3) ( 2) 0
i j k
  
− − + − + − =
1
3
2



= −
=
=
Arpan Deyasi
Electromagnetic
Theory
Differentiation of Vector Function: Curl
1 2 3
ˆ
ˆ ˆ
i j k
P
x y z
P P P
  
 =
  
3 2
1 3 2 1
ˆ
ˆ
ˆ
i P P
y z
P
j P P k P P
z x x y
 
 
 
− +
 
 
 
 
 
 =
 
 
   
 
− + −
 
   
   
 
 
 
 
1 2 3
ˆ
ˆ ˆ
i j k
P P P P
x y z
 =
  
  
2 3
3 1 1 2
ˆ
ˆ
ˆ
i P P
z y
P
j P P k P P
x z y x
 
 
 
− +
 
 
 
 
 
 =
 
 
   
 
− + −
 
   
   
 
 
 
 
P P
  
Arpan Deyasi
Electromagnetic
Theory

More Related Content

What's hot

Effective mass
Effective massEffective mass
maxwells equation
 maxwells equation maxwells equation
maxwells equation
Abhinay Potlabathini
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
RCC Institute of Information Technology
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
VishalVishwakarma59
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
garghanish
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
Solo Hermelin
 
Vector calculus
Vector calculusVector calculus
Vector calculus
Santhanam Krishnan
 
rank of matrix
rank of matrixrank of matrix
rank of matrix
Siddhi Agrawal
 
Electrostatic Field
Electrostatic FieldElectrostatic Field
Electrostatic Field
irfan sultan
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
RCC Institute of Information Technology
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
VC Infotech
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
EasyStudy3
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)Kumar
 
Electromagnetic theory
Electromagnetic theoryElectromagnetic theory
Electromagnetic theoryKumar
 
linear transformation
linear transformationlinear transformation
linear transformation
mansi acharya
 
Poynting vector
Poynting vectorPoynting vector
Poynting vector
Abhinay Potlabathini
 
maximum power transform
maximum power transformmaximum power transform
maximum power transform
hashishmeena
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
vishalgohel12195
 
Vector calculus 1st 2
Vector calculus 1st 2Vector calculus 1st 2
Vector calculus 1st 2
HIMANSHU DIWAKAR
 
Gauss law
Gauss lawGauss law
Gauss law
SeepjaPayasi
 

What's hot (20)

Effective mass
Effective massEffective mass
Effective mass
 
maxwells equation
 maxwells equation maxwells equation
maxwells equation
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
rank of matrix
rank of matrixrank of matrix
rank of matrix
 
Electrostatic Field
Electrostatic FieldElectrostatic Field
Electrostatic Field
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)
 
Electromagnetic theory
Electromagnetic theoryElectromagnetic theory
Electromagnetic theory
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Poynting vector
Poynting vectorPoynting vector
Poynting vector
 
maximum power transform
maximum power transformmaximum power transform
maximum power transform
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Vector calculus 1st 2
Vector calculus 1st 2Vector calculus 1st 2
Vector calculus 1st 2
 
Gauss law
Gauss lawGauss law
Gauss law
 

Similar to Scalar and vector differentiation

Laplace equation
Laplace equationLaplace equation
Laplace equation
alexkhan129
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
Fatini Adnan
 
EMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfEMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdf
rsrao8
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
slides
 
Shape1 d
Shape1 dShape1 d
Shape1 d
Manoj Shukla
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 
Quadratic Function.pptx
Quadratic Function.pptxQuadratic Function.pptx
Quadratic Function.pptx
ErickConcepcion9
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
Amro Elfeki
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
Rnold Wilson
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsSpringer
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
Juan Alejandro Alvarez Agudelo
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
GARRYB4
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Rai University
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
RCC Institute of Information Technology
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 

Similar to Scalar and vector differentiation (20)

Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
EMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfEMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdf
 
Derivatives
DerivativesDerivatives
Derivatives
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Shape1 d
Shape1 dShape1 d
Shape1 d
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Quadratic Function.pptx
Quadratic Function.pptxQuadratic Function.pptx
Quadratic Function.pptx
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
Regularity and complexity in dynamical systems
Regularity and complexity in dynamical systemsRegularity and complexity in dynamical systems
Regularity and complexity in dynamical systems
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 

More from RCC Institute of Information Technology

Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
RCC Institute of Information Technology
 
Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
RCC Institute of Information Technology
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
RCC Institute of Information Technology
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
RCC Institute of Information Technology
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Dielectrics
DielectricsDielectrics
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
RCC Institute of Information Technology
 
Moletronics
MoletronicsMoletronics
Crystal Growth
Crystal GrowthCrystal Growth
Memristor
MemristorMemristor
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
CNTFET
CNTFETCNTFET
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
RCC Institute of Information Technology
 
Mosfet fundamentals
Mosfet fundamentalsMosfet fundamentals
Single Electron Transistor
Single Electron TransistorSingle Electron Transistor
Single Electron Transistor
RCC Institute of Information Technology
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
RCC Institute of Information Technology
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling
JFET
JFETJFET

More from RCC Institute of Information Technology (19)

Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
 
Moletronics
MoletronicsMoletronics
Moletronics
 
Crystal Growth
Crystal GrowthCrystal Growth
Crystal Growth
 
Memristor
MemristorMemristor
Memristor
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Advanced MOSFET
 
CNTFET
CNTFETCNTFET
CNTFET
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Mosfet fundamentals
Mosfet fundamentalsMosfet fundamentals
Mosfet fundamentals
 
Single Electron Transistor
Single Electron TransistorSingle Electron Transistor
Single Electron Transistor
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling
Resonant Tunneling
 
JFET
JFETJFET
JFET
 

Recently uploaded

Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
rakeshsharma20142015
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdf
binhminhvu04
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 

Recently uploaded (20)

Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Predicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdfPredicting property prices with machine learning algorithms.pdf
Predicting property prices with machine learning algorithms.pdf
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 

Scalar and vector differentiation

  • 1. Course: Electromagnetic Theory paper code: EI 503 Course Coordinator: Arpan Deyasi Department of Electronics and Communication Engineering RCC Institute of Information Technology Kolkata, India Topics: Scalar and Vector Differentiation Arpan Deyasi Electromagnetic Theory
  • 2. Vector Differential Operator Del is called the vector differential operator  It is the first order differentiation In Cartesian coordinate ˆ ˆ ˆ i j k x y z     = + +    In Cylindrical coordinate 1 ˆ ˆ ẑ z          = + +    In Spherical coordinate 1 1 ˆ ˆ ˆ sin r r r r          = + +    Arpan Deyasi Electromagnetic Theory
  • 3. Differentiation of Scalar Function Φ (x, y, z) is defined and differentiable scalar function at each point (x, y, z) in a certain region of space ˆ ˆ ˆ i j k x y z         = + +    Gradient of Φ Vector function Significance: rate of change of scalar function in a region of space Arpan Deyasi Electromagnetic Theory
  • 4. Differentiation of Scalar Function n̂ Let is the arbitrary vector in a region of space where gradient of any scalar function Φ exists ˆ ˆ ˆ ˆ ˆ ˆ ˆ . . . . n i i j j k k x y z         = + +    ˆ .n x y z         = + +    Directional Derivative of Φ in the direction of n Significance: rate of change of scalar function Φ in the direction of n Arpan Deyasi Electromagnetic Theory
  • 5. Differentiation of Scalar Function Prob 1: 2 3 2 ( , , ) 3 x y z x y y z  = − find ( ) ( ) 2 2 2 3 ( 1,2,1) ( 1,2,1) ˆ ˆ ˆ 6 3 3 2 xyi x y z j y zk  − −  = + − − Soln: ( ) 2 3 2 ˆ ˆ ˆ 3 i j k x y y z x y z        = + + −        ( ) 2 2 2 3 ˆ ˆ ˆ 6 3 3 2 xyi x y z j y zk   = + − − ( 1,2,1)  −  ( 1,2,1) ˆ ˆ ˆ 12 9 16 i j k  −  = − − − Arpan Deyasi Electromagnetic Theory
  • 6. Differentiation of Scalar Function Prob 2: ( , , ) ln x y z r  = find   Soln: ˆ ˆ ˆ r xi yj zk = + + ( ) 2 2 2 1 ln ln 2 r x y z  = = + + ( ) 2 2 2 1 ln ln 2 r x y z     = =  + +   ( ) 2 2 2 1 ˆ ln .... 2 i x y z x        = + + +        Arpan Deyasi Electromagnetic Theory
  • 7. Differentiation of Scalar Function ( ) 2 2 2 1 1 ˆ.2 . .... 2 i x x y z       = + + +     ( ) 2 2 2 ˆ ˆ ˆ ix jy kz x y z    + +    = + +     2 r r   = Arpan Deyasi Electromagnetic Theory
  • 8. Differentiation of Scalar Function Prob 3: ( , , ) n x y z r  = find   Soln: ˆ ˆ ˆ r xi yj zk = + + ( ) /2 2 2 2 n n r x y z  = = + + ( ) /2 2 2 2 n n r x y z   =  =  + + ( ) /2 2 2 2 n n r x y z   =  =  + + ( ) /2 2 2 2 ˆ ˆ ˆ n i j k x y z x y z        = + + + +        Arpan Deyasi Electromagnetic Theory
  • 9. Differentiation of Scalar Function ( ) /2 2 2 2 ˆ ......... n i x y z x      = + + +      ( ) ( /2 1) 2 2 2 ˆ .2 ......... 2 n n i x y z x  −    = + + +     ( ) ( ) ( /2 1) 2 2 2 ˆ ......... n inx x y z  −  = + + + 2 ( /2 1) ( ) n n r r  −  = ( ) ( 2) n n r r  −  = Arpan Deyasi Electromagnetic Theory
  • 10. Differentiation of Scalar Function Prob 4: Show that is a vector perpendicular to the surface Φ(x, y, z) = K where ‘K’ is a constant   Soln: ˆ ˆ ˆ r xi yj zk = + + ˆ ˆ ˆ dr dxi dyj dzk = + + ( , , ) x y z K  = ( , , ) 0 d x y z  = 0 dx dy dz x y z       + + =    Arpan Deyasi Electromagnetic Theory
  • 11. Differentiation of Scalar Function ˆ ˆ ˆ ˆ ˆ ˆ .( ) 0 i j k dxi dyj dzk x y z      + + + + =        . 0 dr   =   is perpendicular to r Arpan Deyasi Electromagnetic Theory
  • 12. Differentiation of Scalar Function Find unit normal to the surface 4 2 2 − + = xz y x  at (-2,2,3) ) 4 2 ( 2 − +  =  xz y x    k x j x i z xy ˆ 2 ˆ ˆ ) 2 2 ( 2 + + + =   k j i ˆ 4 ˆ 4 ˆ 2 ) 3 , 2 , 2 ( − + − =  −   Prob 5: Soln: Arpan Deyasi Electromagnetic Theory
  • 13. Differentiation of Scalar Function Downward unit normal 2 2 2 4 4 2 ˆ 4 ˆ 4 ˆ 2 ˆ + + − + −  = k j i n k j i n ˆ 3 2 ˆ 3 2 ˆ 3 1 ˆ    = Unit normal to the surface k j i nup ˆ 3 2 ˆ 3 2 ˆ 3 1 ˆ − + − = Upward unit normal k j i ndown ˆ 3 2 ˆ 3 2 ˆ 3 1 ˆ + − = ( , , ) x y z  ˆup n ˆdown n Arpan Deyasi Electromagnetic Theory
  • 14. Differentiation of Scalar Function In the direction of ) 4 ( 2 2 xz yz x +  =     at (1,-2,1) Find the directional derivative of k j i ˆ 2 ˆ ˆ 2 − + 2 2 4xz yz x + =  k zx y x j z x i z xyz ˆ ) 8 ( ˆ ˆ ) 4 2 ( 2 2 2 + + + + =   k j ˆ 4 ˆ 2 ) 1 , 2 , 1 ( + =  −   Prob 6: Soln: Arpan Deyasi Electromagnetic Theory
  • 15. Differentiation of Scalar Function Unit vector in the direction of k j i ˆ 2 ˆ ˆ 2 − + is 2 2 2 2 1 2 ˆ 2 ˆ ˆ 2 ˆ + + − + = k j i n k j i n ˆ 3 2 ˆ 3 2 ˆ 3 1 ˆ − + − = Directional derivative       − + − + =  k j i k j n ˆ 3 2 ˆ 3 2 ˆ 3 1 ). ˆ 4 ˆ 2 ( ˆ .   3 4 3 8 3 4 ˆ . − =       − =  n     n̂ 2 2 4xz yz x + =  Arpan Deyasi Electromagnetic Theory
  • 16. Prob 7: Find the unit vector perpendicular to the surface at point (4,2,3) (4,2,3) ˆ ˆ ˆ ˆ ˆ ˆ 2 4 2 2 2 3 8 4 6 i j k i j k   =  +  −  = + − Differentiation of Scalar Function 2 2 2 ( , , ) 11 x y z x y z  = + − − ˆ ˆ ˆ ˆ ˆ ˆ 2 2 2 i j k i x j y k z x y z           = + + = + −        2 2 2 11 x y z + − = Arpan Deyasi Electromagnetic Theory
  • 17. Unit normal to the surface at (4,2,3) ˆ ˆ ˆ 8 4 6 ˆ 64 16 36 i j k n + − =  + + Differentiation of Scalar Function ˆ ˆ ˆ 8 4 6 ˆ 116 i j k n + − =  ˆ ˆ ˆ 8 4 6 ˆ 2 29 i j k n + − =  4 2 3 ˆ ˆ ˆ ˆ 29 29 29 n i j k =   4 2 3 ˆ ˆ ˆ ˆ 29 29 29 up n i j k = + − 4 2 3 ˆ ˆ ˆ ˆ 29 29 29 down n i j k = − − + ( , , ) x y z  ˆup n ˆdown n Arpan Deyasi Electromagnetic Theory
  • 18. Differentiation of Vector Function: Divergence ( ) 1 2 3 ˆ ˆ ˆ ˆ ˆ ˆ . . divP P i j k iP jP kP x y z      =  = + + + +        𝑷 (x, y, z) is defined and differentiable vector function at each point (x, y, z) in a certain region of space 1 2 3 .P P P P x y z     = + +    1 2 3 ˆ ˆ ˆ P Pi P j Pk = + + Divergence of P Scalar function Arpan Deyasi Electromagnetic Theory
  • 19. 19 Differentiation of Vector Function: Divergence Significance: volume density of net outward flux from a vector field originated from a given point (source) where the point is defined in the region of space If divergence is negative, then inflow is signified and the point becomes sink . 0 P  = If the vector becomes solenoidal/ also called incompressible vector field A solenoidal vector field has zero divergence. That means that it has no sources or sinks; all field lines form closed loops. It means that the total flux of the vector field through arbitrary closed surface is zero. Arpan Deyasi Electromagnetic Theory
  • 20. 20 ∂Ax/∂x + ∂Ay/∂y x y Differentiation of Vector Function: Divergence Visualizing Divergence + ∂Az/∂z Arpan Deyasi Electromagnetic Theory
  • 21. Second order differentiation is called Laplacian Scalar Differential Operator 2 .  =   In Cartesian coordinate 2 2 2 2 2 2 2 x y z     = + +    In Cylindrical coordinate 2 2 2 2 2 2 2 2 1 1 r r r r z       = + + +     In Spherical coordinate 2 2 2 2 2 2 2 2 1 1 1 sin sin sin r r r r r r                 = + +              Arpan Deyasi Electromagnetic Theory
  • 22. Laplacian of scalar function V= div grad V ˆ ˆ ˆ ˆ ˆ ˆ .( ) . V V V V i j k i j k x y z x y z             = + + + +               Laplacian operator is given as 2 2 2 2 2 2 2 x y z     = + +    Scalar Differential Operator .( ) V V V V x x y y z z               = + +                   2 2 2 2 2 2 2 V V V V x y z     = + +    Arpan Deyasi Electromagnetic Theory
  • 23. Differentiation of Vector Function: Divergence Prob 1: Find the divergence of 𝑭 where ( ) ˆ ˆ ˆ ˆ ˆ ˆ . . x y z F i j k iF jF kF x y z       = + + + +        2 ˆ ˆ F x yzi zxj = + ( ) ( ) 2 . (0) 2xyz 0 0 2xyz F x yz xz x y z     = + + = + + =    . 2xyz F  = Soln: Arpan Deyasi Electromagnetic Theory
  • 24. Differentiation of Vector Function: Divergence Prob 2: 2 3 2 ˆ ˆ ˆ 2 A x zi y zj y zk = − + If at (1,1,-1) .A  find ( ) 2 3 2 ˆ ˆ ˆ ˆ ˆ ˆ . . 2 A i j k ix z j y z kxy z x y z       = + + − +        ( ) ( ) ( ) 2 3 2 . 2 A i x z y z xy z x y z       = + − +        Soln: Arpan Deyasi Electromagnetic Theory
  • 25. Differentiation of Vector Function: Divergence ( ) 2 2 . 2 6 A xz y z xy  = − + ( ) (1,1, 1) . 2 6 1 A −  = − + + (1,1, 1) . 5 A −  = Arpan Deyasi Electromagnetic Theory
  • 26. Differentiation of Vector Function: Divergence Prob 3: Show that . 0 r  = Soln: ( ) ˆ ˆ ˆ ˆ ˆ ˆ . . r i j k ix jy kz x y z       = + + + +        .r x y z x y z       = + +        . 1 1 1 r  = + + . 3 r  = Arpan Deyasi Electromagnetic Theory
  • 27. Differentiation of Vector Function: Divergence Prob 4: 2 1 0 r    =     Show that Soln: ˆ ˆ ˆ r xi yj zk = + + ( ) 1 2 2 2 2 1 x y z r − = + + ( ) 2 2 2 1 2 2 2 2 2 2 2 2 1 x y z r x y z −         = + + + +              Arpan Deyasi Electromagnetic Theory
  • 28. Differentiation of Vector Function: Divergence ( ) 2 1 2 2 2 2 2 2 1 ......... x y z r x −       = + + +            ( ) 1 2 2 2 2 2 1 ..... x y z r x x −        = + + +             ( ) 3 2 2 2 2 2 1 ..... x x y z r x −       = − + + +            Arpan Deyasi Electromagnetic Theory
  • 29. Differentiation of Vector Function: Divergence ( ) ( ) 5 3 2 2 2 2 2 2 2 2 2 2 1 3 ..... x x y z x y z r − −    = + + − + + +       ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 x y z y z x z x y r x y z x y z x y z   − − − − − −  = + +       + + + + + + 2 1 0 r    =       Arpan Deyasi Electromagnetic Theory
  • 30. Differentiation of Vector Function: Divergence 3 . 0 r r    =       Show that Soln: Prob 5: & 3 1 r  = A r = Let ( ) 3 . . r A r     =        ( ) 3 3 3 . . ( )( . ) r r r r r r − −    =  +        Arpan Deyasi Electromagnetic Theory
  • 31. Differentiation of Vector Function: Divergence 5 3 3 . 3 . 3( ) r r r r r r − −    = − +       5 2 3 3 . 3 3( ) r r r r r − −    = − +       3 . 0 r r    =       Arpan Deyasi Electromagnetic Theory
  • 32. Differentiation of Vector Function: Divergence Prob 6: Determine the constant ‘p’ so that the vector ˆ ˆ ˆ ( 3 ) ( 2 ) ( ) A x y i y z j x pz k = + + − + + is solenoidal Soln: ˆ ˆ ˆ ˆ ˆ ˆ . . ( 3 ) ( 2 ) ( ) A i j k x y i y z j x pz k x y z         = + + + + − + +          . ( 3 ) ( 2 ) ( ) A x y y z x pz x y z       = + + − + +        Arpan Deyasi Electromagnetic Theory
  • 33. For solenoidal Differentiation of Vector Function: Divergence . 0 A  = ( 3 ) ( 2 ) ( ) 0 x y y z x pz x y z      + + − + + =        ( ) 1 1 0 p + + = 2 p = − Arpan Deyasi Electromagnetic Theory
  • 34. Prob 7: Find the Laplacian of the following scalar field sin2 cos x V e x y = 2 2 2 2 2 2 2 V V V V x y z     = + +    2 2 sin2 cos x V e x y x x x      =        Differentiation of Vector Function: Divergence Soln: ( )   2 2 cos sin2 2 cos2 x x V y e x e x x x   = +   ( ) 2 2 cos sin2 2 cos2 2 cos2 4 sin2 x x x x V y e x e x e x e x x  = + + −  Arpan Deyasi Electromagnetic Theory
  • 35. Differentiation of Vector Function: Divergence ( ) 2 2 cos 4 cos2 3 sin2 x x V y e x e x x  = −  2 2 sin2 cos x V e x y y y y      =        ( )   2 2 sin2 sin x V e x y y y   = −   2 2 sin2 ( sin ) x V e x y y y   = −   Arpan Deyasi Electromagnetic Theory
  • 36. Differentiation of Vector Function: Divergence 2 2 sin2 cos x V e x y y  = −  2 2 sin2 cos x V e x y z z z      =        ( ) ( ) 2 cos 4 cos2 3 sin2 sin2 cos (cos ) 4cos2 3sin2 sin2 x x x x V y e x e x e x y y e x x x  = − − = − −   2 2 0 0 V z z   = =   Collaborating ( ) 2 4(cos ) cos2 sin2 x V y e x x  = − Arpan Deyasi Electromagnetic Theory
  • 37. Differentiation of Vector Function: Divergence ( ) 1 2 3 ˆ ˆ ˆ ˆ ˆ ˆ . . P i j k iP jP kP x y z       = + + + +        1 2 3 .P P P P x y z     = + +    ( ) 1 2 3 ˆ ˆ ˆ ˆ ˆ ˆ . . P iP jP kP i j k x y z       = + + + +        1 2 3 . P P P P x y z     = + +    . . P P    Arpan Deyasi Electromagnetic Theory
  • 38. Differentiation of Vector Function: Curl 𝑷 (x, y, z) is defined and differentiable vector function at each point (x, y, z) in a certain region of space 1 2 3 ˆ ˆ ˆ P Pi P j Pk = + + ( ) 1 2 3 ˆ ˆ ˆ ˆ ˆ ˆ ( ) CurlP P i j k iP jP kP x y z      =  = + +  + +        1 2 3 ˆ ˆ ˆ i j k P x y z P P P     =    Arpan Deyasi Electromagnetic Theory
  • 39. Differentiation of Vector Function: Curl 3 2 1 3 2 1 ˆ ˆ ˆ P i P P j P P k P P y z z x x y                = − + − + −                       Significance: Magnitude of rotation of the vector field originated from the point in the given region of space Curl of P Vector function Arpan Deyasi Electromagnetic Theory
  • 40. 0 P  = If the vector becomes irrotational Differentiation of Vector Function: Curl Rotation of the vector field stops. So the field becomes conservative Arpan Deyasi Electromagnetic Theory
  • 41. 41 . +∂Ay/∂x + ∂Ax/∂y . . x y Differentiation of Vector Function: Curl Visualizing Curl - one component - ∂Ax/∂y +∂Ay/∂x Arpan Deyasi Electromagnetic Theory
  • 42. Differentiation of Vector Function: Curl Visualizing Curl x y z . . -(∂Ax/∂y) (∂Ay/∂x) + -(∂Ay/∂z) (∂Az/∂y) + -(∂Az/∂x) (∂Ax/∂z) . . Arpan Deyasi Electromagnetic Theory
  • 43. Differentiation of Vector Function: Curl Prob 1: If ( ) ( ) ( ) 3 2 2 ˆ ˆ ˆ 2 2 3 2 A xy z i x y j xz k = + + + + − Then show that 𝑨 is irrotational vector ( ) ( ) ( ) 3 2 2 ˆ ˆ ˆ 2 2 3 2 i j k A x y z xy z x y xz     =    + + − Soln: Arpan Deyasi Electromagnetic Theory
  • 44. Differentiation of Vector Function: Curl ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 3 2 3 ˆ 3 2 2 ˆ ˆ 3 2 2 2 2 A i xz x y y z j xz xy z k x y xy z x z x y      = − − +               − − − + + + − +             Then 𝑨 is irrotational vector ( ) ( ) ( ) 2 2 ˆ ˆ ˆ 0 0 3 3 2 2 A i j z z k x x  = − − − + − 0 A  = Arpan Deyasi Electromagnetic Theory
  • 45. Prob 2: If Differentiation of Vector Function: Curl 2 ˆ ˆ ˆ 2 2 A x yi zxj yzk = − + find ( ) P   Soln: 2 ˆ ˆ ˆ 2 2 i j k P x y z x y zx yz     =    − 2 ˆ ˆ(2 2 ) ( 2 ) P i x z k x z    = + − +   Arpan Deyasi Electromagnetic Theory
  • 46. Differentiation of Vector Function: Curl 2 ˆ ˆ ˆ ( ) (2 2 ) 0 ( 2 ) i j k P x y z x z x z      =    + − + ˆ ( ) (2 2) P x i   = + Arpan Deyasi Electromagnetic Theory
  • 47. Prob 3: Determine the relation between linear velocity and angular velocity Differentiation of Vector Function: Curl Say a rigid body is rotated about an axis through O with angular velocity 𝝎. Then the velocity 𝒗 of the point P(x,y,z) is given by v r  =  ( ) ( ) ( ) ˆ ˆ ˆ ˆ ˆ ˆ x y z y z z x x y i j k v i z y j x z k y x x y z          = = − + − + − Soln: Arpan Deyasi Electromagnetic Theory
  • 48. Differentiation of Vector Function: Curl ( ) ( ) ( ) ˆ ˆ ˆ y z z x x y i j k v x y z z y x z y x           =    − − − ( ) ( ) ( ) ( ) ( ) ( ) ˆ ˆ ˆ x y x z y z x y x z y z v i y x z x y z j z y y x z x k z x z y x y                  = − − −           + − − −           + − − −       Arpan Deyasi Electromagnetic Theory
  • 49. Differentiation of Vector Function: Curl ( ) ( ) ( ) ˆ ˆ ˆ ˆ ˆ ˆ 2 2 x x y y z z x y z v i j k i j k            = + − − − + +   = + +   = ( ) 1 2 v   =  Arpan Deyasi Electromagnetic Theory
  • 50. Differentiation of Vector Function: Curl Prob 4: Show that Curl Grad Φ = 0 Soln: ( ) ˆ ˆ ˆ i j k x y z            =  + +        ( ) ˆ ˆ ˆ i j k x y z x y z           =          Arpan Deyasi Electromagnetic Theory
  • 51. Differentiation of Vector Function: Curl ( ) ˆ ˆ ˆ i y z z y j k z x x z x y y x                    − +                        =                         − + −                                     ( ) 2 2 2 2 2 2 ˆ ˆ ˆ i j k y z z y z x x z x y y x                         = − + − + −                             ( ) 0     = Arpan Deyasi Electromagnetic Theory
  • 52. Differentiation of Vector Function: Curl Prob 5: Calculate ( ) . A r   if 𝑨 is irrotational vector Soln: ˆ ˆ ˆ r xi yj zk = + + 1 2 3 ˆ ˆ ˆ A Ai A j A k = + + Let 1 2 3 ˆ ˆ ˆ i j k A r A A A x y z  = 2 3 3 1 1 2 ˆ ˆ ˆ ( ) ( ) ( ) A r i zA yA j xA zA k yA xA    = − + − + −   Arpan Deyasi Electromagnetic Theory
  • 53. Differentiation of Vector Function: Curl 2 3 3 1 1 2 .( ) ( ) ( ) ( ) A r zA yA xA zA yA xA x y z        = − + − + −        2 3 3 1 1 2 .( ) z A y A x x A r x A z A y A x A y y z z       − +             =           − + −                 Arpan Deyasi Electromagnetic Theory
  • 54. Differentiation of Vector Function: Curl 2 1 1 3 3 2 .( ) z A A x y A r y A A x A A z x y z       − +             =           − + −                   2 1 1 3 3 2 ˆ ˆ ˆ ˆ .( ) ( ). ˆ ˆ k A A x y A r xi yj zk j A A i A A z x y z       − +             = + +           − + −                   Arpan Deyasi Electromagnetic Theory
  • 55. Differentiation of Vector Function: Curl .( ) .( ) A r r A   =  𝑨 is irrotational vector 0 A  = .( ) 0 A r   = Arpan Deyasi Electromagnetic Theory
  • 56. Differentiation of Vector Function: Curl Prob 6: Show that Div Curl 𝑨 = 0 Soln: 1 2 3 ˆ ˆ ˆ i j k A x y z A A A     =    3 2 1 3 2 1 ˆ ˆ ˆ A i A A j A A k A A y z z x x y                = − + − + −                       Arpan Deyasi Electromagnetic Theory
  • 57. Differentiation of Vector Function: Curl 3 2 1 3 2 1 .( ) A A x y z A A A A A y z x z x y        − +              =             − + −                     2 2 3 2 2 2 2 2 1 3 2 1 .( ) A A x y x z A A A A A y z y x z x z y       − +               =             − + −                     Arpan Deyasi Electromagnetic Theory
  • 58. Differentiation of Vector Function: Curl 2 2 2 3 2 1 2 2 2 3 2 1 .( ) A A A x y x z y z A A A A y x z x z y      − +             =      − + −           .( ) 0 A   = Arpan Deyasi Electromagnetic Theory
  • 59. Differentiation of Vector Function: Curl Prob 7: Evaluate Curl Curl 𝑨 Soln: 1 2 3 ˆ ˆ ˆ i j k A x y z A A A     =    3 2 1 3 2 1 ˆ ˆ ˆ A i A A j A A k A A y z z x x y                = − + − + −                       Arpan Deyasi Electromagnetic Theory
  • 60. Differentiation of Vector Function: Curl 3 2 1 3 2 1 ˆ ˆ ˆ ( ) i j k A x y z A A A A A A y z z x x y      =                − − −                   Arpan Deyasi Electromagnetic Theory
  • 61. Differentiation of Vector Function: Curl 2 1 1 3 3 2 2 1 1 3 3 2 ˆ ˆ ( ) ˆ i A A A A y x y z z x A j A A A A z y z x x y k A A A A x z x y y z               − − −                                         = + − − −                                     + − − −                         Arpan Deyasi Electromagnetic Theory
  • 62. Differentiation of Vector Function: Curl 2 2 2 2 2 1 1 3 2 2 2 2 2 2 3 2 2 1 2 2 2 2 2 2 1 3 3 2 2 2 ˆ ˆ ( ) ˆ i A A A A y x y z z x A j A A A A z y z x x y k A A A A x z x y y z           − − +                                 = + − − +                             + − − +                     Arpan Deyasi Electromagnetic Theory
  • 63. Differentiation of Vector Function: Curl 2 2 2 2 2 2 2 3 1 1 1 1 2 2 2 2 2 2 2 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 3 3 3 2 2 2 ˆ ˆ ˆ i A A A A A A y x z x x x x y z LHS j A A A A A A z y x y y y z y x k A A A A A A x z y z z z x y z            + + − − −                            = + + + − − −                            + + + − − −                                       Arpan Deyasi Electromagnetic Theory
  • 64. Differentiation of Vector Function: Curl 2 2 2 1 2 3 2 2 2 1 2 3 1 2 3 1 2 3 ˆ ˆ ˆ ( ) ˆ ˆ ˆ Ai A j A k x y z i A A A x x y z LHS j A A A y x y z k A A A z x y z        − + + + +                        + +               =             + + +                           + + +                   Arpan Deyasi Electromagnetic Theory
  • 65. Differentiation of Vector Function: Curl 2 1 2 3 ( ) A A A A A x y z          = − +  + +            2 ( ) ( . ) A A A     = − +     Arpan Deyasi Electromagnetic Theory
  • 66. Differentiation of Vector Function: Curl Prob 8: I𝐟 𝑨 is irrotational, then evaluate the constants where Soln: ( ) ( ) ( ) ˆ ˆ ˆ 2 8 3 4 A x y z i x y z j x y z k    = + + + − + + − − ˆ ˆ ˆ ( 2 ) ( 8 ) (3 4 ) i j k A x y z x y z x y z x y z        =    + + − + − − Arpan Deyasi Electromagnetic Theory
  • 67. Differentiation of Vector Function: Curl ˆ ˆ ˆ ( 1) ( 3) ( 2) A i j k     = − − + − + − As 𝑨 is irrotational 0 A  = ˆ ˆ ˆ ( 1) ( 3) ( 2) 0 i j k    − − + − + − = 1 3 2    = − = = Arpan Deyasi Electromagnetic Theory
  • 68. Differentiation of Vector Function: Curl 1 2 3 ˆ ˆ ˆ i j k P x y z P P P     =    3 2 1 3 2 1 ˆ ˆ ˆ i P P y z P j P P k P P z x x y       − +            =           − + −                   1 2 3 ˆ ˆ ˆ i j k P P P P x y z  =       2 3 3 1 1 2 ˆ ˆ ˆ i P P z y P j P P k P P x z y x       − +            =           − + −                   P P    Arpan Deyasi Electromagnetic Theory