1p JLeafsf t BUivpidna -t-e LdZ: H ASpril 7, 2011 
By: Jeffrey Bivin 
Lake Zurich High School 
jeff.bivin@lz95.org
Graph the following parabola 
y = 3x2 + 24x + 53 
y = 3(x2 + 8x ) + 53 
y + 48 = 3(x2 + 8x + (4)2) + 53 
y = 3(x2 + 8x + (4)2) + 53 - 48 
3●(4)2 = 48 
1p Jeff Bivin -- LZHS 
y = 3(x + 4)2 + 5 
x + 4 = 0 
Axis of symmetry: x = -4 
Vertex: (-4, 5) 
Note: opens up
Graph the following parabola 
y = 3(x + 4)2 + 5 
No x-intercept 
y-intercept: 
y = 3( 0) 2 + 24( 0) + 53 = 53 
1p x-intercept 
y-intercept 
none 
( 0, 53) 
Jeff Bivin -- LZHS
Graph the following parabola 
y = -2x2 + 12x + 11 
y = -2(x2 - 6x ) + 11 
-2●(-3)2 = -18 
y - 18 = -2(x2 - 6x + (-3)2) + 11 
y = -2(x2 - 6x + (-3)2) + 11 + 18 
1p Jeff Bivin -- LZHS 
y = -2(x - 3)2 + 29 
x - 3 = 0 
Axis of symmetry: x = 3 
Vertex: (3, 29) 
Note: opens down
Graph the following parabola 
y = -2(x - 3)2 + 29 
x-intercept 
y-intercept 
1p Jeff Bivin -- LZHS 
y = - 2( 0 - 3) 2 + 29 
( 0, 11) 
( ) 2 0 = - 2 x -3 + 29 
( ) 2 -29 = - 2 x - 3 
( ) 29 2 
2 = x - 3 
29 
2 ± = x - 3 
3± 29 
= x 
2 ( 3± 58 , 0 
) 
2 ( 36.808, 0) &( .808, 0) 
y = 11
Graph the following parabola 
x = -2y2 - 8y - 1 
x = -2(y2 + 4y ) - 1 
x - 8 = -2(y2 + 4y + (2)2) - 1 
x = -2(y2 + 4y + (2)2) - 1 + 8 
-2(2)2 = -8 
1p Jeff Bivin -- LZHS 
x = -2(y + 2)2 + 7 
y + 2 = 0 
Axis of symmetry: y = -2 
Vertex: (7, -2) 
Note: opens left
Graph the following parabola 
x = -2(y + 2)2 + 7 
y-intercept y-intercept 
( ) 2 x = - 2 0 + 2 + 7 
( -1, 0) 
1p Jeff Bivin -- LZHS 
( ) 2 0 = - 2 y + 2 + 7 
( ) 2 -7 = - 2 y + 2 
( ) 7 2 
2 = y + 2 
7 
2 ± = y + 2 
-2 ± 7 
= y 
2 ( 0, 3± 
14 ) 
2 ( 4.871, 0) &(1.129, 0) 
x = -8 + 7
Graph the following parabola 
1 
x = y2 - 4y + 11 
2 
x = 1 
(y2 - 8y ) + 11 
2 
1 
x + 8 = (y2 - 8y + (-4)2) + 11 
2 
1 
x = (y2 - 8y + (-4)2 2 ) + 11 - 8 
1 = 
(16) 8 
2 
1p 1 
Jeff Bivin -- LZHS 
x = (y - 4)2 + 3 
2 
y - 4 = 0 
Axis of symmetry: y = 4 
Vertex: (3, 4) 
Note: opens right
Graph the following parabola 
1 ( 4)2 3 
2 
x = y - + 
x-intercept y-intercept 
( ) 1 0 4 2 3 
2 
x = - + 
1p (11, 0) 
Jeff Bivin -- LZHS 
none 
x = 8 + 3 
x = 11
Graph the following parabola 
x = y2 + 10y + 8 
x = (y2 + 10y ) + 8 
x + 25 = (y2 + 10y + (5)2) + 8 
x = (y2 + 10y + (5)2) + 8 - 25 
(5)2 = 25 
1p Jeff Bivin -- LZHS 
x = (y + 5)2 - 17 
y + 5 = 0 
Axis of symmetry: y = -5 
Vertex: (-17, -5) 
Note: opens right
Graph the following parabola 
x = (y + 5)2 - 17 
x-intercept y-intercept 
( ) 2 x = 0 + 5 - 17 
1p ( 8, 0) 
Jeff Bivin -- LZHS 
( ) 2 0 = y + 5 - 17 
( ) 2 17 = y + 5 
± 17 = y + 5 
-5 ± 17 = y 
( 0, -5 ± 17 ) 
( -0.877, 0) &( -9.123, 0) 
x = 25 -17 
x = 8
Graph the following parabola 
y = 5x2 - 30x + 46 
y = 5(x2 - 6x ) + 46 
5●(-3)2 = 45 
y + 45 = 5(x2 - 6x + (-3)2) + 46 
y = 5(x2 - 6x + (-3)2) + 46 - 45 
1p Jeff Bivin -- LZHS 
y = 5(x - 3)2 + 1 
x - 3 = 0 
Axis of symmetry: x = 3 
Vertex: (3, 1) 
Note: opens up
Graph the following parabola 
y = 5(x - 3)2 + 1 
x-intercept y-intercept 
y = 5( 0 - 3) 2 + 1 
y = 45 +1 
( 0, 46) 
none 
1p Jeff Bivin -- LZHS

Parabola

  • 1.
    1p JLeafsf tBUivpidna -t-e LdZ: H ASpril 7, 2011 By: Jeffrey Bivin Lake Zurich High School jeff.bivin@lz95.org
  • 2.
    Graph the followingparabola y = 3x2 + 24x + 53 y = 3(x2 + 8x ) + 53 y + 48 = 3(x2 + 8x + (4)2) + 53 y = 3(x2 + 8x + (4)2) + 53 - 48 3●(4)2 = 48 1p Jeff Bivin -- LZHS y = 3(x + 4)2 + 5 x + 4 = 0 Axis of symmetry: x = -4 Vertex: (-4, 5) Note: opens up
  • 3.
    Graph the followingparabola y = 3(x + 4)2 + 5 No x-intercept y-intercept: y = 3( 0) 2 + 24( 0) + 53 = 53 1p x-intercept y-intercept none ( 0, 53) Jeff Bivin -- LZHS
  • 4.
    Graph the followingparabola y = -2x2 + 12x + 11 y = -2(x2 - 6x ) + 11 -2●(-3)2 = -18 y - 18 = -2(x2 - 6x + (-3)2) + 11 y = -2(x2 - 6x + (-3)2) + 11 + 18 1p Jeff Bivin -- LZHS y = -2(x - 3)2 + 29 x - 3 = 0 Axis of symmetry: x = 3 Vertex: (3, 29) Note: opens down
  • 5.
    Graph the followingparabola y = -2(x - 3)2 + 29 x-intercept y-intercept 1p Jeff Bivin -- LZHS y = - 2( 0 - 3) 2 + 29 ( 0, 11) ( ) 2 0 = - 2 x -3 + 29 ( ) 2 -29 = - 2 x - 3 ( ) 29 2 2 = x - 3 29 2 ± = x - 3 3± 29 = x 2 ( 3± 58 , 0 ) 2 ( 36.808, 0) &( .808, 0) y = 11
  • 6.
    Graph the followingparabola x = -2y2 - 8y - 1 x = -2(y2 + 4y ) - 1 x - 8 = -2(y2 + 4y + (2)2) - 1 x = -2(y2 + 4y + (2)2) - 1 + 8 -2(2)2 = -8 1p Jeff Bivin -- LZHS x = -2(y + 2)2 + 7 y + 2 = 0 Axis of symmetry: y = -2 Vertex: (7, -2) Note: opens left
  • 7.
    Graph the followingparabola x = -2(y + 2)2 + 7 y-intercept y-intercept ( ) 2 x = - 2 0 + 2 + 7 ( -1, 0) 1p Jeff Bivin -- LZHS ( ) 2 0 = - 2 y + 2 + 7 ( ) 2 -7 = - 2 y + 2 ( ) 7 2 2 = y + 2 7 2 ± = y + 2 -2 ± 7 = y 2 ( 0, 3± 14 ) 2 ( 4.871, 0) &(1.129, 0) x = -8 + 7
  • 8.
    Graph the followingparabola 1 x = y2 - 4y + 11 2 x = 1 (y2 - 8y ) + 11 2 1 x + 8 = (y2 - 8y + (-4)2) + 11 2 1 x = (y2 - 8y + (-4)2 2 ) + 11 - 8 1 = (16) 8 2 1p 1 Jeff Bivin -- LZHS x = (y - 4)2 + 3 2 y - 4 = 0 Axis of symmetry: y = 4 Vertex: (3, 4) Note: opens right
  • 9.
    Graph the followingparabola 1 ( 4)2 3 2 x = y - + x-intercept y-intercept ( ) 1 0 4 2 3 2 x = - + 1p (11, 0) Jeff Bivin -- LZHS none x = 8 + 3 x = 11
  • 10.
    Graph the followingparabola x = y2 + 10y + 8 x = (y2 + 10y ) + 8 x + 25 = (y2 + 10y + (5)2) + 8 x = (y2 + 10y + (5)2) + 8 - 25 (5)2 = 25 1p Jeff Bivin -- LZHS x = (y + 5)2 - 17 y + 5 = 0 Axis of symmetry: y = -5 Vertex: (-17, -5) Note: opens right
  • 11.
    Graph the followingparabola x = (y + 5)2 - 17 x-intercept y-intercept ( ) 2 x = 0 + 5 - 17 1p ( 8, 0) Jeff Bivin -- LZHS ( ) 2 0 = y + 5 - 17 ( ) 2 17 = y + 5 ± 17 = y + 5 -5 ± 17 = y ( 0, -5 ± 17 ) ( -0.877, 0) &( -9.123, 0) x = 25 -17 x = 8
  • 12.
    Graph the followingparabola y = 5x2 - 30x + 46 y = 5(x2 - 6x ) + 46 5●(-3)2 = 45 y + 45 = 5(x2 - 6x + (-3)2) + 46 y = 5(x2 - 6x + (-3)2) + 46 - 45 1p Jeff Bivin -- LZHS y = 5(x - 3)2 + 1 x - 3 = 0 Axis of symmetry: x = 3 Vertex: (3, 1) Note: opens up
  • 13.
    Graph the followingparabola y = 5(x - 3)2 + 1 x-intercept y-intercept y = 5( 0 - 3) 2 + 1 y = 45 +1 ( 0, 46) none 1p Jeff Bivin -- LZHS