SlideShare a Scribd company logo
1 of 91
Course: Electromagnetic Theory
paper code: EI 503
Course Coordinator: Arpan Deyasi
Department of Electronics and Communication Engineering
RCC Institute of Information Technology
Kolkata, India
Topic: EM Wave Propagation
18-12-2021 Arpan Deyasi, EM Theory 1
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 2
Maxwell’s equation in differential form
. ....(1)
E


 =
. 0 ....(2)
B
 =
....(3)
B
E
t

 = −

....(4)
C
E
B J
t
 

 = +

Arpan Deyasi
Electromagnetic
Theory
Propagation of wave in
[i] free space
[ii] dielectric medium
[iii] conducting medium
18-12-2021 Arpan Deyasi, EM Theory 3
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 4
Propagation of Electromagnetic
Wave at Free Space
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space
0 & 0
J
 = =
In free space
Maxwell equation becomes
. 0 ....(1)
E
 = . 0 ....(3)
B
 =
....(2)
B
E
t

 = −
 0 0 ....(4)
E
B
t
 

 =

18-12-2021 Arpan Deyasi, EM Theory 5
Arpan Deyasi
Electromagnetic
Theory
From third equation
B
E
t

 = −

( ) B
E
t

  = −

( ) ( )
2
.E E B
t

  − = − 

( ) ( )
2
.E E B
t

  − = − 

Maxwell’s equation in free space
18-12-2021 Arpan Deyasi, EM Theory 6
Arpan Deyasi
Electromagnetic
Theory
2
0 0
E
E
t t
 
 
 
 =  
 
 
Maxwell’s equation in free space
2
2
0 0 2
0
E
E
t
 

 − =

Equation for electric field in free space
18-12-2021 Arpan Deyasi, EM Theory 7
Arpan Deyasi
Electromagnetic
Theory
From fourth equation
0 0
E
B
t
 

 =

( ) 0 0
E
B
t
 
 

  =  

 
( ) 2
0 0
.
E
B B
t
 
 

  − = 
 

 
Maxwell’s equation in free space
( )
2
0 0
B E
t
 

 = − 

18-12-2021 Arpan Deyasi, EM Theory 8
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space
2
0 0 .
B
B
t t
 
 
 =
 
2
2
0 0 2
0
B
B
t
 

 − =

Equation for magnetic field in free space
18-12-2021 Arpan Deyasi, EM Theory 9
Arpan Deyasi
Electromagnetic
Theory
Generalized equation
2
2
2 2
1
0
U
U
c t

 − =

Maxwell’s equation in free space
18-12-2021 Arpan Deyasi, EM Theory 10
Arpan Deyasi
Electromagnetic
Theory
Relation between field and propagation vectors
Solution of wave equations are
( )
0
( , ) exp .
E r t E i k r t

 
= −
 
( )
0
( , ) exp .
B r t B i k r t

 
= −
 
( )
0
. . exp .
E E i k r t

 
 = −
 
Maxwell’s equation in free space: Relative directions
Taking divergence of both the sides
18-12-2021 Arpan Deyasi, EM Theory 11
Arpan Deyasi
Electromagnetic
Theory
( )
. . exp .
E ik E i k r t

 
 = −
 
Maxwell’s equation in free space: Relative directions
In free space
. 0
E
 =
. 0
k E =
Similarly
( )
. . exp .
B ik B i k r t

 
 = −
 
18-12-2021 Arpan Deyasi, EM Theory 12
Arpan Deyasi
Electromagnetic
Theory
E k
⊥
Maxwell’s equation in free space: Relative directions
. 0
B
 =
. 0
k B =
B k
⊥
Similarly
18-12-2021 Arpan Deyasi, EM Theory 13
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Relative directions
Again
0 0
E
B
t
 

 =

( )
( ) ( )
( )
0 0 0 0
exp . exp .
B i k r t E i k r t
t
   

   
 − = −
   

0 0
1
E k B
  
= − 
E B
⊥
All field components and propagation vector are mutually orthogonal
18-12-2021 Arpan Deyasi, EM Theory 14
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Poynting’s vector
Poynting vector in free space
( )
0
1
S E B

= 
k E
B


=
S E H
= 
Now
18-12-2021 Arpan Deyasi, EM Theory 15
Arpan Deyasi
Electromagnetic
Theory
( )
0
1
ˆ
S E n E
c
 
 =  
 
2
0
ˆ
E
S n
c
=
2 0
0
ˆ
S E n


=
Maxwell’s equation in free space: Poynting’s vector
18-12-2021 Arpan Deyasi, EM Theory 16
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 17
Problem 1
Calculate Poynting vector in free space when electric field is 10 V/m
Soln
2 0
0
S E


=
12
7
8.854 10
10 10
4 10
S

−
−

=  

2
0.265 /
S W m
=
Arpan Deyasi
Electromagnetic
Theory
Ratio of electrostatic and magnetostatic energy is given by
2
0
2
0
1
2
1
2
e
m
E
U
U B


=
2
0 0 2
1
e
m
U E
U B
 
= =
e m
U U
=
Maxwell’s equation in free space: Energy
18-12-2021 Arpan Deyasi, EM Theory 18
Arpan Deyasi
Electromagnetic
Theory
k E
B


=
k E
B
kc

=
( )
0 0
ˆ
B n E
 
= 
Wave impedance 0
0
0 0 0
1
E
E
Z
B
B  
= = =
Maxwell’s equation in free space: Wave impedance
18-12-2021 Arpan Deyasi, EM Theory 19
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Propagation characteristics
2
2
0 0 2
0
E
E
t
 

 − =

2
2
0 0 2
0
B
B
t
 

 − =

Wave equations are
Solution of wave equations are
( )
0
( , ) exp .
E r t E i k r t

 
= −
 
( )
0
( , ) exp .
B r t B i k r t

 
= −
 
18-12-2021 Arpan Deyasi, EM Theory 20
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Propagation characteristics
Substituting
2 2 2
0 0
E E E
   
 = − =
2 2 2
0 0
B B B
   
 = − =
Propagation constant
2
0 0 0 0
j j
       
= − = =
18-12-2021 Arpan Deyasi, EM Theory 21
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Propagation characteristics
p
v c


= =
Phase velocity
Wavelength
0 0
2 2
 

   
= =
18-12-2021 Arpan Deyasi, EM Theory 22
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 23
Problem 2
Electric field in free space is
8
100cos(10 ) /
E t z V m

= +
Calculate [i] phase constant, [ii] time required to travel λ/4
Soln
In free space
8
3 10 /sec
p
v c m
= = 
8
8
10
3 10
p
v

 = =

0.33 /
rad m
 =
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 24
To travel a distance λ/4, it will take ¼ of its time period
2
4 4 2
T
t
 
 
= = =
8
10
2
t
 −
= 
15.71 s
t n
=
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Characteristic impedance
B
E
t

 = −

ˆ
ˆ y
z
E
E B
j k
x x t

 
− + = −
  
ˆ ˆ
ˆ ˆ ....(1)
y y
z z
E B
E B
j k j k
x x t t
 
 
− + = − −
   
From Maxwell’s equation
18-12-2021 Arpan Deyasi, EM Theory 25
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Characteristic impedance
0 0
E
B
t
 

 =

0 0
ˆ
ˆ y
z
B
B E
j k
x x t
 

 
− + =
  
0 0 0 0
ˆ ˆ
ˆ ˆ ....(2)
y y
z z
B E
B E
j k j k
x x t t
   
 
 
− + = +
   
Again from Maxwell’s equation
18-12-2021 Arpan Deyasi, EM Theory 26
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Characteristic impedance
0 0
y
z
E
B
x t
 


− =
 
0 0
y z
B E
x t
 
 
=
 
y
z
B
E
x t


=
 
y z
E B
x t
 
= −
 
From Eq. (1)
From Eq. (2)
18-12-2021 Arpan Deyasi, EM Theory 27
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in free space: Characteristic impedance
Let
( )
y
E f x vt
= −
'
y
E
vf
t

= −

0 0 '
z
B
vf
x
 

 =

0 0 '
z
B vf dx
 
= 
18-12-2021 Arpan Deyasi, EM Theory 28
Arpan Deyasi
Electromagnetic
Theory
0 0
0 0
1
z
f
H dx
x
 
 

=


Maxwell’s equation in free space: Characteristic impedance
0
0
z
H f


=
0
0
z y
H E


=
18-12-2021 Arpan Deyasi, EM Theory 29
Arpan Deyasi
Electromagnetic
Theory
0
0
120
y
z
E
H



= =
Maxwell’s equation in free space: Characteristic impedance
120
 
= 
18-12-2021 Arpan Deyasi, EM Theory 30
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 31
Problem 3
If the magnetic field strength of a plane wave is 1 A/m, what will be the strength of
electric field in free space?
Soln
120
E
H

=
120 .
E H

=
377.4 /
E V m
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 32
Problem 4
A plane wave at free space carries a power density of 1 MW/m2. Find the magnitude of
electric and magnetic field vectors
Soln
2 0
0
S E


=
2
0
E
S
Z
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 33
2
0
E SZ
=
6
0 10 377
E SZ
= = 
19.4 /
E KV m
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 34
Magnetic field
0
E
H
Z
=
120
E
H

=
51.5 /
H A m
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 35
Propagation of Electromagnetic
Wave at Dielectric Medium
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in dielectric medium
0 & 0
J
 = =
In dielectric medium
Maxwell equation becomes
. 0 ....(1)
E
 = . 0 ....(3)
B
 =
....(2)
B
E
t

 = −

....(4)
E
B
t


 =

18-12-2021 Arpan Deyasi, EM Theory 36
Arpan Deyasi
Electromagnetic
Theory
From third equation
B
E
t

 = −

( ) B
E
t

  = −

( ) ( )
2
.E E B
t

  − = − 

( ) ( )
2
.E E B
t

  − = − 

Maxwell’s equation in dielectric medium
18-12-2021 Arpan Deyasi, EM Theory 37
Arpan Deyasi
Electromagnetic
Theory
2 E
E
t t

 
 
 =  
 
 
Maxwell’s equation in dielectric medium
2
2
2
0
E
E
t


 − =

Equation for electric field in free space
18-12-2021 Arpan Deyasi, EM Theory 38
Arpan Deyasi
Electromagnetic
Theory
From fourth equation
E
B
t


 =

( ) E
B
t

 

  =  

 
( ) 2
.
E
B B
t

 

  − = 
 

 
Maxwell’s equation in dielectric medium
( )
2
B E
t


 = − 

18-12-2021 Arpan Deyasi, EM Theory 39
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in dielectric medium
2
.
B
B
t t

 
 =
 
2
2
2
0
B
B
t


 − =

Equation for magnetic field in free space
18-12-2021 Arpan Deyasi, EM Theory 40
Arpan Deyasi
Electromagnetic
Theory
Generalized equation
2
2
2 2
1
0
U
U
v t

 − =

Maxwell’s equation in dielectric medium
18-12-2021 Arpan Deyasi, EM Theory 41
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in dielectric medium: Poynting’s vector
Poynting vector in dielectric medium
( )
1
S E B

= 
k E
B


=
S E H
= 
Now
18-12-2021 Arpan Deyasi, EM Theory 42
Arpan Deyasi
Electromagnetic
Theory
( )
1
ˆ
S E n E
c
 
 =  
 
2
ˆ
E
S n
c
=
2
ˆ
S E n


=
Maxwell’s equation in dielectric medium: Poynting’s vector
18-12-2021 Arpan Deyasi, EM Theory 43
Arpan Deyasi
Electromagnetic
Theory
Ratio of electrostatic and magnetostatic energy is given by
2
2
1
2
1
2
e
m
E
U
U B


=
2
2
1
e
m
U E
U B

= =
e m
U U
=
Maxwell’s equation in dielectric medium: Energy
18-12-2021 Arpan Deyasi, EM Theory 44
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 45
Problem 5
A plane wave travelling in a medium of εr=1 & μr=1 has an electric field of 100√π V/m.
Determine total energy density.
Soln
2
1
2
e
U E

=
2
0
1
2
e r
U E
 
=
3
139 /
e
U nJ m
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 46
2
T e m e
U U U U
= + =
3
278 /
T
U nJ m
=
Arpan Deyasi
Electromagnetic
Theory
k E
B


=
k E
B
kc

=
( )
ˆ
B n E

= 
Wave impedance
1
E
Z
B 
= =
Maxwell’s equation in dielectric medium: Wave impedance
18-12-2021 Arpan Deyasi, EM Theory 47
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 48
Problem 6
Magnetic field of a plane wave has magnitude 5 mA/m in a medium defined by εr = 4, μr = 1.
Determine average power flow and maximum energy density.
Soln
1
E
B 
=
0
0
r
r
E
H
 

  
= =
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 49
188.4
E
H
=
3
188.4 5 10
E −
=  
94.2 /
E mV m
=
Average power flow
2
2
avg
E
P
Z
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 50
2
2.35 /
avg
P mW m
=
Maximum energy density
2
1
2
2
E
W E

= 
2
0
E r
W E
 
=
3
31.42 /
E
W pJ m
=
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in dielectric medium: Wave impedance
0 0
1 1
r r
Z
    
= =
0 0
1 1
r r
Z
   
=
0
1
r r
Z Z
 
=
18-12-2021 Arpan Deyasi, EM Theory 51
Arpan Deyasi
Electromagnetic
Theory
Maxwell’s equation in dielectric medium: Propagation characteristics
p
v v


= =
Phase velocity
Wavelength
2 2
 

  
= =
18-12-2021 Arpan Deyasi, EM Theory 52
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 53
Problem 7
Electric field of a plane wave in a perfect dielectric medium is given by
Soln
7
12cos(2 10 0.1 ) /
E t z V m
 
=  −
Calculate [i] velocity of propagation, [ii] intrinsic impedance
7
2 10
0.1
p
v
 
 

= =
8
2 10 /sec
p
v m
= 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 54
0
1
r r
Z Z
 
=
1
p
r r
v c
 
=
3
2
r
 =
As μr = 1 for perfect dielectric medium
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 55
0
0
r
r
 


  
= =
1
377
r


= 
251.33
 = 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 56
Propagation of Electromagnetic
Wave at Conducting Medium
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 57
Maxwell’s equation in conducting medium
In conducting medium
Maxwell equation becomes
. 0 ....(1)
E
 = . 0 ....(3)
B
 =
....(2)
B
E
t

 = −

0 & J E
 
= =
....(4)
E
B E
t
 

 = +

Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 58
Maxwell’s equation in conducting medium
From third equation
B
E
t

 = −

( ) B
E
t

  = −

( ) ( )
2
.E E B
t

  − = − 

( ) ( )
2
.E E B
t

  − = − 

Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 59
Maxwell’s equation in conducting medium
2 E
E E
t t
 
 
 
 = +
 
 
 
2
2
2
0
E E
E
t t
 
 
 − − =
 
Equation for electric field in conducting medium
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 60
Maxwell’s equation in conducting medium
From fourth equation
( ) E
B E
t
 
 

  =  +
 

 
( ) ( )
2
.
E
B B E
t
 
 

  − =  + 
 

 
E
B E
t
 

 = +

( ) ( ) ( )
2
.B B E E
t
 

  − =  + 

Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 61
Maxwell’s equation in conducting medium
( ) 2
.
B B
B B
t t t
 
   
  
  − = − + −
   
  
   
2
2
2
0
B B
B
t t
 
 
 − − =
 
Equation for magnetic field in conducting medium
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 62
Maxwell’s equation in conducting medium: characteristic equation
Solution of wave equations are
( )
0
( , ) exp .
E r t E i k r t

 
= −
 
( )
0
( , ) exp .
B r t B i k r t

 
= −
 
Substituting
2 2
0
k i  
− + − =
2 2
k i  
= −
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 63
Maxwell’s equation in conducting medium: characteristic equation
k i
 
= +
Solving
Let
1/2
2
1 1
1 1
2 2

  

 
 
 
= + −
 
 
 
 
 
 
1/2
2
1 1
1 1
2 2

  

 
 
 
= + +
 
 
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 64
Maxwell’s equation in conducting medium
CASE-I: poor conductor 1


1/2
2
1 1
1 1
2 2

  

 
 
 
 = + −
 
 
 
 
 
 
1
2

 

=
Attenuation constant is independent of frequency
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 65
Maxwell’s equation in conducting medium
1/2
2
1 1
1 1
2 2

  

 
 
 
= + +
 
 
 
 
 
 
2
1
1
8

  

 
 
= +
 
 
 
 
  

Conductivity has negligible effect on phase constant
CASE-I: poor conductor 1


Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 66
Maxwell’s equation in conducting medium
CASE-II: good conductor 1


1
2

   

 
 = =  
 
2

 
= =
Both attenuation constant and phase constant are independent on material permittivity
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 67
Maxwell’s equation in conducting medium: Poynting’s vector
( )
1
S E B

= 
( )
1/4
2
1
ˆ
1 exp tan
2
i
B n E
 

 
−
   
   
= + 
 
   
 
   
   
1/4
2
1 2
ˆ
1 exp tan
2
i
S E n
  
  
−
   
   
 = +
 
   
 
   
   
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 68
Maxwell’s equation in conducting medium: Energy density
Electrostatic energy density
*
1 1
Re .
2 2
e
U E D
 
=  
 
*
1 1
Re .
4 2
e
U E E

 
=  
 
 
2
1
ˆ
exp 2 .
2
e rms
U E n r
 
= −
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 69
Maxwell’s equation in conducting medium: Energy density
Magnetostatic energy density
*
1 1
Re .
2 2
m
U H B
 
=  
 
*
1 1
Re .
4 2
m
U H H

 
=  
 
 
1/2
2
2
1
ˆ
1 exp 2 .
2
m rms
U E n r

 

 
 
= + −
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 70
Maxwell’s equation in conducting medium: Energy density
Electromagnetic energy density
e m
U U U
= +
 
1/2
2
2
1
ˆ
1 1 exp 2 .
2
rms
U E n r

 

 
 
 
 
= + + −
 
 
 
 
 
 
Electromagnetic energy density is damped during propagation in conducting medium
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 71
Maxwell’s equation in conducting medium: Intrinsic impedance
1/2
i
i


 
 
=  
+
 
1/2 1/2
1
1
i





   
=  
 
  +
 
 
1/2
1/4
2
1





 
 
 
 =
 
 
+
 
 
 
 
 
&
1
1
tan
2



−  
=  
 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 72
Maxwell’s equation in conducting medium: Intrinsic impedance
CASE-I: poor conductor 1


1/ 2
1
1
i





  
=  
 
  +
 
 
1/2
1
2
i
 

 
   
= −
 
 
   
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 73
Maxwell’s equation in conducting medium: Intrinsic impedance
CASE-II: good conductor 1


1/ 2
1
1
i





  
=  
 
  +
 
 
i


=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 74
Problem 8
A plane wave with frequency 2 MHz is incident upon Cu conductor having electric
field 2 mV/m. Given σ = 5.8⨯10-7 mho/m, εr = 4, μr = 1. Calculate characteristic
impedance and average power density.
Soln
7
20.85 10 1


= 



 =
4
5.235 10
 −
=  
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 75
Average power density
2
1
2
avg
E
P

=
2
3.82 /
avg
P mW m
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 76
Maxwell’s equation in conducting medium: Wave impedance
( )
1
B
i
E
 

= +
1/4
2
1
1 exp tan
2
B i
E
 

 
−
   
   
= +
 
   
 
   
   
1/4
2
1
1 exp tan
2
E i
Z
B
 

 
−
   
   
= = + −
 
   
 
   
   
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 77
Maxwell’s equation in conducting medium: Phase velocity
1/2
2
1
1 1
2
p
v
 
 
 

= =
 
 
 
+ +
 
 
 
 
 
 
CASE-I: poor conductor
2
1
1
8

  

 
 
= +
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 78
2
1
1
8
p
v


 

 =
 
 
+
 
 
 
 
2
1
1
1
8
p
v



=
 
 
+
 
 
 
 
2
1 1
1
8
p
v



 
 
= −
 
 
 
 
Maxwell’s equation in conducting medium: Phase velocity
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 79
Maxwell’s equation in conducting medium: Phase velocity
CASE-II: good conductor
2

 =
2
p
v


 =
2
p
v


=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 80
Problem 9
Calculate phase velocity of EM wave travelling at Cu having σ = 5.8⨯10-7 mho/m,
εr = 4, μr = 1.
Soln
2
p
v


=
0
2
p
r
v

  
= 415.22 /sec
p
v m
=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 81
Maxwell’s equation in conducting medium: Wavelength
2


=
CASE-I: poor conductor
2
1
1
8

  

 
 
= +
 
 
 
 
2
2
1
1
8



 

 =
 
 
+
 
 
 
 
2
2 1
1
8
 


 
 
 
= −
 
 
 
 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 82
Maxwell’s equation in conducting medium: Wavelength
CASE-II: good conductor
2

 =
2
2



 =
2 2


=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 83
Electromagnetic wave in a conducting medium shows that there is an exponential
damping or attenuation of the amplitude with distance.
The quantity δ=1/α measures the depth at which e.m wave entering in a
conductor, is damped to 1/e times of its initial amplitude at the surface
This distance is called skin depth.
Maxwell’s equation in conducting medium: Skin depth
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 84
Maxwell’s equation in conducting medium: Skin depth
Relation between skin depth and attenuation constant
Let the wave attenuation be represented as
( )
0 exp
E E z

= −
At z = α
( )
0 exp
E E 
= −
( )
0
0 exp
E
E
e

= −
1


=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 85
Problem 10
For sea-water, σ=5 mho/m, εr = 80. What is the distance an EM wave can be
transmitted at 25 KHz & 25 MHz when the range corresponds to 90% of
maximum?
Soln
( )
exp 0.1
z

− =
2.3
z

=
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 86
1/2
2
1 1
1 1
2 2

  

 
 
 
= + −
 
 
 
 
 
 
25 , 0.702
At f KHz 
= =
25 , 21.96
At f MHz 
= =
0.702, 3.27
For z m
 = =
21.96, 0.104
For z m
 = =
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 87
Maxwell’s equation in conducting medium: Skin depth
CASE-I: poor conductor
1
2

 

=
1 2 

  
= =
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 88
Maxwell’s equation in conducting medium: Skin depth
2

 =
CASE-II: good conductor
1 2

 
= =
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 89
Problem 11
Calculate the skin depth for radio waves of 3 m wavelength in copper.
Given: 7 7
0
6 10 s/m; 4 10 H/m
−
 =   = 
Soln
Cu is good conductor
2
 =

7 7
2
4 10 6 10
−
 =
   
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 90
8
3
24 2 3 10
 =
  
6
6.499 10−
 = 
6.499 m
 = 
Arpan Deyasi
Electromagnetic
Theory
18-12-2021 Arpan Deyasi, EM Theory 91
Maxwell’s equation in conducting medium: Skin effect
The phenomenon of high frequency fields, and hence, currents are confined
within a small region of conducting medium inside the surface is known as
skin effect.
This effect becomes more pronounced as frequency increases, and has the result
that the resistance of wire increases with frequency, i.e., effective cross-section of
wire decreases.
For high frequency application, therefore, it is recommended to use a wire
comprised of many fine strands, rather than a single large diameter wire.
Arpan Deyasi
Electromagnetic
Theory

More Related Content

What's hot

Electromagnetic theory
Electromagnetic theoryElectromagnetic theory
Electromagnetic theory
Kumar
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)
Kumar
 

What's hot (20)

Emft
EmftEmft
Emft
 
transmission-lines
transmission-linestransmission-lines
transmission-lines
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
 
Microwave devices
Microwave devicesMicrowave devices
Microwave devices
 
SEMICONDUCTOR PHYSICS
SEMICONDUCTOR PHYSICSSEMICONDUCTOR PHYSICS
SEMICONDUCTOR PHYSICS
 
Maxwells equation WTP
Maxwells equation WTPMaxwells equation WTP
Maxwells equation WTP
 
Maxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesMaxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic Waves
 
Electric field intensity
Electric field intensityElectric field intensity
Electric field intensity
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
waveguides-ppt
waveguides-pptwaveguides-ppt
waveguides-ppt
 
5 slides
5 slides5 slides
5 slides
 
Uniform plane wave equation
Uniform plane wave equationUniform plane wave equation
Uniform plane wave equation
 
Electro magnetic waves
Electro magnetic wavesElectro magnetic waves
Electro magnetic waves
 
3673 mosfet
3673 mosfet3673 mosfet
3673 mosfet
 
Electromagnetic theory
Electromagnetic theoryElectromagnetic theory
Electromagnetic theory
 
Tunnel diode
Tunnel diodeTunnel diode
Tunnel diode
 
Maxwell's equations 3rd 2
Maxwell's equations 3rd 2Maxwell's equations 3rd 2
Maxwell's equations 3rd 2
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)
 
Wave functions
Wave functionsWave functions
Wave functions
 

Similar to Electromagnetic Wave Propagations

LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
anuj298979
 
Lect24 handout
Lect24 handoutLect24 handout
Lect24 handout
nomio0703
 
Lecture 32 energy and momentum. standing waves.
Lecture 32   energy and momentum. standing waves.Lecture 32   energy and momentum. standing waves.
Lecture 32 energy and momentum. standing waves.
Albania Energy Association
 

Similar to Electromagnetic Wave Propagations (20)

Magnetic Potentials
Magnetic PotentialsMagnetic Potentials
Magnetic Potentials
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
 
Vector Integration
Vector IntegrationVector Integration
Vector Integration
 
Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
 
Ampere's circuital law
Ampere's circuital lawAmpere's circuital law
Ampere's circuital law
 
Biot-Savart law
Biot-Savart lawBiot-Savart law
Biot-Savart law
 
Capacitor
CapacitorCapacitor
Capacitor
 
Lecture 06 maxwell eqn
Lecture 06   maxwell eqnLecture 06   maxwell eqn
Lecture 06 maxwell eqn
 
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
 
WaveEquationDerivation.pdf
WaveEquationDerivation.pdfWaveEquationDerivation.pdf
WaveEquationDerivation.pdf
 
Maxwell's contribution to physics
Maxwell's contribution to physicsMaxwell's contribution to physics
Maxwell's contribution to physics
 
Laws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELDLaws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELD
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppt
 
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
 
Lect24 handout
Lect24 handoutLect24 handout
Lect24 handout
 
Lect24 handout
Lect24 handoutLect24 handout
Lect24 handout
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
Lecture 32 energy and momentum. standing waves.
Lecture 32   energy and momentum. standing waves.Lecture 32   energy and momentum. standing waves.
Lecture 32 energy and momentum. standing waves.
 
Lect02
Lect02Lect02
Lect02
 

More from RCC Institute of Information Technology

More from RCC Institute of Information Technology (18)

Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
 
Moletronics
MoletronicsMoletronics
Moletronics
 
Crystal Growth
Crystal GrowthCrystal Growth
Crystal Growth
 
Memristor
MemristorMemristor
Memristor
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Advanced MOSFET
 
CNTFET
CNTFETCNTFET
CNTFET
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Mosfet fundamentals
Mosfet fundamentalsMosfet fundamentals
Mosfet fundamentals
 
Single Electron Transistor
Single Electron TransistorSingle Electron Transistor
Single Electron Transistor
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling
Resonant Tunneling
 
JFET
JFETJFET
JFET
 
Advanced solar cell
Advanced solar cellAdvanced solar cell
Advanced solar cell
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
meharikiros2
 

Recently uploaded (20)

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 

Electromagnetic Wave Propagations

  • 1. Course: Electromagnetic Theory paper code: EI 503 Course Coordinator: Arpan Deyasi Department of Electronics and Communication Engineering RCC Institute of Information Technology Kolkata, India Topic: EM Wave Propagation 18-12-2021 Arpan Deyasi, EM Theory 1 Arpan Deyasi Electromagnetic Theory
  • 2. 18-12-2021 Arpan Deyasi, EM Theory 2 Maxwell’s equation in differential form . ....(1) E    = . 0 ....(2) B  = ....(3) B E t   = −  ....(4) C E B J t     = +  Arpan Deyasi Electromagnetic Theory
  • 3. Propagation of wave in [i] free space [ii] dielectric medium [iii] conducting medium 18-12-2021 Arpan Deyasi, EM Theory 3 Arpan Deyasi Electromagnetic Theory
  • 4. 18-12-2021 Arpan Deyasi, EM Theory 4 Propagation of Electromagnetic Wave at Free Space Arpan Deyasi Electromagnetic Theory
  • 5. Maxwell’s equation in free space 0 & 0 J  = = In free space Maxwell equation becomes . 0 ....(1) E  = . 0 ....(3) B  = ....(2) B E t   = −  0 0 ....(4) E B t     =  18-12-2021 Arpan Deyasi, EM Theory 5 Arpan Deyasi Electromagnetic Theory
  • 6. From third equation B E t   = −  ( ) B E t    = −  ( ) ( ) 2 .E E B t    − = −   ( ) ( ) 2 .E E B t    − = −   Maxwell’s equation in free space 18-12-2021 Arpan Deyasi, EM Theory 6 Arpan Deyasi Electromagnetic Theory
  • 7. 2 0 0 E E t t        =       Maxwell’s equation in free space 2 2 0 0 2 0 E E t     − =  Equation for electric field in free space 18-12-2021 Arpan Deyasi, EM Theory 7 Arpan Deyasi Electromagnetic Theory
  • 8. From fourth equation 0 0 E B t     =  ( ) 0 0 E B t        =      ( ) 2 0 0 . E B B t        − =       Maxwell’s equation in free space ( ) 2 0 0 B E t     = −   18-12-2021 Arpan Deyasi, EM Theory 8 Arpan Deyasi Electromagnetic Theory
  • 9. Maxwell’s equation in free space 2 0 0 . B B t t      =   2 2 0 0 2 0 B B t     − =  Equation for magnetic field in free space 18-12-2021 Arpan Deyasi, EM Theory 9 Arpan Deyasi Electromagnetic Theory
  • 10. Generalized equation 2 2 2 2 1 0 U U c t   − =  Maxwell’s equation in free space 18-12-2021 Arpan Deyasi, EM Theory 10 Arpan Deyasi Electromagnetic Theory
  • 11. Relation between field and propagation vectors Solution of wave equations are ( ) 0 ( , ) exp . E r t E i k r t    = −   ( ) 0 ( , ) exp . B r t B i k r t    = −   ( ) 0 . . exp . E E i k r t     = −   Maxwell’s equation in free space: Relative directions Taking divergence of both the sides 18-12-2021 Arpan Deyasi, EM Theory 11 Arpan Deyasi Electromagnetic Theory
  • 12. ( ) . . exp . E ik E i k r t     = −   Maxwell’s equation in free space: Relative directions In free space . 0 E  = . 0 k E = Similarly ( ) . . exp . B ik B i k r t     = −   18-12-2021 Arpan Deyasi, EM Theory 12 Arpan Deyasi Electromagnetic Theory
  • 13. E k ⊥ Maxwell’s equation in free space: Relative directions . 0 B  = . 0 k B = B k ⊥ Similarly 18-12-2021 Arpan Deyasi, EM Theory 13 Arpan Deyasi Electromagnetic Theory
  • 14. Maxwell’s equation in free space: Relative directions Again 0 0 E B t     =  ( ) ( ) ( ) ( ) 0 0 0 0 exp . exp . B i k r t E i k r t t           − = −      0 0 1 E k B    = −  E B ⊥ All field components and propagation vector are mutually orthogonal 18-12-2021 Arpan Deyasi, EM Theory 14 Arpan Deyasi Electromagnetic Theory
  • 15. Maxwell’s equation in free space: Poynting’s vector Poynting vector in free space ( ) 0 1 S E B  =  k E B   = S E H =  Now 18-12-2021 Arpan Deyasi, EM Theory 15 Arpan Deyasi Electromagnetic Theory
  • 16. ( ) 0 1 ˆ S E n E c    =     2 0 ˆ E S n c = 2 0 0 ˆ S E n   = Maxwell’s equation in free space: Poynting’s vector 18-12-2021 Arpan Deyasi, EM Theory 16 Arpan Deyasi Electromagnetic Theory
  • 17. 18-12-2021 Arpan Deyasi, EM Theory 17 Problem 1 Calculate Poynting vector in free space when electric field is 10 V/m Soln 2 0 0 S E   = 12 7 8.854 10 10 10 4 10 S  − −  =    2 0.265 / S W m = Arpan Deyasi Electromagnetic Theory
  • 18. Ratio of electrostatic and magnetostatic energy is given by 2 0 2 0 1 2 1 2 e m E U U B   = 2 0 0 2 1 e m U E U B   = = e m U U = Maxwell’s equation in free space: Energy 18-12-2021 Arpan Deyasi, EM Theory 18 Arpan Deyasi Electromagnetic Theory
  • 19. k E B   = k E B kc  = ( ) 0 0 ˆ B n E   =  Wave impedance 0 0 0 0 0 1 E E Z B B   = = = Maxwell’s equation in free space: Wave impedance 18-12-2021 Arpan Deyasi, EM Theory 19 Arpan Deyasi Electromagnetic Theory
  • 20. Maxwell’s equation in free space: Propagation characteristics 2 2 0 0 2 0 E E t     − =  2 2 0 0 2 0 B B t     − =  Wave equations are Solution of wave equations are ( ) 0 ( , ) exp . E r t E i k r t    = −   ( ) 0 ( , ) exp . B r t B i k r t    = −   18-12-2021 Arpan Deyasi, EM Theory 20 Arpan Deyasi Electromagnetic Theory
  • 21. Maxwell’s equation in free space: Propagation characteristics Substituting 2 2 2 0 0 E E E      = − = 2 2 2 0 0 B B B      = − = Propagation constant 2 0 0 0 0 j j         = − = = 18-12-2021 Arpan Deyasi, EM Theory 21 Arpan Deyasi Electromagnetic Theory
  • 22. Maxwell’s equation in free space: Propagation characteristics p v c   = = Phase velocity Wavelength 0 0 2 2        = = 18-12-2021 Arpan Deyasi, EM Theory 22 Arpan Deyasi Electromagnetic Theory
  • 23. 18-12-2021 Arpan Deyasi, EM Theory 23 Problem 2 Electric field in free space is 8 100cos(10 ) / E t z V m  = + Calculate [i] phase constant, [ii] time required to travel λ/4 Soln In free space 8 3 10 /sec p v c m = =  8 8 10 3 10 p v   = =  0.33 / rad m  = Arpan Deyasi Electromagnetic Theory
  • 24. 18-12-2021 Arpan Deyasi, EM Theory 24 To travel a distance λ/4, it will take ¼ of its time period 2 4 4 2 T t     = = = 8 10 2 t  − =  15.71 s t n = Arpan Deyasi Electromagnetic Theory
  • 25. Maxwell’s equation in free space: Characteristic impedance B E t   = −  ˆ ˆ y z E E B j k x x t    − + = −    ˆ ˆ ˆ ˆ ....(1) y y z z E B E B j k j k x x t t     − + = − −     From Maxwell’s equation 18-12-2021 Arpan Deyasi, EM Theory 25 Arpan Deyasi Electromagnetic Theory
  • 26. Maxwell’s equation in free space: Characteristic impedance 0 0 E B t     =  0 0 ˆ ˆ y z B B E j k x x t      − + =    0 0 0 0 ˆ ˆ ˆ ˆ ....(2) y y z z B E B E j k j k x x t t         − + = +     Again from Maxwell’s equation 18-12-2021 Arpan Deyasi, EM Theory 26 Arpan Deyasi Electromagnetic Theory
  • 27. Maxwell’s equation in free space: Characteristic impedance 0 0 y z E B x t     − =   0 0 y z B E x t     =   y z B E x t   =   y z E B x t   = −   From Eq. (1) From Eq. (2) 18-12-2021 Arpan Deyasi, EM Theory 27 Arpan Deyasi Electromagnetic Theory
  • 28. Maxwell’s equation in free space: Characteristic impedance Let ( ) y E f x vt = − ' y E vf t  = −  0 0 ' z B vf x     =  0 0 ' z B vf dx   =  18-12-2021 Arpan Deyasi, EM Theory 28 Arpan Deyasi Electromagnetic Theory
  • 29. 0 0 0 0 1 z f H dx x      =   Maxwell’s equation in free space: Characteristic impedance 0 0 z H f   = 0 0 z y H E   = 18-12-2021 Arpan Deyasi, EM Theory 29 Arpan Deyasi Electromagnetic Theory
  • 30. 0 0 120 y z E H    = = Maxwell’s equation in free space: Characteristic impedance 120   =  18-12-2021 Arpan Deyasi, EM Theory 30 Arpan Deyasi Electromagnetic Theory
  • 31. 18-12-2021 Arpan Deyasi, EM Theory 31 Problem 3 If the magnetic field strength of a plane wave is 1 A/m, what will be the strength of electric field in free space? Soln 120 E H  = 120 . E H  = 377.4 / E V m = Arpan Deyasi Electromagnetic Theory
  • 32. 18-12-2021 Arpan Deyasi, EM Theory 32 Problem 4 A plane wave at free space carries a power density of 1 MW/m2. Find the magnitude of electric and magnetic field vectors Soln 2 0 0 S E   = 2 0 E S Z = Arpan Deyasi Electromagnetic Theory
  • 33. 18-12-2021 Arpan Deyasi, EM Theory 33 2 0 E SZ = 6 0 10 377 E SZ = =  19.4 / E KV m = Arpan Deyasi Electromagnetic Theory
  • 34. 18-12-2021 Arpan Deyasi, EM Theory 34 Magnetic field 0 E H Z = 120 E H  = 51.5 / H A m = Arpan Deyasi Electromagnetic Theory
  • 35. 18-12-2021 Arpan Deyasi, EM Theory 35 Propagation of Electromagnetic Wave at Dielectric Medium Arpan Deyasi Electromagnetic Theory
  • 36. Maxwell’s equation in dielectric medium 0 & 0 J  = = In dielectric medium Maxwell equation becomes . 0 ....(1) E  = . 0 ....(3) B  = ....(2) B E t   = −  ....(4) E B t    =  18-12-2021 Arpan Deyasi, EM Theory 36 Arpan Deyasi Electromagnetic Theory
  • 37. From third equation B E t   = −  ( ) B E t    = −  ( ) ( ) 2 .E E B t    − = −   ( ) ( ) 2 .E E B t    − = −   Maxwell’s equation in dielectric medium 18-12-2021 Arpan Deyasi, EM Theory 37 Arpan Deyasi Electromagnetic Theory
  • 38. 2 E E t t       =       Maxwell’s equation in dielectric medium 2 2 2 0 E E t    − =  Equation for electric field in free space 18-12-2021 Arpan Deyasi, EM Theory 38 Arpan Deyasi Electromagnetic Theory
  • 39. From fourth equation E B t    =  ( ) E B t       =      ( ) 2 . E B B t       − =       Maxwell’s equation in dielectric medium ( ) 2 B E t    = −   18-12-2021 Arpan Deyasi, EM Theory 39 Arpan Deyasi Electromagnetic Theory
  • 40. Maxwell’s equation in dielectric medium 2 . B B t t     =   2 2 2 0 B B t    − =  Equation for magnetic field in free space 18-12-2021 Arpan Deyasi, EM Theory 40 Arpan Deyasi Electromagnetic Theory
  • 41. Generalized equation 2 2 2 2 1 0 U U v t   − =  Maxwell’s equation in dielectric medium 18-12-2021 Arpan Deyasi, EM Theory 41 Arpan Deyasi Electromagnetic Theory
  • 42. Maxwell’s equation in dielectric medium: Poynting’s vector Poynting vector in dielectric medium ( ) 1 S E B  =  k E B   = S E H =  Now 18-12-2021 Arpan Deyasi, EM Theory 42 Arpan Deyasi Electromagnetic Theory
  • 43. ( ) 1 ˆ S E n E c    =     2 ˆ E S n c = 2 ˆ S E n   = Maxwell’s equation in dielectric medium: Poynting’s vector 18-12-2021 Arpan Deyasi, EM Theory 43 Arpan Deyasi Electromagnetic Theory
  • 44. Ratio of electrostatic and magnetostatic energy is given by 2 2 1 2 1 2 e m E U U B   = 2 2 1 e m U E U B  = = e m U U = Maxwell’s equation in dielectric medium: Energy 18-12-2021 Arpan Deyasi, EM Theory 44 Arpan Deyasi Electromagnetic Theory
  • 45. 18-12-2021 Arpan Deyasi, EM Theory 45 Problem 5 A plane wave travelling in a medium of εr=1 & μr=1 has an electric field of 100√π V/m. Determine total energy density. Soln 2 1 2 e U E  = 2 0 1 2 e r U E   = 3 139 / e U nJ m = Arpan Deyasi Electromagnetic Theory
  • 46. 18-12-2021 Arpan Deyasi, EM Theory 46 2 T e m e U U U U = + = 3 278 / T U nJ m = Arpan Deyasi Electromagnetic Theory
  • 47. k E B   = k E B kc  = ( ) ˆ B n E  =  Wave impedance 1 E Z B  = = Maxwell’s equation in dielectric medium: Wave impedance 18-12-2021 Arpan Deyasi, EM Theory 47 Arpan Deyasi Electromagnetic Theory
  • 48. 18-12-2021 Arpan Deyasi, EM Theory 48 Problem 6 Magnetic field of a plane wave has magnitude 5 mA/m in a medium defined by εr = 4, μr = 1. Determine average power flow and maximum energy density. Soln 1 E B  = 0 0 r r E H       = = Arpan Deyasi Electromagnetic Theory
  • 49. 18-12-2021 Arpan Deyasi, EM Theory 49 188.4 E H = 3 188.4 5 10 E − =   94.2 / E mV m = Average power flow 2 2 avg E P Z = Arpan Deyasi Electromagnetic Theory
  • 50. 18-12-2021 Arpan Deyasi, EM Theory 50 2 2.35 / avg P mW m = Maximum energy density 2 1 2 2 E W E  =  2 0 E r W E   = 3 31.42 / E W pJ m = Arpan Deyasi Electromagnetic Theory
  • 51. Maxwell’s equation in dielectric medium: Wave impedance 0 0 1 1 r r Z      = = 0 0 1 1 r r Z     = 0 1 r r Z Z   = 18-12-2021 Arpan Deyasi, EM Theory 51 Arpan Deyasi Electromagnetic Theory
  • 52. Maxwell’s equation in dielectric medium: Propagation characteristics p v v   = = Phase velocity Wavelength 2 2       = = 18-12-2021 Arpan Deyasi, EM Theory 52 Arpan Deyasi Electromagnetic Theory
  • 53. 18-12-2021 Arpan Deyasi, EM Theory 53 Problem 7 Electric field of a plane wave in a perfect dielectric medium is given by Soln 7 12cos(2 10 0.1 ) / E t z V m   =  − Calculate [i] velocity of propagation, [ii] intrinsic impedance 7 2 10 0.1 p v      = = 8 2 10 /sec p v m =  Arpan Deyasi Electromagnetic Theory
  • 54. 18-12-2021 Arpan Deyasi, EM Theory 54 0 1 r r Z Z   = 1 p r r v c   = 3 2 r  = As μr = 1 for perfect dielectric medium Arpan Deyasi Electromagnetic Theory
  • 55. 18-12-2021 Arpan Deyasi, EM Theory 55 0 0 r r        = = 1 377 r   =  251.33  =  Arpan Deyasi Electromagnetic Theory
  • 56. 18-12-2021 Arpan Deyasi, EM Theory 56 Propagation of Electromagnetic Wave at Conducting Medium Arpan Deyasi Electromagnetic Theory
  • 57. 18-12-2021 Arpan Deyasi, EM Theory 57 Maxwell’s equation in conducting medium In conducting medium Maxwell equation becomes . 0 ....(1) E  = . 0 ....(3) B  = ....(2) B E t   = −  0 & J E   = = ....(4) E B E t     = +  Arpan Deyasi Electromagnetic Theory
  • 58. 18-12-2021 Arpan Deyasi, EM Theory 58 Maxwell’s equation in conducting medium From third equation B E t   = −  ( ) B E t    = −  ( ) ( ) 2 .E E B t    − = −   ( ) ( ) 2 .E E B t    − = −   Arpan Deyasi Electromagnetic Theory
  • 59. 18-12-2021 Arpan Deyasi, EM Theory 59 Maxwell’s equation in conducting medium 2 E E E t t        = +       2 2 2 0 E E E t t      − − =   Equation for electric field in conducting medium Arpan Deyasi Electromagnetic Theory
  • 60. 18-12-2021 Arpan Deyasi, EM Theory 60 Maxwell’s equation in conducting medium From fourth equation ( ) E B E t        =  +      ( ) ( ) 2 . E B B E t        − =  +       E B E t     = +  ( ) ( ) ( ) 2 .B B E E t      − =  +   Arpan Deyasi Electromagnetic Theory
  • 61. 18-12-2021 Arpan Deyasi, EM Theory 61 Maxwell’s equation in conducting medium ( ) 2 . B B B B t t t            − = − + −            2 2 2 0 B B B t t      − − =   Equation for magnetic field in conducting medium Arpan Deyasi Electromagnetic Theory
  • 62. 18-12-2021 Arpan Deyasi, EM Theory 62 Maxwell’s equation in conducting medium: characteristic equation Solution of wave equations are ( ) 0 ( , ) exp . E r t E i k r t    = −   ( ) 0 ( , ) exp . B r t B i k r t    = −   Substituting 2 2 0 k i   − + − = 2 2 k i   = − Arpan Deyasi Electromagnetic Theory
  • 63. 18-12-2021 Arpan Deyasi, EM Theory 63 Maxwell’s equation in conducting medium: characteristic equation k i   = + Solving Let 1/2 2 1 1 1 1 2 2            = + −             1/2 2 1 1 1 1 2 2            = + +             Arpan Deyasi Electromagnetic Theory
  • 64. 18-12-2021 Arpan Deyasi, EM Theory 64 Maxwell’s equation in conducting medium CASE-I: poor conductor 1   1/2 2 1 1 1 1 2 2             = + −             1 2     = Attenuation constant is independent of frequency Arpan Deyasi Electromagnetic Theory
  • 65. 18-12-2021 Arpan Deyasi, EM Theory 65 Maxwell’s equation in conducting medium 1/2 2 1 1 1 1 2 2            = + +             2 1 1 8          = +             Conductivity has negligible effect on phase constant CASE-I: poor conductor 1   Arpan Deyasi Electromagnetic Theory
  • 66. 18-12-2021 Arpan Deyasi, EM Theory 66 Maxwell’s equation in conducting medium CASE-II: good conductor 1   1 2          = =     2    = = Both attenuation constant and phase constant are independent on material permittivity Arpan Deyasi Electromagnetic Theory
  • 67. 18-12-2021 Arpan Deyasi, EM Theory 67 Maxwell’s equation in conducting medium: Poynting’s vector ( ) 1 S E B  =  ( ) 1/4 2 1 ˆ 1 exp tan 2 i B n E      −         = +                  1/4 2 1 2 ˆ 1 exp tan 2 i S E n       −          = +                 Arpan Deyasi Electromagnetic Theory
  • 68. 18-12-2021 Arpan Deyasi, EM Theory 68 Maxwell’s equation in conducting medium: Energy density Electrostatic energy density * 1 1 Re . 2 2 e U E D   =     * 1 1 Re . 4 2 e U E E    =       2 1 ˆ exp 2 . 2 e rms U E n r   = − Arpan Deyasi Electromagnetic Theory
  • 69. 18-12-2021 Arpan Deyasi, EM Theory 69 Maxwell’s equation in conducting medium: Energy density Magnetostatic energy density * 1 1 Re . 2 2 m U H B   =     * 1 1 Re . 4 2 m U H H    =       1/2 2 2 1 ˆ 1 exp 2 . 2 m rms U E n r         = + −         Arpan Deyasi Electromagnetic Theory
  • 70. 18-12-2021 Arpan Deyasi, EM Theory 70 Maxwell’s equation in conducting medium: Energy density Electromagnetic energy density e m U U U = +   1/2 2 2 1 ˆ 1 1 exp 2 . 2 rms U E n r             = + + −             Electromagnetic energy density is damped during propagation in conducting medium Arpan Deyasi Electromagnetic Theory
  • 71. 18-12-2021 Arpan Deyasi, EM Theory 71 Maxwell’s equation in conducting medium: Intrinsic impedance 1/2 i i       =   +   1/2 1/2 1 1 i          =       +     1/2 1/4 2 1             =     +           & 1 1 tan 2    −   =     Arpan Deyasi Electromagnetic Theory
  • 72. 18-12-2021 Arpan Deyasi, EM Theory 72 Maxwell’s equation in conducting medium: Intrinsic impedance CASE-I: poor conductor 1   1/ 2 1 1 i         =       +     1/2 1 2 i          = −         Arpan Deyasi Electromagnetic Theory
  • 73. 18-12-2021 Arpan Deyasi, EM Theory 73 Maxwell’s equation in conducting medium: Intrinsic impedance CASE-II: good conductor 1   1/ 2 1 1 i         =       +     i   = Arpan Deyasi Electromagnetic Theory
  • 74. 18-12-2021 Arpan Deyasi, EM Theory 74 Problem 8 A plane wave with frequency 2 MHz is incident upon Cu conductor having electric field 2 mV/m. Given σ = 5.8⨯10-7 mho/m, εr = 4, μr = 1. Calculate characteristic impedance and average power density. Soln 7 20.85 10 1   =      = 4 5.235 10  − =   Arpan Deyasi Electromagnetic Theory
  • 75. 18-12-2021 Arpan Deyasi, EM Theory 75 Average power density 2 1 2 avg E P  = 2 3.82 / avg P mW m = Arpan Deyasi Electromagnetic Theory
  • 76. 18-12-2021 Arpan Deyasi, EM Theory 76 Maxwell’s equation in conducting medium: Wave impedance ( ) 1 B i E    = + 1/4 2 1 1 exp tan 2 B i E      −         = +                 1/4 2 1 1 exp tan 2 E i Z B      −         = = + −                 Arpan Deyasi Electromagnetic Theory
  • 77. 18-12-2021 Arpan Deyasi, EM Theory 77 Maxwell’s equation in conducting medium: Phase velocity 1/2 2 1 1 1 2 p v        = =       + +             CASE-I: poor conductor 2 1 1 8          = +         Arpan Deyasi Electromagnetic Theory
  • 78. 18-12-2021 Arpan Deyasi, EM Theory 78 2 1 1 8 p v       =     +         2 1 1 1 8 p v    =     +         2 1 1 1 8 p v        = −         Maxwell’s equation in conducting medium: Phase velocity Arpan Deyasi Electromagnetic Theory
  • 79. 18-12-2021 Arpan Deyasi, EM Theory 79 Maxwell’s equation in conducting medium: Phase velocity CASE-II: good conductor 2   = 2 p v    = 2 p v   = Arpan Deyasi Electromagnetic Theory
  • 80. 18-12-2021 Arpan Deyasi, EM Theory 80 Problem 9 Calculate phase velocity of EM wave travelling at Cu having σ = 5.8⨯10-7 mho/m, εr = 4, μr = 1. Soln 2 p v   = 0 2 p r v     = 415.22 /sec p v m = Arpan Deyasi Electromagnetic Theory
  • 81. 18-12-2021 Arpan Deyasi, EM Theory 81 Maxwell’s equation in conducting medium: Wavelength 2   = CASE-I: poor conductor 2 1 1 8          = +         2 2 1 1 8        =     +         2 2 1 1 8           = −         Arpan Deyasi Electromagnetic Theory
  • 82. 18-12-2021 Arpan Deyasi, EM Theory 82 Maxwell’s equation in conducting medium: Wavelength CASE-II: good conductor 2   = 2 2     = 2 2   = Arpan Deyasi Electromagnetic Theory
  • 83. 18-12-2021 Arpan Deyasi, EM Theory 83 Electromagnetic wave in a conducting medium shows that there is an exponential damping or attenuation of the amplitude with distance. The quantity δ=1/α measures the depth at which e.m wave entering in a conductor, is damped to 1/e times of its initial amplitude at the surface This distance is called skin depth. Maxwell’s equation in conducting medium: Skin depth Arpan Deyasi Electromagnetic Theory
  • 84. 18-12-2021 Arpan Deyasi, EM Theory 84 Maxwell’s equation in conducting medium: Skin depth Relation between skin depth and attenuation constant Let the wave attenuation be represented as ( ) 0 exp E E z  = − At z = α ( ) 0 exp E E  = − ( ) 0 0 exp E E e  = − 1   = Arpan Deyasi Electromagnetic Theory
  • 85. 18-12-2021 Arpan Deyasi, EM Theory 85 Problem 10 For sea-water, σ=5 mho/m, εr = 80. What is the distance an EM wave can be transmitted at 25 KHz & 25 MHz when the range corresponds to 90% of maximum? Soln ( ) exp 0.1 z  − = 2.3 z  = Arpan Deyasi Electromagnetic Theory
  • 86. 18-12-2021 Arpan Deyasi, EM Theory 86 1/2 2 1 1 1 1 2 2            = + −             25 , 0.702 At f KHz  = = 25 , 21.96 At f MHz  = = 0.702, 3.27 For z m  = = 21.96, 0.104 For z m  = = Arpan Deyasi Electromagnetic Theory
  • 87. 18-12-2021 Arpan Deyasi, EM Theory 87 Maxwell’s equation in conducting medium: Skin depth CASE-I: poor conductor 1 2     = 1 2      = = Arpan Deyasi Electromagnetic Theory
  • 88. 18-12-2021 Arpan Deyasi, EM Theory 88 Maxwell’s equation in conducting medium: Skin depth 2   = CASE-II: good conductor 1 2    = = Arpan Deyasi Electromagnetic Theory
  • 89. 18-12-2021 Arpan Deyasi, EM Theory 89 Problem 11 Calculate the skin depth for radio waves of 3 m wavelength in copper. Given: 7 7 0 6 10 s/m; 4 10 H/m −  =   =  Soln Cu is good conductor 2  =  7 7 2 4 10 6 10 −  =     Arpan Deyasi Electromagnetic Theory
  • 90. 18-12-2021 Arpan Deyasi, EM Theory 90 8 3 24 2 3 10  =    6 6.499 10−  =  6.499 m  =  Arpan Deyasi Electromagnetic Theory
  • 91. 18-12-2021 Arpan Deyasi, EM Theory 91 Maxwell’s equation in conducting medium: Skin effect The phenomenon of high frequency fields, and hence, currents are confined within a small region of conducting medium inside the surface is known as skin effect. This effect becomes more pronounced as frequency increases, and has the result that the resistance of wire increases with frequency, i.e., effective cross-section of wire decreases. For high frequency application, therefore, it is recommended to use a wire comprised of many fine strands, rather than a single large diameter wire. Arpan Deyasi Electromagnetic Theory