SlideShare a Scribd company logo
1 of 69
Download to read offline
CALCULUS Ill
3D Space
AZ
JE
:#
tangent plane
. ,
×
'
I
•
v
'
Y
n a
L
Z
Z 2
7
y
L X
-
y
L
× y
'
×
>
h2
( X
, 0,2 )
X
-
z y
-
2 L O , y ,
2)
plane plane
x -
y plane
>
y
L ( X. y ,
O )
x
^
Distance ix. y )
•
D= V ( X -
X
'
)2t (
y
-
y
'
)2
• ( X
'
, y
'
)
>
^
2
( X , y ,
2)
•
I
Iz -
z 't
'
d
'
= #I d ( X
-
X
'
)2 t
( y
-
y
'
32
- -
di-
-
-
-
- d =
FEZ '
)2
•• C X
'
, Y
'
'
Z
'
)
D= j , ×
.
x. yz +
( y
-
y' 72 t
( 2 -
2
'
)
Z
L )
× Y
Z =
f ( × , y ) →
surface in 3D space
equation involving x. y , 2
2=2
a
-
Z
X
L dy
In
y
=
I
I I
I l
L
S
X t
y t 2=1
Nz
•
L 0,0 ,
I )
o ( O
,
I ,
O )
X
L
@
s
( 1,0 ,
O ) Y
X
Z
t
y
2
t 22 =
4
( X -
O )
2 t
( y
-
O )
2 t ( 2
-
O )
2 = 2
↳ sphere w/ center at
origin w/ radius 2
( X
-
2)
Z
is
L y
-
3)
2 t
L 2 -
4) 2 = I
↳ sphere w/ center at ( 2.3 ,
4) with r = I
Xt y
= I X t
y
= I X t
y
= I
I
equation x =
y X =
y
Surface in 3D 2 equations 2=2
curve in 3D 3 equations
point Cs )
^
•
L
)
^
#
X
Z
t
y
2
=/
# X
2
t
y 2=4
 ) , ± ×z +
y
z
e 4
-
L S
Vectors
'
Vector : a
quantity that has both magnitude da direction
-
ex :
velocity ,
forces
.
Vector addition
→
a
7
b
→
•
a
a
→ → →
atb b
7
→
•
a
.
Subtraction
^5
-
of 5 -
a→ta→=b→
→
a
x•
→
b
.
scalar multiplication
v→ 7 A
→ →
•
→ Ov -
v
•
ZV
,
L
•
.
vector components
A
NZ
→ ,
( 5,4 )
✓
( a , , az.az ) 7
y
a→= a. Ttazjtazk^ n
a
<
'
n
,
> >
, µ,
=
sa . .az ,
as >
< → s x
V→=5Tt 45=45,4 > i
u e
✓
a→= La ,
.az ) b→=Lb , .bz >
=
a. Ttazj =
b. Ttbzj
A→tb→= A. Ttazjtb , Ttbzj =
( A. tb ,
) it ( Aztbz )j
= L A. tb , ,
Aztbz >
T = ( V , ,
Vz )
cP=Ccv .
,
Cuz >
^
magnitude L length ) of of = I at I =
. 9,2 t
Azz
7 ( a. , Az )
Az
( )
:
^
→
>
L COS O
,
since )
Ts =/Tl Loso ,
Sino >
o )
=L 181050 ,
181 Sino >
L S
✓
.
Rules of Vectors ( look in textbook )
.
Geometry Application
Thm :
the diagonals of a
parallelogram bisect each other
>
→
→ →
→
a t bb -
of - 5 2
→
×
Is +
IF =
Etba
2
-
Physics Application
a ) C is TT =L 1171 cost ,
ITT Is in a >
Fir IT TT =L ITT I COS B ,
ITT Isin B >
✓
LO ,
-100 >
TT t
TT =
LO ,
1007
100 lbs .
1171 cos × t 1171 COS 13=0
ITT Isin x t
ITT Isin 13=100
Dot Product E Cross Product :
Geometry of Vectors
Dot Product
-
A- vectors → At . B- number
B
ZD : At =
Ca . . Az )
A- . B- = a ,
b ,
t
Azbz
B- =
( b , .bz )
-
3D A =
La , , Az .
As > At . B- = a ,
b ,
t
azbz t
As bs-
B =
S b ,
.bz ,
bs )
Properties :
A- .
B- = B- oft
At o
( B- t I ) =
ATB- t A- . I
At •At =
Eid ;
2
=
I A- 12
-
A 7
o
) At . B- = I All BI Cos O
-
Its -
At
proof : Law of CosinesB
'
1B -
A- 12=1 At 12+1 B- 12 -
21 All BICOSO
( B- -
F) L B- -
F) =
B- .
B- t At .
F -
2ft .
B- = I A 12 t I B12 -
2nF .
B-
Projection ,
-
= lil =
I
A
I
o ) I
A- . ( c B- ) =
CLIO B- I =
( CF ) OF
T
Y
,
IATCOSO i
I
IF Hill cos O =
IF I .
lil
dot product w/ a unit vector
gives projection
T = ( A .
i ) it
-
un =
-4
III
J = C Ao FF,
1¥,
=
F. T
I
IT 12
Example :
What is the force vector E on the box ?
-
( 2 ,
I ) F =
projection of G- onto I
u -
U
=L
-
2 ,
-
I 7
E a- a- = -
mai
< E =
FEIT =
-39 C -
z .
-
I > =
C ⇒ ,
-
⇒ >
( O ,
O )
A- .
B- =
O
↳
perpendicular L cos 909=0
or Orthogonal
A- =
O ,
15=0
AT . I =
a ,
At =
La , , Az ,
937
A- .
j =
Az I =
L I ,
O ,
O )
A- .
I =
as
Cross Product
Dot product
A- .
B- =
a ,b , tdzbztazbz - 7
A i
=
ITIIIBTCOSO '
- -
,
- O ) i
T= B
y
s
'
BIBI'
s
Q :
What is the area of a
parallelogram spanned by
A- and B- ?
ZD :
y
n
Yr
,
B- =Lb , .bz >
Area = LATH
a
=
IATIBTSINO
h
7
B- A- =
IATIBTICOSO ' ' >
a X
B-'
,
=
At o B-
'
~
s B-'
=Lbz ,
-
b .
>
×
=
La , .az ) -
Lbz ,
-
bi )
= a .bz -
azb ,
a Right hand a
Left-hand
+ -
I
>
7
= I
di 22 B
A-=L .bz
-
azb ,
•
- O
Bb
,
bae n A n
[
right hand or left
F-
a
- -
-
A I 2 B 34
-
= I (4) -
2131=-2 -
= 2 -
a
B 3 4 A I 2 -
I I I I
-
> -
Byz
-
-
-
.
3D :
^Z
-
'
-
Area ( Eff )=
-
-
-
- r B -
Ayz
) -
- XZ
B
7 -
-
-
-
T
T . 2 2 2

-
YZ t
XZ t
Xy
 -
- -
-
<
A A I -
XZ
>
y
I =
At xD
-
> -
Bxy-
-
I
X -
-
L At xy
) -
^
A' xD
such that thx B- I =
area L £57 )
F. =
IATIBI since
I
f)O B
I =
A' tB
Tt '
I =
ab:% i -
as:3; it
}:3:
k
+ - t
i J I
=
a , 22 23
b , bz bs
^
n
i
n
J a k
= t L 2223 -
J
d , 23 t K d , 22
bzbz b , bz b.bz
Example : in j kn
I 2 O
-
-
6T -
3J
-
II
O
-
I 3
Area ( parallelogram
)=T6¥k
^
A' xD
→
jfc
?
Volume -_lFxB- 1h
F.
=L At x B- IIEICOSQ
I >
JO B- = ( At xD ) .
I
-
,
A
12.5 Lines and Planes
Line in 3D Space
I .
Parametric Equation II. Solution to 2 Equations
2¥
! Y ( t ) ,
2 C t ) )
#←
Lines
Given
P= ( Xo , Yo ,
Zo )
J = La ,
b ,
C >
Line going through P in T direction
T a
( Xo , yo , Zo )
#
r Lt ) -
To = to
Taco
L -
' '
r Lt ) -
To II T ' '
ro Tht )
r Lt ) =
ro t tv
( Xo , yo ,
Zo )
•
X Lt ) =
Xo t at
O
y Ltt =
yo tbt
Z Lt ) =
Zo tbt
If ( Xo ,
yo ,
Zo ) =
LO ,
O .
O ) → L passes through origin
Xlt ) = I t t
y
Lt 1=2+2 t
} t = -
I → x Lt ) =
y Lt ) = 2 ( t 1=0
2 L t ) =3 +3T
Solution to 2 Equations
X =
Xo t at →
t =
y
=
yo tbt → t =
eye
b
2 =
Zo
t
Ct → t =
X
-
Xo
y
-
yo 2 -
Zo
a b C
Example :
Find line perpendicular to A- = 4. 2,0 > G 15=50,3 ,
47
passing through
F- ( S , 6,7 ) -
na
i j I
r
-
←
I L I 2 O At xD =L 8 ,
-4,37
B •
T=AtxBL 5. 6,7 ) O 3 4
rlt ) =
rot tv
=
L 5. 6,7 ) t
tL8 ,
-4,3 )
=
L St 8T ,
6- 4T ,7t3t )
P,
=
( X , , y , ,2 ,
)
- ooo
Po =
L Xo , yo , Zo 8=7,
-
to
• r Lt )=FottJ
^
-
t-rottlr.ro )
- r ,
% Lx , ,y , ,z , >
= l I -
t )Fottr
( Xo ,
yo ,2o )
Given pair of lines L ,
& Lz
3 possibilities
:{ infested
Skew -
-
L ,
: Xlt )=X ,
t
a.
t Lill Lz # La , ,
?, ,
C ,
> =L Laz , bz.cz >
y Lt )=y ,
+bit I k€0 vz
Ztt ) =
2.
tat L ,HLzc= > L , intersects ↳ or L ,
4 Lzskew
Lz :
X L s ) =
Xztazs ↳ Solve for L .
du Lz simultaneously ,
G determine if there
y ( s )=yztbzS is a solution
Z (5) =
Zztczs
Xlt
)=lt2t=S
y Ctl
=2t3t=2s
=) 2t3t=2t4t
zLtI=3t4t=3S
3T -
4t=O
X ( s
)=S a t=OYLSKZS
(
2151=35 t
-
-
O
3=35--3 ✓ to
5=1
Planes
Equation of a plane : Line
-
^ Ttt ) = tvtro
D= Fx B- J direction of line
- -
n B 7
To point on line
•7
A- >
a
-
n =
C a. b. C 7
T -
ro
a-*
( F -
To ) .rT=O
E
t.n-ro.rs
ro
=
axtbytcztd =O
L Xo , yo ,
Zo ) D= O iff plane passes through the
origin
F =
( X , y ,
27
Example :
What is the equation for a plane containing p ,
( I ,
2,3 ) , pz ( 3. 4,3 ) , Ps ( 1. 3,4 )
At = L2 ,
2,07
B- =L 0,1 ,
17
RT = Atx B- =
L2 ,
-2 ,
27
a b c
D=
-
To opt =
-
(1.2-2.2+3.2)=-4
2X -
24+22-4=0
Example :
What is line perpendicular to the plane :
Xt2y +32+4=0
passing through the point ( S ,
6,7 ) ?
Fit) = tvtro
=
L t +5
,
Ztt 6,3T +77
What is the distance between a point p ,
= L X , ,
y , ,
2 ,
) and a plane axtbytcztd
F. -
rT=
PIP
= C x , Y ,
z )
T -
n =
La ,
b ,
C)
To= L Xo . yo .
20£.
nee- -
-
E.
T
projnv-
i
- 
'
it ,
D= lprojnvt -
Y rt =
'
Yon?
'
in , =
ly-n-j-l-KF-roi.nlInt
O
•
=
Irion - troon , =
tax ,
t
by,tC2 ,
+ d I
Int
22 t
BZ t
(
Z
Example :
L ,
:FLtI=Llt2t,2t3t,4t4t7
skew :
Lz :
g- G) =
LS ,
25,357
Distance btw them ?
D= I XVI
(€ty
) ,
2 C t ) )
Tct )
TLtI=LXLt ) ,
yet ) ,zCt ) )
drat
→ at tangent
Fctttvtro IF - T.at ftp..atDF -
at -
= v
lim ~v
dt
at → oat
drat =
Speed
Velocity
J=ddI=r
'
a- = IF =
r
"
Speed 181=1*71
Plane X
p
T Tht ) =
C Xlt ) ,
yet ) >
,
I =L cos Ltl ,
sink ) >
p
-
×
I l
.
I I I
I l
147I -
T
.
Lt ) =L -
yet ,
Xlt ) >
Sint -
it
Fits
t
=L -
sink ) ,
Cost ) )
-
Y 7
cost Y F' L t ) =
L X
'
Lt ) , y
'
Lt ) ) I l
-
y x
3- D
I
Flt )=LXLt ) , ylt ) ,
Ztt ) >
an
7
=L cos Lt ) ,
sink ) ,
7
B -
F' Lt ) =L -
sina.cosltl.IT )
o%Ya'heating IIEI its ,
-
sina.co >
3{
'
T -
E unit tangent vector *
osculating plane
^ TXT plane spanned by
B =
Txt unit binormal Vector tanda
=
T '
xrT ,
IT 'xT" I Normal plane
:
plane
N^=Bx 'T spanned by
A. BL -1T )
at
:
tangential acceleration
at =
lprojgal-T.tt
'
IT 't
lat =
rattan
an
=
-V 1212 -
af
Example :
compute normal plane for
Flt ) =
cost ,
Sint ,
3¥ ) att -
21T
F' (f) It -2 it
=L -
Sint ,
cost ,
It ) lzit
=L 0,1 ,
It 7
axtbytcztd-OL-rooca.b.cl
O .
Xt I .
yt
It 2
-
( 1. 0,3740 ,
I ,
7=0
Remark : N -
^
7 V
-
Class :N^=B^×F Book :
= ,
T
>
I =
-V
B T 'T
D= -1
> ,
g
ITI
18×81 IT 't J J=T .
D= xaTxT
a- =p
Ihtxalxvl
B
Integration of Vectors
Flt ) = L Xlt ) , ylt ) ,
zlt ) )
[ Differentiation ] ( Xlt ) ,yLt ) .
bit ) )
F' Lt ) =
points in
tangent (F) direction
t=b
with magnitude Ir
'
tht speed
J →=L X' Lt ) ,
y
'
( t ) ,
Z' C t ) > ( X ( b ) , ylb ) ,
2lb ) )
Integration : Flt )
•
gba-rthdt-e.LI?so..IrTtiktit=acxca).ycas.zcaD=LSbaXLt
Idt ,
sbayltldt.SE zltldt )
ftarltsdt Sbaxutdt
Stay
# dt
SEZ
# dt
= f-
avg
"
average
b -
a b -
a b -
a b -
a position
' '
? l
S :* Lost ,
Sint .
Et ) at
b- a
=
C SE
't
costdt.SZotsintdt.SI
't
at )
211=20,0,
EFFIE 7=20,0 ,
31T ) = C 0,0 , Z >
ZIT 21T
fbalr.lt/dt=arclength-
speed
Example :
arclength of our helix from t= Oto t .
-
21T
STILL -
Sint ,
cost ,
It >
ldt-fftvsinzttcosti-44itzdt-fztffahtitzd.li=
21T #/4I2
Flt ) =
( cos Lt ) ,
sin L ta ) ,
3¥ >
What is the trajectory ?
' '
re parameterization
"
U=t2
F =
Lcosu ,
sina.FI )
Canonical Parameterization :
"
parameterization by a
rclength
' '
⇐ IT '
I =
I
( X L S ) ,
y CS ) ,
2 ( S ) )
Foo
'
€.
✓s ¥
Parameterization of our helix by arc length
:
( cos
(¥%z) ,
sin ( FEW) ,
¥tz )
Newton 's Law of Motion
F--
mainpractice
:
particle object
know F
derive trajectory
ZD MY parabola
-
-
-
-
,
lxcthyctyyt
gravity
,
- F= -
mgjy
-
Vo ( Vocosx ,
'
,
ground
la
Vo sin >
>
know a- letter "
Lt )
×
then
get
JLtl-r.lt ) by anti -
differentiating
a-
Jlt )=rTt ) t
Vo
then
get Flt ) =
-
ttvotv ,
F=ma- =
-
mgj
a- =rT= -
gj
F.
Hi-Fi-
gtj-vocosxitlvosinx-g.tl
J
@ to
Fltkrotlvocosxtitlcvosinxlt -
Igt )j
f- O →
To =
FLO ) =L 0,07
FLtI= ( Vocosxltitllvosinx )t
-
Igt )j
Tangential and normal acceleration
An :
how quickly you
're
turning
at n
At :
how much your speed is
changing
at
.
-
-
-
*⇐
- -
-
-
say
sa'
^
,
i
An -
-
Z
I
¥¥i÷¥¥¥n¥¥¥. .
-
Sint ,
cost ,
3121T )
Tz'
Lt ) =L-
Ztsint
'
,
Zt cost ?
341T
)
n
n n T n
OT r ,
' '
Ltl =L -
cost ,
-
Sint ,
O )
'
B
Este
inssinn?iii.ftp.tj-4#sintZ
.
" it '
Jz x
g- z
=
(
' H'
ht Sint
2
,
-
I
ZTYIT Cost
2
,
8t3 )
×
Y
Functions of Several Variables I 14 .
I )
.
Single variable calculus :
.
I variable
.
graph in ZD space
.
Domain in ID space
.
Function of 2 Variables :
.
graph in 3D space
.
domain in 2b space
Contour Plot
^
'
÷÷÷i÷÷"
" " " " "
"
×
.
↳
paraboloid
⇐ O
.
f ( x , y ) = XZ -
y
Z
2
my
C =
0×2-
y 2=0
¥:÷:÷÷¥↳÷¥÷÷÷.
↳
pringle
N
y
✓
C = I C= -
I
✓
y
.
a Xt
by t CZ t D= O
'
-
2=1 -
ax -
by
-
d) 1C • 3
×
E.I:{yt.goyi.co/-/ C =
2
C = I
⇐ O
.
Function of 3 Variables
.
3D domain
.
4 D
graph
↳ t =
f L x ,
y ,
2 ) → level surfaces in 3D
Limits da
Continuity ( 14.2 ) and Partial Derivatives L 14.3 )
Example : sink )
iim
×→ot sin ( I ) undefined
Iim
µ
'' → O
-
sin ( I ) undefined
lim
IX. y ) → l Xo , yo
) FIX ,
y ) =L for LX ,
y ) Sufficiently close to ( Xo ,
yo ) ,
fl X. y ) is close to L
distance ( l x , y
) ,
( Xo , yo ) ) is small
Iim
S -
•
X →
Xo ft X ) =3
joy
f ( Xo ) ¥3 →
discontinuous
I
Xo
lim
Def :
f L X ,
y ) is continuous if for all ( Xo , yo ) in domain ,
IX. y ) → L Xo , yo )
=
f ( Xo , yo )
Iim
sincxy )
( X ,
y ) → ( Xo , yo ) X2tyZ
Partial Derivatives :
slopes of the
tangent line in the X direction FI L Xo , yo )=f× ( Xo , yo )
↳
treaty as a constant )
tangent line in the y direction
f- ( X , y
) =
XZTYZ +3C (
Xy )
f- ×
=
2x -
3 ysinlxy )
f- y
=
Zy
-
3 xsinlxy )
If× )×=2
-
3yZcosLxy ) → at
fxy =-3
xycoscxy ) -
3sinLxy ) →
Tatya
↳ f × first
Z
/•#f
yl Y
iv.×
f ( x ,
y
) = XEZY t sin (
Xy )
f ×
=
e
29 t
y COS (
Xy )
f-
y
= ZXEZY t
x cos ( Xy )
f××= -
y 25in L Xy )
f-
y y
=
4 XEZY -
XZ sin (
Xy )
f y ×
= IT =
2e2y t
cos (
Xy ) -
Xy sin ( Xy ) =
fxy
Theorem :
Suppose fxy and f-
y × exist near ( Xo ,
yo ) and fxy , fyx are continuous at ( X o , yo )
Then fxy ( Xo .
yo ) =
fyx ( Xo , yo )
↳ Mixed partials commute
Chain Rule
Single Variable Chain Rule
adz
Hg ( x )) =
f
'
( g L x ) ) g
'
( x )
or
W =
flu )
u =
g L x )
off = days .
dat
.
What does it mean ?
.
Q :
How much does w
change as I
change X ?
.
know :
4W I dadu
LIU
dx DX
U = -81 a ×
→
4W = -84 due
a = Fx ax
Multi -
Variable Chain Rule
W = f L X , y )
X =
x Lt )
y
-
-
Y Lt )
W Lt ) = f I X L t ) ,
y Lt ) )
What is IF in terms of IQ ,
?
aw = Fx ax t
IF ay
Also know :
DX = Etat ay = IF at
4W = FIEF at t
IF dat at
=
I FIFI t
Fwy date lat
IF =
# eat .
-38 It
More
generally
W =
w ( X , y )
× =
XLS.tt
y
=
yes ,
t )
W =
w L X ( s ,
t ) , y I s , t ) )
ETI
Ee ⇒ +
⇒ ⇒
-273ft # IF
Rule :
as
many summand S as variables that w depends on
de
Example : x Lt ) = t t
2
y Lt ) =3 t +4 WLX ,
y
) =
X
2 t
2yZ at
?
I
.
Could substitute E
"
brute force it
"
W Lt ) =
( t t
2)
2
t
213 t t
4 )
=
t 2+4 t t
4 t
18 t2 t
48T t 32
=
19 EZ
+52T
+36
W
'
Lt 1=38 t t 52
2. Use chain rule
Fat =
IT at +
Efta
=
2x .
I t
4
y
.
3
=
2 ( t t
2) t
12 ( 3 t t
4)
=
Ztt 4 +3Gt t
48=38t t
52
Implicit Functions :
I .
e . X
2
t
y
2
=/
dy
Tx ?
Implicit Differentiation
↳ chain rule
.
Apply Ex to equation
-3×1×2 t
y 2)
.
-
Ix LI )
2x t
2 y FL =
O
8¥ =
-
f-
W
=
w ( X , y ,
2. a ,
b )
x =
x Lt )
y
=
y Lt )
:
b =
b Lt )
Ldf =
IT Eft -37 It t
# at at
Review
Contour Plots
.
Set z
equal to constant E solve
TNB Frames
f= J=r
.
Lt )
A a- =tT=r "
vq
a
ta 's, N=BxT
Fcc )
Tian^
an
= a- oN^
- - - -
; a-
or =
Eat
an at-compta-a.T-a.IE ,
I
AT
Old Exam I # to
FLtI=L4t ,
costs 'll ,sint3t ) )
Jlt ) =
C 4 ,
-35in t ) ,
-30553T
) )
a- HI =
SO ,
-90513T) ,
-95hL -3T ) )
At
=
OT OFF,
=
( Ot 27sihbtkosbtlt27sihl-3tkosl-3.tl ) .
( 16+9 sin
'
Gt ) tacos
'
Est))
-
I
An =
✓ 8105434+81 sink -3T ) -
16+9517213+1+9054 -3T )
t →
at
9
Practice Exam I # 8
concentric circles ?
8- x -
y=c
y=8
-
X -
C ←
line
e-
1×2+427=(-1×2+42)
=
Inc
X2ty2=
-
Inc OCCLI →
circles
e
4×2 -
y
4×2 -
y
= Inc
4=4×2
-
Inc ←
parabola
sihlxty ) -
I > c > I
Xty=0 ,
IT ,
-
IT ,
21T ,
. . .
y=
-
Xt KIT Kisan
integer
Xz -
y2 saddle point
rltl-54t.cosbtl.sinl-3.tl )
r 'LtI=S4 ,
-35in
t ) ,
-305L -3T ) )
r "LtI=L0 , -905Gt) ,
-951hL -347
At --
A- °
I =O
NT
An =
19-1=9
Old Exam I # 6
r Lt )=( t2 -
I ,
1h42 ) ,t4 -
t
's -
Htt )
Slt ) =
( 2ft -
4. coscittltl.tt -
I )
Fios
'=Ir7l5tcosO
F' =L Zt ,
E. 4T
'
-
3tZ -
Zttl )
I
'
=
( ( tt3 )
-
' ' 2
,
Hsin Litt ) ,
It
-
" 2
)
t =
I
r 'Ll ) -_ l 2. 2,0 )
S 'Ll ) = CE ,
O ,
I )
r 'Ll )oS' (1) =L
IF
't-
Too 15'I=fz
1=2050
COS @
= I
Practice Exam I # 6
f- =
e
XYZ
f ×
=
y Ze
XYZ
f×y
=
2ye×Y
'
t
y
'
( 2x y ) ex Y
'
=
2ye×Y
'
t
2×y3e×y2
Practice Exam # 8
htt =L cost ,
Sint ,
t ) Osculating plane @ L
1,0
,
O )
plane that contains TE I
✓ Lt ) =L -
Sint ,
cost ,
17
a Ltt =
C -
cost ,
-
Sint ,
O ) t =
I
I
!I! I so .
-
ins
O X
-
y
t 2 =
d
d =
OLI
) -
L O ) t
O
-
y
t 2=0
Practice Exam I # 9
r Lt ) =
L2 cost ,
et ,
t ) point in
tangent line at 12.1.01
r
'
Ltt =L -
Zs int ,
et ,
I ) t =
O
r
'
( O ) =
SO ,
I ,
I )
eqn for line : 5ft I =
tvtro
5 Lt ) =L 2 ,
t t I ,
t )
541=52 ,
2 ,
I )
Directional Derivative E Gradient
it =
unit vector
Question : What is the rate of change of f in the un direction at ( Xo ,
yo ) ?
this number Dun f I Xo .
yo )
"
directional derivative of f at ( Xo ,
yo )
"
h ( s ) = f ( Xo t
Sa ,
yo
t
Sb )
Dun f L Xo , yo ) =
Is Is =
o h L S )
=
Is Is = o f ( Xo tsa , yo
t sb )
=
f × ( Xo ,
yo la t
fy ( Xo ,
yo ) b
Dun f ( Xo , yo ) =
( f × , fy ) •
( a ,
b )
- -
gradient of f I
grid f =
If
⑦ = L at , Ey )
TT =
C Ix , Fy ) f =
tax ,
If )
Dj f =
TT f o
is
What is the
meaning of TT f ?
I fo un = I If I I ill COS 0
= I If I COSO for which Un is Dun f
biggest ? 0=0
If points in the direction of
greatest increase
left =
Slope in this direction
f L X ,
y ) = Ii ( X
2
t
y 2)
If =
Lf × ,
y x )
=
'T ( 2x , Zy )
=L E .
¥7
Vector field → a different vector at each point
TT I level curves
Level curves for functions of 2 variables
The
' '
C -
level curve
"
of f L x , y ) is defined to be the set { ( x ,
y
) I f ( X , y ) =
C }
f ( X , y ) =
X
2
t
y
2
C =
O ,
X
2
t
y
2
=
O
C =
I
,
X
2
t
y
Z
=
I
C = r
2
,
XZ t
y
2
=p
2
↳
equation for the circle centered at 0 of radius r
' '
Gradient of f
"
or If ,
which is in the field in the domain of f whose
value at p
is Dflp ) = tax ( p ) ,
L p ) >
Duff L x , y )
=
at ( Xt tu , , y
t
tu z
) I
t
-
-
o
¥ L X , y ) U ,
t
I x , y ) Uz =
If L x , y ) out =/ If I x ,
y ) I I it I COS O
17 f I Level curves of f
Given w =
f ( X , y ,
2 )
Dw L X , y ,
2) =
( If L X , y . 2) ,
L x , y ,
2) ,
It ( X , y ,
2 ) )
Dw is I to level surfaces
Tangent Plane Problem
Given a surface
' '
2 = f I x ,
y )
"
,
find eqn for a
tangent plane a point ( X , y ,
f- L X ,
y
) )
need a normal Vector for the tangent plane ;Surface
' '
2 =
f ( x , y )
"
is level surface of
a new function Wl X , y ,
2 )
W ( X , y ,
2) =
2
-
f L X , y ) →
the O -
level surface of w is
"
z =
f L x , y
)
"
17W L X , y ,
2) =L -
f × ( X , y ) ,
-
fy ( X , y
I ,
I )
-
fx ( X , y ) l X
-
Xo ) -
fy L X , y ) (
y
-
yo ) t 2 -
Zo
=
O
Z =
Zo
-
fx L X ,
y ) ( X -
Xo ) -
f
y
L X ,
y
) L
y
-
yo )
Minimal Maximal critical points of f- L X , y
)
•
I -
var :
-
local minimax
'
absolute minimax
.
f
'
( X ) =
O
↳ find critical points
.
Places of potential minimax :
critical point ,
end points
-
f
' '
L Xo ) > O → local min
.
f
' '
( Xo ) ( O →
local Max
-
f
' '
( Xo 1=0 →
no conclusion
Multi -
Variable
.
z =
f I X , y )
Ivorry about local maxima on bound ry
=
( f × ,
f-
y
) =
O →
critical point
↳ horizontal tangent planes
.
places of potential Maximin :
critical point ,
bound ry
EX : L X -
1) ( y
-
1) ( Xtlkytl ) 2yZ
-
2 4
Xy
4
Xy 2×2 -
z
=
{4 l 0,01
=
1×2 -
1) ( yz
-
I )
-
16 ( 1,1111 ,
-
Ill -
I ,
Ill -
I ,
-
I )
=
Xzyz
-
Xz -
y
-
t I ↳
saddle point
If =L 2X y
'
-
2x ,
2×2
y
-
Zy > =
SO ,
07
ZXYZ -
2x = O =
2x L
y
2 -
11=0
2×2 y
-
24=0
=
2yLX2
-
I 1=0
I O ,
O )
( I ,
1) l I .
-
Ill -
I ,
1) Hi -
I )
The
"
second derivative test
' '
f xx
fy×
iffyYy =
fxxfyy -
f Ly =D
d) O →
local min or Max
do →
saddle point
D= O →
no conclusion
f ( X , y ) =
XZy2
-
xz
-
yz t I
-
22×22
-
22
y 22
critical points :L X. yl
=
10,01L -
I .
-
II. C- I. 17 ( I ,
-
1) L 1,11
mint #
Max saddle points
f xx ( Xo , yo )
concave down in x direction
concave up in x direction
Checking the Boundary
(a) X =
2
-
22422
f C
2. y )=4y2
-
4 -
y
' -
1=342-3
Tdy f L 2. y ) =
by =O
y=o
→
minimum
f L 2. y ) =-3
f ( 2 ,
2) =f( 2 ,
-27=9
min :L O ,
-
2) ( 0,21L -
2. 0712,0 )
Max :
(
-
2 ,
-
2) L 2 .
-
2) L -
2. 2) ( 2,21
Find minimax of flx , y )=X2t2y2 on unit disk
I. interior
•
t =
The
TT =
( 2X ,
4y ) =
SO ,
O ) f=2
m.in
Lt ) -
- cost
2X=0 44=0 , yet ) -
- sint
• • •
f =/
X =
O y
=
O t =
IT f- =L f=O t =O
Max Max
( 0,0 )
f=z
} 40
= 8 → minimax
•
t= 3172
min
f××= 270 → min
fLtl= cost t 2 Sint =
ltsinzt
f-
'
( t ) =
Zsintcost =
O
t=O ,
IT ,
The ,
3172
f
' '
Lt ) = -
Zsinzt +2057
to →
2 Checking boundary for absolute minimax ,
not local Maximin
t=T/z→ -2
t =
IT -
2
t =3 → -
2
Rectangular box w/ surface area 12
2X
y
t
2×2 i
Zyz
=
12
V =
Xyz
z = z ( X ,
y ) =
?
V ( X
, y I =
Xyz C X ,
y l
Lagrange Multipliers
Idea :
f C x ,
y ) or f C X , y ,
2 ) Wrt a constraint g ( X , y 7=2 Or
g l X , y ,
2) = C
f ( x , y ) = X
2 t
2y2 ,
find Maximin on unit disc
constraint :
x
2 t
y 2=1
I
.
An extrema point Off With constraint g is where level curve for f first touches level
curve for
g
2.
Tangents to level curves for f and
g are same
3. If I I TTg
TT f = HTT
g
( X , y ) is extremal iff If I X , y ) =
XTTGLX , y )
g ( X , y ) =
c
In above example :
f- ( X , y ) =
X
2 t 2
y
2
g ( X , y ) .
-
X
2
t
y
2 =
I
If =L 2X ,
4
y
)
TT
g =L 2X .
2y7
If =
X #
g
( 2X ,
4
y
> =
X C 2X , Zy )
2X
.
-
X 2x
4y=X2y
X
2 t
y
2
=/
Case I :
X to → X =
I →
y
=
O → x = I I
Case 2 :
X = O →
y
= I I
✓ =
Xyz
2X
y
t
2×2+242=12
yz
=
X I
Ly
t
22 )
X 2 = X ( 2X t 22 )
yz
= X ( 2
y
t 22 )
2X y
t
2×2 t
Zyz
=
12
Given fl X , y ,
2) want to Maximin
subject to constraint g L X , y ,
2) =
C
'
I
Volume =3
2 I
Xyz =3
. - - - -
!
212×21+242+3 l
Xy ) = f ( X , Y ,
2)
'
IZ i
42+3 y
=
XYZX
'
'
n 22+3 X = XXZ
3 Y 4×+2
y
=
X
Xy
Xyz =3
x=4 =
Ey ''
I
gq=¥→z×=y → x -
Ey
22+3 X 2 3
X =
Tz =
I+
I
; -32 4g →
34=42 →
2=-34Y
X =
-4×+24=-4+-2
Xy
IEy )
y
I I
y
) =3 = I
y
's
y
3=8
y
=
2
X =L (2) =
I
z
-
-
I, (2) = I
2 constraints
f L X ,
y ,
2) subject to
g L X , Y ,
21 =
C and h L X ,
y .
2) =
k
intersection of g G h satisfy both Constraints
T
tangent to Level surface ,
i. e .
If IT
If is in normal plane of the curve ( Ig x ⑦ h ) .
TTV =
O
i. e. If is in the plane spanned by Ig t
Ih g ( x , y ,
27 =C
If = XTTF t
mtg h ( X , y . 2) = K
Example : f ( X , y ,
2) =
Xt2y +32 .
g ( X ,
y ,
2) =
X
-
y -12=1 ,
h L X ,
y ,
2) =
XZ t
y
'
=
I
I =
X t
M 2X
}
x +
may } FIFE; } Ey
Integration
Sdc Sba
Hx . yldxdy →
volume
a ex Eb C Eyed
Compute volume using ring method
ith
Volume ( slab ) =
( area of face ) ay
-
Sba f- L x. yldx
Volume = -2 (Sba ft x. yildx ) ay J !( Sba f ( x , y ) dx ) dy
Ex : SIS : lxztyzldxdy →
SISI XZ t
y
Z
dydx
If 3×3 t
XYZ I
'
o
dy
go I +
y
'
dy
I y
t
Ty 318
It's =
¥
Area of Slab at fixed X :
Shg, fix , y ) dy
Volume : Sba SITE's fix ,
y
)
dydx
Ex : f ( x , y ) =
y
R :
y =
fix
=
hlx )
9"%
.
× y = I -
x =
g ( X )
fo
'
Sixy dydx
Sj Eye IIE dx
=
SIEH -
N -
u -
xp ) DX = fo 2x DX
×2 I
'
o
=
I
x= ray =
hey ) SIS
'
y dxdy
S
'
oxy IFI
'
dy
"%%.
y -
. >
S
'
oyvfyi -
yu
-
y
)
dy
×=I -
y
=
gly )
Sometimes the integrand prefers a certain order of integration
Ex : SS r sing dxdyIT 12 Y
S
× sings dydx
S :
"
So
dxdy V
R R
Tk a The
>
I l
The The
Sometimes a region of integration prefers one order over another
x= -
REF -
4
)
Z
! I
"
fix . ysdydx v
or
p y
Sit Siri
"
fix , yidxdy
t
fifty , f l x , yldxdytfof-Ttyflx.gl dxdy
x=
-
Ty try
y
= E t
2
y
-
z
=
×=±T2y-4 x =
try
Volume Between 2 Surfaces
IS r
f ( x. yldxdy
-
SIR glx ,
y
)
dxdy
=
Sfr I f L X , y ) -
g ( x , Y ) ) dxdy
EX :
Volume of a sphere of radius I
-
Fye
z =
TEY z =
-
T¥yd ,
x =
iffy
fi,
S
2M¥42 dxdy
Can use double integrals to compute area
Volume =
SIR I
dxdy =
area of region
Volume of Paraboloid X 't
y
Z -
I under Xy plane
IS R 1×2 t
y
' -
1) dxdy →
neg .
Volume
↳ Sfp I I
-
XZ -
y 2)
dxdy multiply by
-
I
Mass of Bar = I Slxldxdy () )
Where 8 l X ) is
density function T
SIX )
Or SIR 81×1 dxdy depending on shape
Polar Coordinates
OEOEZIT
y
-
←
•
RIO
rsin0{
/ ×=rcoso rt-VXZ.ly '
10 , y=rsinO 07am
'
( E )#rcoso
z=T¥y
Sphere of Radius a
Volume ?
SSDZTE-yzdxdyze-rafz.gr
,⑧ "
"
→
←
Ira .
If
ftx.yldxdy~Eflrijcosoij.rijsinoijlrijdraodxdy-rdrdof.fi
, 2T¥yZdxdy
SITS.az#rzrdrdOt
Example :
DD X2tyZd×dy
Zcoso
S Too rzrdrdoo %
-1 2
Exam 2 8:00am
What did we do ?
Chain Rule
*
f L X , y ) X =
X ( U ,
V ) y
=
y ( u .
V )
Ef -
-
If .
+
Ef
*
Implicit Differentiation
a
Constraint :
K2
t
y
2
t 22=1 ) Ty
What is -38 ? ↳ 2=2 l x , y )
O t 2
y
t 22 toy =
O
Ey =
-
24/22 =
-
Y
12
Directional Derivatives and Gradients
*
TT f =
C f× , fy ) Dj f =
slope in u direction =
If oil
↳ direction of
largest increase
length
=
Slope in that direction
f ( X , y .
2) → If =
( f × ,
f
y ,
f- z >
Tangent Plane
TT f =
54 ,
5 ,
67
4 X t
Sy t 62 t d =
O
Normal Line
Flt ) =
t C 4,5 ,
67 t C
p , , Pz . Ps )
gradient ( X , y ,
2)
Local Maximin
Check interior
, boundary ,
E corners
TT f =
O
f ×
.
-
O f
y
=
O →
crit .
points
given crit .
point
Iffffyyy I
}
If 70 minimax → If fxx or fyy > O :
min ,
CO :
Max
If CO saddle point
Lagrange Multipliers
One constraint :
Max f- ( X ,
y ,
2 ) subject to
glx , y ,
2) =L
If =
x Fg
two constraint :
Max f L X , y , 2 ) subject to
g
L X , y ,
2) and h L X , y .
2)
If =
XTTG t MTT h
Applications of Double Integral
e.
g .
D is a lamina l thin stab plate )
f C x , y ) =
density ex , y )
Mass =
SSD f IX. y ) dxdy
Center of Mass : I I , 4- I
I = th SSD XC ( X. yldxdy
g-
= Im SSD
yet x. yldxdy
where m= SSD Ctx ,
yldxdy
Ex : ELX . Y ) =3 for [0,23×50,2]
F-tmf:S } x. 3 dxdy=L .
12=1
5=1
Why does this work ?
Averages : the Xi
Assume uniform
density
→
e is constant
÷÷÷.
not ' values :
Fifties y
'
fidgety
↳
¥,
Laxey
More
generally
: E Wi Xi EXisjelxi.j.yin.la/Ly
→
Axe L x. yldxdy
E Wi E e L Xi , j , Yi .
j ) IX
dy Sf e ( x. yldxdy
Moment of Inertia
Solid
e= I
Si
"
So
'
r2 .
I rdrdo
rot
•
R SI
"
Er "
to do
Io =
ZIT (E) =
I
M =
IT
bigger
same mass
smaller
R= TIME =
VII =
÷
Io
.
-
Sf ( X 't
y
'
) e ( x. yldxdy
p2
R2 =
Io
m
Triple Integrals
Mass =
SSSDCLX.y.ztdxdydZI-tmSSSDXCCX.y.UA/dYd2y-=-mSSSDyecx.y
,
2) dxdydz
I = Tn SSS.pzecx.ly ,
2) dxdydz
Ex :
Z
Mass =L .
It .
ooh =
Z
C =
I
=
I =
SSSDXDV
±
.
.
" " "
x=V€ Y
=¥S'of
xdxdydz
- Y I M¥2 , y ,
z )
X
2×2+42+22=1=¥fIfF"
'
2×21
"
dydz y=o
=¥S'oSoF"
ELI -
YZ
-
22
)dyd2
-
) y
.
=
¥ S
'
o
y
-
Ey
'
-
zzyl dz
,
-
RE
✓ y
Switch order : S 'oST*SF⇒X dzdydx
'
Cylindrical Coordinates
( r , 0,2 )
I
c
421¥
X=rcosO
y - -
f -
I
# LIA
-
-
rooter y=rsino
§
}z
¥Tio> 2=2
Example :
Compute mass of density Elr ,
O
,
2) =p
Z
^
2 o rdrdoedz
.
}
Ksi 's
" .
v
.
Zr
x
y
Example :
Find center of mass bounded
by 2=X2ty2 and
2=24 Where C =L
I = Im SSSD Xdxdydz
↳
'
a is
rcosordxdydz=
fordz 2y=2rsinO X2ty2=rZZrsino
frz RCOSO r d2 fordo X2ty2=2
Spherical Coordinates
z r = es in Q
( x , y ,
2 ) ( e ,
O , 0 ) X =
rcoso = e sin ① cos O
e -
to = e Zo y
=
rsino =
esinosin
O
- =
-
y
020121T 2 =
Pcos Q
-
-
O r =
0202 IT
×
fffpflx ,
y ,
2) dxdydz rectangular
=
fffpflrcoso ,
rsino ,
2) rdrdodz cylindrical
=
SSS is f- I e sin locos O ,
esinosino ,
Pcos Q ) e
'
sin Oded 0 do spherical
EX :
Volume of a sphere of radius R
S
I.
ezsinodedodo
Sf
't
SI 7- sin 0 DODO
goat
-
RI cos lol 't do
12ft I R
's
cos 0 do
R
3
Ex :
mass of upside down cone in first octant
density
=
f ( X , y ,
2) =
xztyz
Mass =
SSS is XZTYZ dxdydz
=
SSS ( e sin 012 e sin 0 de DODO
=
Stones 't
'
4S go.TO
( e sinope Zsin Oded 0 do
Example
:
center of mass of part of sphere with radius I in first octant
constant
density
=
I
m =
volume = too .
=
If
Myz=
SE
"
SIT
"
SL e sin cos O e
'
sin Oded 0 do
=
Stones S
'
o essinzocoso.de DODO
=f to
"
Sto
"
IT sin 20 cos Od 0 do
=
f to
"
got
"
I .
I ( I -
cos ( 20 ) ) COSO DO DO
M×y=
I 't
"
SI
"
S
'
o
e cos 0 P2 sin Qdpd Q do
=
S I
"
SI
"
I, cos 0 sin dado
= S 't
"
too sin 2018
"
do
General
Change of Variables for Multiple Integrals
I .
-
La . .az )
b- =
Lb . .bz )
a .az =
LIA
b , bz
frandomvalueofv
Fi ( u )=LX( U.ll.ylu.lt )
RT ( UI =
L x ( 2. VI. yl2.ir ) )
T
a- =
-dF
Gu
random value of u
du =L Fu xlu.D.dauylu.lt > =L Fu )Liu
b-
=8LW=c£×cz.rs ,
IT ycz.us > = at
,
Lw
4A=
443¥04
ex aye
ZU 24
IF LIV au
=
ex aye
dully
OV OV
dXdy=
If
If pay
dudu
-
Jacobian f
( X. y )
( 4. V )
Ex :
ffp l 4×2 -
YZ )
' 00
dxdy
4×2-42=12×+4 ) ( 2X -
y )
- -
U v
100 24,41 y
Sf U V
' °°
one ,v , dudu 2
*
( u=2,V=
-
21
4=2×+4 4=2
-
2X
V =
2x
-
y R 2=2×+4
UtV=4X U
-
V =2y
*
2=4
114=2,V= 2) X
X = 'Ll ( Utv ) y=E( u
-
V ) X=O
U
goes up
4 I
=
-
I ¥( UTVKO
y=
-
2t2×
I -
I 4 U=
-
V
2=2×-4-
2x V goes upFfs' '
u9do!9ouf¥,auauu⇒v⇒
⇐ u .
3 Variables
Eu Ew
ex at ey
all OV ow
⇐ ez ⇐
OU OV 2W
Line
Integral
fit , L Xlt ) ,
ylt ) )
. I It
Integrate a function over c
art( Illntegratea vector
fieldoverc@IifLx.y
) fcflx ,y)dS
"
adding up function over curve
"
{ I :FL x. y
) ScFodF= ' '
work done by force field F "
I Ilfflx , yids siarclength
I -_
Tn
SXFCX.ytdsy-tmsyflx.ly/dS
Computing Line Integrals
Steph :
parameterize curve Steps :
do this I -
var
integral l integrate wrtt )
FLTKLXHI , ylt ) >
Step 2 computed
ds= ( EE ) !
⇒ Zdt =/ Idt
Compute mass of semicircle w/
density f L x. y )=y2
z -
Mass =Ly
'
IS =L ,
yzdstfczyds
J
C ,
irlt ) =
SO ,
t ) -
2EtE2
Cz :FHI=C2cost .
Zsint ) Etc
^ "
ds=TEdt=dt ds=FsinEI2dt=V4dt=2dt
c ,
SI tzdt SITE 4sinZLt ) .
Zdt-2-
C
Start with a vector field
F L x ,
y ) =
L M l x , y ) ,
N I X , y I )
.
wind
.
ocean currents
.
Tff
.
force field ,
e.
g .
gravity
Jc F .
dir =
integral of F- along C =
work done by F along C
Work
=
force .
distance
-
y
F
!
I
i n
.
> T-
F . I :
force in I direction
Sc F .
I ds =
Sc Food F
-
#
Sc F. Tds = SEES EL x Lt ) , yet I I .
¥¥{I
¥1Idt =
Sc F . dir
Step I :
parameterize r Lt I =L x Lt ) ,
y It I )
Step 2 : Write as
integral of t
- d F
I =
I at
IT I
=
TarIt
EX :
C =
part of a parabola
y
=
X
2
•
( I ,
I ) Sc F .
IF
✓ for F = -
yi t
XJ
( O ,
O )
Step I :
parameterize C :
X Lt I =
t
y L t ) = t
2
r Lt I = Ct ,
t 27
Step 2 :
Write as integral of t :
Sc F .
dir .
-
S
'
o
F . 8¥ at
=
I s -
t 2
,
t > .
C I ,
Zt > At
Step 3 :
Integrate
I
'
o
-
t
'
t
2E d t
=
f
'
o t
Z
at =
I
Ex : F = -
yi
-
xj
• ( I ,
I )
y=x
( 0,0 )
X L tht
yCtI=t
So
'
C -
t ,
t > o
( 1. I > dt=0
Fundamental Theorem of Calculus
Sba tax dx =
f ( b ) -
f La )
For line
integrals
:
Sc F .
IF =
f L X , , y ,
) -
f ( Xo .
yo )
Example : F =
( x
2
t
y
2) I t
2 Xy J
, .
X =
Cost
OE t E Iz
y
=
s int
,
SE
"
F . EE at
Sto
"
l cos 't t Sint ,
2 costs int ) .
C -
Sint ,
cost > at
SE
"
-
s int t
2 cos 't Sint dt
cost lot
"
-
E cos 't It
"
-
I t
I =
-
I
f- ( X , y ) = I ×
3
t
Xy
2
TT f =
L X
'
t
y
2
,
2X
y ) =
F
Using FTC :
f- ( O ,
I ) -
f ( I ,
O )
O
-
I =
-
I
Given E ,
how do
you get fix ,
y
) so that If = F
Note :
not
every F has an f
Physics Example :
x
E =
-
mg j
t t I I I
f- = -
mg y
= -
mgh
"
potential energy
"
✓ If =
( O ,
-
mg )
I Work : Sc E .
IF =
-
Mgh ,
+
Mgh o
y
Finding Anti -
Derivatives
Given Fix , y
I =
Mit Nj
Ql :
When does there exist fix , y ) so that If = F
TT f =
f ,
I t f
y Jw w
M N
My
=
fxy f exists →
My =
Nx
Nx =
f
y ×
"
F is conservative
"
ex : F =
L x
'
t
y 2) it Zxyj- -
M N
My
=
2y ✓
Nx =
2
y
ex : F = -
y it xj
My = -
I
×
Nx =
I
Q2 :
If My
=
Mx ,
does f exist ?
A lot of the time
F =
1×2 t
y
'
Ii +
Zxyj
Want f
f- ×
=
X
2
t
y
2
→
f =
I X
't
XYZ
t
C (
y )
f- y
=
2X
y
→
f =
X y
2
i
C L x )
f =
5×3 t
XYZ
Missed Class 415
-
a
L
,
←
. TF
t '
→
i r
we
Curl
Green 's Theorem
' >
Fundamental Thm of Line Integrals
SSD curl
"
(F) dxdy
=
!F. IF Sc TT fo DF =
FIX , , y ,
)
-
flxz.
yz )
F -
-
Pit Qj
Ex say
p Q
=
Qx -
Py =
curl
20
( F ,
-
ZD boundary of D
①
Orient
boundrysotha.to?.isuca!waysonuttC ,
D
F conservative →
curl
" >
(E) =
O
E =
x2ty2
Curl
ZD
F =
O
IFI =
5×+52=1×2ty
2
XZTYZ
Sc ,
Fo dF=§ ,
L Fo Tlds =
Soc
.
Ids =
21T
11
*
O
SSD
DFdxdy=O
O
↳
proof stuff
21T
F =
-
yitxj
Curl
20
E
' '
-2 2-
2X ay = +2
-
y x
curl
3D
F =
Vector =
curl F
↳
points in axis of rotation
I CUTI F I =
rate of rotation
F =
Pi t
n
Q j t
RE
i j k
a-
ee2x a
y 22
P Q R
213 : TT =
JI I t
Tay j
3D : TT = IT t
Ey j
t
-2 I
n
i j k
curl E- Ex Ey IT =
TT x F
P Q R
F =
pit Qj t RE
3D :
E
TT x E =
curl F
I .
E =
div E
TT .
E =
taxi +
Ey j to II ) .
( Pi +
Qj t RE )
= t t
FF
F = -
yitxj t
OI
IT x F =
i J k
'
Ix Ey Iz =
Oi t
Oj t 2E
-
y x O
TT .
F = Ex L -
y ) t
Tay X t Iz O =
O
F- =
xityjtznk
Ex E =
i J I
Ex Ey of =
Oi t
Oj t
OI = O
X y 2
I . F =
Ex X t
Ey y
t
IT 2 .
-
I t I t I =3
Divergence measures creation of fluid .
Curl measures
swirling of fluid .
ZD :
curl
ZD
( Ff ) =
O
am
3D : for I rt If =
O for E div curl F =
O
I I I I
TT x
( I f ) =
O I .
(TT F ) =
O
Q : Is F conservative ? i. e .
F = If Q : Is F =
curl G- ?
First check is curl E =
O
Only possible if div F .
- O
Parameter icing Surfaces
sphere with radius I :
X ( O ,
0 ) =
sin COSO
y ( O ,
O ) =
sin since
Z ( O ,
O ) = cos 01
sphere with radius 2 :
X l O ,
01=2
sin locos O
E =
2
y ( O ,
01=2sin since
Z ( O ,
07=2cos Q
cylinder on side w/ center on y axis with radius 3
2 ( U ,
V ) =3 COS U
X Lu ,
v ) =3 sin u
y ( U ,
V ) =
v
Arc length (c) =
Sods = Sba HII Idt
Where THI =L Xlt ) ,
y
L t ) ,
z t t ) )
Italia 't day
'
+
¥
Surfaces :
Flu ,
V ) = C X L u ,
V ) , y Lu .
V ) ,
2 LU ,
V ) )
Tangent Vectors
- -
er er
OU
,
OV
Chunk of Area
→ -
or
aux
Or
IV
OU OV
→ -
NGA =
Or
Aux
Or
IV
ou OV
surface Area :
IS 3%37 dudu
EX :
Find Surface area of a paraboloid ,
z=X 't
y
'
L top disk of radius 2 )
( vi. V ) = ( r ,
@ ) or ( U ,
V ) =
( x , Y )
X=u
y=V
Z ( vi. V ) =
f ( U ,
V )
F = L X ( UN ) , y L UN ) ,
ZCU ,
V ) )
=
( U ,
v ,
flu ,
V ) )
n
n
I k
x -37 =
It
O f×C a. V ) =L -
f× ,
-
fy ,
I )
O I f
y
( UN )
f) Vf×2tfy 't
12 dudu where D is circle of radius 2:22 =X2tyZD
y
dxdy
SIS EEy. V 4×2+442+1 dxdy
X =
UCOSV
y=usinV
ZLU ,
V ) =
XZTYZ =p 2=42
F= LUCOSV ,
usinv ,
U2 )
Flux Integrals
Last Time :
DA =
III ldudv
Surface area : Ds DA
Iff .in#uxFIdUdV
Today : F =P I X , Y ,
2) it QLX , Y ,
21 j t R I x ,
y ,
2) I
Flux :
the amount of fluid that passes through surface per unit time
z → →
→ →
⇐ '
%¥##E- I→ →
y
×
→
→
→ →
Constant vector field :
Flux =
I E .
N I l areal
Generally
:
Flux = IS CF .
NIDA =
IS F. DE
=
SS E .
( Eru ''
E) dudu
Ex : F =
xityjtzk
Compute flux through a sphere of radius 2
u =
to
✓ = O
X LU ,
v ) =
Zsinucosv
y
LU ,
V ) =
2 sinus inv
2 I U ,
V ) =
2 cos U
DF = Eu ×
-37 dudu
^ n
n
L
j k
Zcosucosv Zcosusinv
-
Zsinu = ( 45in ZUCOSV ,
45in Zusinv ,
4 sihucosu ) dudu
-
2 sinus inv Zsinucosv O
F. d A=L Zsinucosv ,
Zsinusihv ,
ZCOSU > o
L 4S in ZUCOSV ,
4 sin Zusihv ,
4 sinucosu )
IT
I }
"
to C Zsinucosv ,
Zsinusihv ,
ZCOSU > 044 sin ZUCOSV ,
4 sin Zusihv ,
4 sinucosu ) dudu
13
"
SE8 sins ut 8 sin UCOSZU dudu
,
fo
" SE8 since dudu =
to"
-
8 cos u to du = SI
't
16 DV =
321T
Simplifications
I .
dV= e' sin ① d ed Odo
=
de DA
DA =
e2sin0dQdO
I Fux I =
Ve 's in
"
utesinhicos '
u
=
Tetsu =
Esinu
Review
Polar Coordinates
y X=rcosO
•
y=rsinO
r
RIO
O ) x 020121T
dXdy=rdrdO
Mass ,
Centers of Mass
,
E Moments
g.
m
:¥÷
.IE#i:7.iaax.aa
.
Triple Integrals
f L X , y ,
2) =
density
SSSD fix , g. 2) dxdydz
=
mass
Cylindrical Coordinates
×=rcosO RIO
•
y=rsinO 020221T
Z
2=2 2 El -
Cs
,
co )
F r
dxdydzt-rdrdo.dz
Spherical Coordinates
X= esinocoso r=esinQ
it •
y
=
esinosino EZO
e
z =
ECOSQ 020121T
g-
r
e =
Tty 020221T
dxdydztesinodedodo
General
Change of Variables
X =
X ( U ,
V )
y
=
y LU ,
V )
ffyf.nl#syldxdy=u.ffimitsxcuivl.ylu.vHFYu7lidudV
=/
Eu ⇐
⇒ ⇒
I
Line Integrals
Sc f L X , y ,
2) AS
SF L X , y ,
2) od F work done by
F
I .
Parameterize
F Lt ) =L X It ) , y l t ) ,
2 I t ) )
2 .
Sc f L x , y ,
2) ds
ds =
Ideaf ) 't
fffYt¥
'
at =
II at
Sc Fo DF = So ( F . N^ ) ds =
Sc Pdx t Q dy t
Rd z
F =
L P L X , y ,
2) ,
Q ( X , y ,
2) ,
R ( X , y ,
2 ) )
dried
at
dt
Sc F .
dir = Sba F .
at
Sc ds =
arc length
Fundamental Theorem of Calc for Line Integrals
I TT f od F =
f L X , , y , ,
2 ,
) -
f- ( X o , yo ,
Zo )
w
E
F is conservative if F =
If for some f
F =
LP ,
Q ,
R )
ZD :
conservative → Q ×
-
Py
=
O
3D :
conservative → curl F = I
Given F such that Q x
-
Py =
O
If = E
f ×
=
p f
y
=
Q
f- =
f Pdx t.ly) SQdy t
CfX )
Green 's Theorem
④
c
SSD ( Qx -
Py )dXdy=&cPdXtQdy=§cFodr
Curl
F=LP,Q ,
R )
n
Curie :FxE=a¥ Ey at
Q R
divE-TT.FI II +
If to
⑦ =
L II. Ey ,
-32 )
f- Unc →
rect
→
rect → fun
I Fx TT .
f If Ix f) =O
F TT xF TT . x E 1=0
Stoke 's Theorem
^
IN
→
#
Givens .
an orientation is a choice of D
↳→
Make sure
III points indirection of orientation←
If F. DF =
Sfs I F. in
)dA=ffFlxlu,
VI. ycu.vt.zcu.VH.IE °
-37 )dudv
u -
V
limits
Z
-
'
←
parabola in y
-
z
S= surface of revolution obtained by rotating
y=I
-
zz this parabola around z-axis
,
" "
y
l outwards orientation )
I
Compute flux of E -
xityjtzk throughs
- -
I
Think cylindrical
:
U=
"
O
' '
Check orientation V
X=rcosO 4=0
} →
X= ( I
-
VZ ) cos u
y=rsihO V=z
y= I I -
v2 )
since
2=2 r =/ -
22 Z= V
✓
O EOE ZIT
-
12221
I -
' ' ' '
I U U V
-
I
-
LIT
Do F.
CEE
Idudv
II =L -
( I -
✓ 2) sina.LI
-
VZICOSU ,
O )
=L -
Zvcosu ,
-
Zvsinu ,
17
n
k
⇒ FI =
I -
v 2) since L I 2) cosy O
=
L L I
-
V 2) cosy
,
( I -
v 2) since ,
ZVLI -
V2 ) )
-
ZVCOSU
-
Zvsinu I
Stiff
"
L ( I -
V 2) cosy ,
Ll -
v 2) since ,
V ) .
( ( I -
V 2) cosy ,
Ll -
V 2) since ,
ZVLI -
V2 ) ) dudu
N
SOE . dt-SSCUHE.DE
-
-
-
-
-
.
if
Example :
use Stoke 's theorem to evaluate §FodF
where F =
s 2. X. y >
C is unit circle ,
centered at
origin in the plane xtyt 2=0
↳ Nestor's .
't )
J= ftp.
-
tf ,
Oy
I Perpendicular
check To N=O
I. T=O
-
D= Ciro ,
%)
Parameterize c :
TH )= cost Jtsintw
=L ¥ -
s ,
t
-
sing ,
t ) . . .
Or using Stoke 's
theoryi j k
curl E =
Ix By Ez =
( 1.
1,1)
z X
y
ISCURIF .dF=fSkurIE .
NIDA =
554,1 ,
1) ol 't .
Is .
To I da
=SSr5dA=BSSdA=T3 IT
Some Interesting Examples :
f- =
-
xi -
yJ -
2K
where e=yxE
E3
C is unit circle in x
-
y plane
ft .dF=O
=
Note : I ( f) =L
x y z
( X2ty 2+2213/2 , 1×2+42+221312, 1×2+42+221312
)
curl E =
curl ( I ( et ) ) = I for all IX. y ,
2) not at LO
,
O.O )
Divergence Theorem
let D be a region in 3D
space
Where S = surface which forms the
boundary of D ( outward orientation )
and F- =
Vector field in 3D space
SSSDTT .
Edu =
Sss F. DE
EX :
D= hemisphere ,
X
2
t
y
2+22=4 ( radius = 2) ,
with
y 10 ( so D is a half hemisphere )
F =
C X . y ,
27
LHS :
SSS is TT .
Fav RHS :
Sss Fod At =
Sfs,
E .
DA t
Sss .
F. DA
TT .
F =
Ex Xt
Ey y to 2
.
-
I +
It I =3 where S ,
is the curved hemisphere part E
ISS D 3 DV =3 SSS DV Sz is the flat back
-
volume As ,
IF o
D) dat Sss ,
LF .
D) DA
- -
3 .
I ( 4J IT 23 ) =
161T IF 1=2 O
2. Area L S ,
)
2. I 41T 22
16 IT
Calc Review
Vector
Geometry :
.
NT :
normal Vector La ,
b ,
C >
↳
plane :
a x t
by t CZ =
d
.
Lines : II t ) =L Xo , yo ,
Zo ) t
t VT
→
r It I
- -
r
'
I t I =
V Lt )
T
"
Lt ) = T '
( t ) =
a Lt )
Arc length
Kds = Sc I at Idt =
So VEE 't
eat 4-
IT
'
at
Mass
Ic f ( x , y ,
z Ids =
Sba f ( x Lt I .
y I t ) ,
2 Lt ) )
/ dat Idt
Sc Eod F =
SLF .
F) ds = Sba F . FE at
TN B Frames
T T -
-
II
•
Bn
"
s N I =
Tv
Fits I J I
B =
T '
x F "
I F '
XT ' '
I
N = B ×
I
Chain Rule
f ( X , y ) X ( U ,
v I y l u ,
v )
tf
= If +
If
.eu
ZU all
Gradients
f-
I points in direction of
greatest increase
15ft I :
rate of
change in this direction
Directional derivative : If °
IT
Tangent Plane
r Lu ,
v ) → FI × = N- =
La , b. c) →
axtbytcz =D
z =
f ( X ,
y )
parameterize
U =
X ,
V =
y
→ FLU ,
V ) =
( y ,
V
,
fly ,
v ) )
D= FIX FI = -
fi -
f y J t I
a b C
-
f ×
X
-
f
y y
t
z =D
D= -
f , Xo
-
f
y yo
t f ( Xo , yo )
Z = d t f ×
X t
f y y
= f ( Xo , yo ) t
f ×
( X
-
Xo ) t
f y
( y
-
yo )
Maximal Minima
TT f =
O →
critical points
I
ft ffxyyy / =D
D > O min f xx ) O or fyy > O
Max f xx LO
D SO Saddle point
D= O ?
Max I min f ( X , y )
Subject to constraint g L x , y I =
C
If =
XTTG
Polar I Cylindrical I Spherical
dxdy =
rdrdo
dxdydz =
rdrdocdz
dxdydz =Psin Old ed ① do
× =
X Lu ,
V )
y
=
y Lu ,
V )
dxdy =
1¥71,
I dxdy
=/ III dudu
Surface Integrals
FLU ,V )
Asda
=
surface area
ffsflx ,y,z1dAd# I ×
FIldudv
Flux Integral
Is Fo DE dF=FI× # dudu
↳ =
( F. NIDA
.fSs3dA=3 .
surface area

More Related Content

What's hot

Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphsJerlyn Fernandez
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolasLori Rapp
 
Relations and Functions
Relations and FunctionsRelations and Functions
Relations and Functionstoni dimella
 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxErlenaMirador1
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Mohd. Noor Abdul Hamid
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabolaJean Leano
 
Right triangle similarity
Right triangle similarityRight triangle similarity
Right triangle similaritymonicahonore
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integralKamel Attar
 
4.6 Relations And Functions
4.6 Relations And Functions4.6 Relations And Functions
4.6 Relations And Functionsguestd1dc2e
 
Rewriting Linear Equation from standard form to slope intercept form
Rewriting Linear Equation from standard form to slope intercept formRewriting Linear Equation from standard form to slope intercept form
Rewriting Linear Equation from standard form to slope intercept formJanetEsteban1
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Maths PPT on parabola Class 11.pptx
Maths PPT on parabola Class 11.pptxMaths PPT on parabola Class 11.pptx
Maths PPT on parabola Class 11.pptxHome
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiationeteaching
 

What's hot (20)

Logic - Logical Propositions
Logic - Logical Propositions Logic - Logical Propositions
Logic - Logical Propositions
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
 
Hyperbola
HyperbolaHyperbola
Hyperbola
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
CALKULUS III Complete
CALKULUS III CompleteCALKULUS III Complete
CALKULUS III Complete
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
 
Relations and Functions
Relations and FunctionsRelations and Functions
Relations and Functions
 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
 
1541 infinite limits
1541 infinite limits1541 infinite limits
1541 infinite limits
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
 
Right triangle similarity
Right triangle similarityRight triangle similarity
Right triangle similarity
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
4.6 Relations And Functions
4.6 Relations And Functions4.6 Relations And Functions
4.6 Relations And Functions
 
Rewriting Linear Equation from standard form to slope intercept form
Rewriting Linear Equation from standard form to slope intercept formRewriting Linear Equation from standard form to slope intercept form
Rewriting Linear Equation from standard form to slope intercept form
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
 
Maths PPT on parabola Class 11.pptx
Maths PPT on parabola Class 11.pptxMaths PPT on parabola Class 11.pptx
Maths PPT on parabola Class 11.pptx
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
 

Similar to Calculus III

Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Laurel Ayuyao
 
Graph for Coulomb damped oscillation
Graph for Coulomb damped oscillationGraph for Coulomb damped oscillation
Graph for Coulomb damped oscillationphanhung20
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]Henrique Covatti
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tablesSaravana Selvan
 
solid state lec1-merged.pdf
solid state lec1-merged.pdfsolid state lec1-merged.pdf
solid state lec1-merged.pdfPanditBeta
 
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdfTMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdfssuser625c41
 
mathematics question bank for engineering students
mathematics question bank for engineering studentsmathematics question bank for engineering students
mathematics question bank for engineering studentsMrMRubanVelsUniversi
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12Pamela Paz
 
Admission in India
Admission in IndiaAdmission in India
Admission in IndiaEdhole.com
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transformsKarnav Rana
 
K10692 control theory
K10692 control theoryK10692 control theory
K10692 control theorysaagar264
 

Similar to Calculus III (20)

Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)
 
Graph for Coulomb damped oscillation
Graph for Coulomb damped oscillationGraph for Coulomb damped oscillation
Graph for Coulomb damped oscillation
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
solid state lec1-merged.pdf
solid state lec1-merged.pdfsolid state lec1-merged.pdf
solid state lec1-merged.pdf
 
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdfTMUA 2021 Paper 1 Solutions (Handwritten).pdf
TMUA 2021 Paper 1 Solutions (Handwritten).pdf
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
mathematics question bank for engineering students
mathematics question bank for engineering studentsmathematics question bank for engineering students
mathematics question bank for engineering students
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Ece4510 notes03
Ece4510 notes03Ece4510 notes03
Ece4510 notes03
 
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers1st and 2and Semester Chemistry Stream (2014-December) Question Papers
1st and 2and Semester Chemistry Stream (2014-December) Question Papers
 
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
4th Semeste Electronics and Communication Engineering (Dec-2015; Jan-2016) Qu...
 
Complex Integral
Complex IntegralComplex Integral
Complex Integral
 
Admission in India
Admission in IndiaAdmission in India
Admission in India
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
K10692 control theory
K10692 control theoryK10692 control theory
K10692 control theory
 

More from Laurel Ayuyao

Intermediate Microeconomics Cheat Sheets
Intermediate Microeconomics Cheat Sheets Intermediate Microeconomics Cheat Sheets
Intermediate Microeconomics Cheat Sheets Laurel Ayuyao
 
Intermediate Microeconomic Theory Cheat Sheet 4
Intermediate Microeconomic Theory Cheat Sheet 4Intermediate Microeconomic Theory Cheat Sheet 4
Intermediate Microeconomic Theory Cheat Sheet 4Laurel Ayuyao
 
Intermediate Microeconomic Theory Cheat Sheet 3
Intermediate Microeconomic Theory Cheat Sheet 3Intermediate Microeconomic Theory Cheat Sheet 3
Intermediate Microeconomic Theory Cheat Sheet 3Laurel Ayuyao
 
Intermediate Macroeconomics
Intermediate MacroeconomicsIntermediate Macroeconomics
Intermediate MacroeconomicsLaurel Ayuyao
 
Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"
Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"
Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"Laurel Ayuyao
 
Introduction to Philosophy: God and the Good Life
Introduction to Philosophy: God and the Good LifeIntroduction to Philosophy: God and the Good Life
Introduction to Philosophy: God and the Good LifeLaurel Ayuyao
 
Statistics for Economics Midterm 1 Cheat Sheet
Statistics for Economics Midterm 1 Cheat SheetStatistics for Economics Midterm 1 Cheat Sheet
Statistics for Economics Midterm 1 Cheat SheetLaurel Ayuyao
 
Statistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetStatistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetLaurel Ayuyao
 
Principles of Macroeconomics Notes
Principles of Macroeconomics NotesPrinciples of Macroeconomics Notes
Principles of Macroeconomics NotesLaurel Ayuyao
 
Statistics for Economics Final Exam Cheat Sheet
Statistics for Economics Final Exam Cheat SheetStatistics for Economics Final Exam Cheat Sheet
Statistics for Economics Final Exam Cheat SheetLaurel Ayuyao
 
Principles of Microeconomics Notes
Principles of Microeconomics NotesPrinciples of Microeconomics Notes
Principles of Microeconomics NotesLaurel Ayuyao
 
Principles of Microeconomics Midterm 3 "Cheat Sheet"
Principles of Microeconomics Midterm 3 "Cheat Sheet"Principles of Microeconomics Midterm 3 "Cheat Sheet"
Principles of Microeconomics Midterm 3 "Cheat Sheet"Laurel Ayuyao
 
Principles of Microeconomics Midterm 2 "Cheat Sheet"
Principles of Microeconomics Midterm 2 "Cheat Sheet"Principles of Microeconomics Midterm 2 "Cheat Sheet"
Principles of Microeconomics Midterm 2 "Cheat Sheet"Laurel Ayuyao
 
Principles of Microeconomics Midterm 1 "Cheat Sheet"
Principles of Microeconomics Midterm 1 "Cheat Sheet"Principles of Microeconomics Midterm 1 "Cheat Sheet"
Principles of Microeconomics Midterm 1 "Cheat Sheet"Laurel Ayuyao
 
IB Theory of Knowledge EA: Disagreement Between Experts in a Discipline
IB Theory of Knowledge EA: Disagreement Between Experts in a DisciplineIB Theory of Knowledge EA: Disagreement Between Experts in a Discipline
IB Theory of Knowledge EA: Disagreement Between Experts in a DisciplineLaurel Ayuyao
 
IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...
IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...
IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...Laurel Ayuyao
 
IB Math SL IA: Probability in Guess Who
IB Math SL IA: Probability in Guess WhoIB Math SL IA: Probability in Guess Who
IB Math SL IA: Probability in Guess WhoLaurel Ayuyao
 
IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...
IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...
IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...Laurel Ayuyao
 
IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...
IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...
IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...Laurel Ayuyao
 

More from Laurel Ayuyao (20)

Econometrics Notes
Econometrics NotesEconometrics Notes
Econometrics Notes
 
Intermediate Microeconomics Cheat Sheets
Intermediate Microeconomics Cheat Sheets Intermediate Microeconomics Cheat Sheets
Intermediate Microeconomics Cheat Sheets
 
Intermediate Microeconomic Theory Cheat Sheet 4
Intermediate Microeconomic Theory Cheat Sheet 4Intermediate Microeconomic Theory Cheat Sheet 4
Intermediate Microeconomic Theory Cheat Sheet 4
 
Intermediate Microeconomic Theory Cheat Sheet 3
Intermediate Microeconomic Theory Cheat Sheet 3Intermediate Microeconomic Theory Cheat Sheet 3
Intermediate Microeconomic Theory Cheat Sheet 3
 
Intermediate Macroeconomics
Intermediate MacroeconomicsIntermediate Macroeconomics
Intermediate Macroeconomics
 
Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"
Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"
Intermediate Microeconomic Theory Midterm 2 "Cheat Sheet"
 
Introduction to Philosophy: God and the Good Life
Introduction to Philosophy: God and the Good LifeIntroduction to Philosophy: God and the Good Life
Introduction to Philosophy: God and the Good Life
 
Statistics for Economics Midterm 1 Cheat Sheet
Statistics for Economics Midterm 1 Cheat SheetStatistics for Economics Midterm 1 Cheat Sheet
Statistics for Economics Midterm 1 Cheat Sheet
 
Statistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat SheetStatistics for Economics Midterm 2 Cheat Sheet
Statistics for Economics Midterm 2 Cheat Sheet
 
Principles of Macroeconomics Notes
Principles of Macroeconomics NotesPrinciples of Macroeconomics Notes
Principles of Macroeconomics Notes
 
Statistics for Economics Final Exam Cheat Sheet
Statistics for Economics Final Exam Cheat SheetStatistics for Economics Final Exam Cheat Sheet
Statistics for Economics Final Exam Cheat Sheet
 
Principles of Microeconomics Notes
Principles of Microeconomics NotesPrinciples of Microeconomics Notes
Principles of Microeconomics Notes
 
Principles of Microeconomics Midterm 3 "Cheat Sheet"
Principles of Microeconomics Midterm 3 "Cheat Sheet"Principles of Microeconomics Midterm 3 "Cheat Sheet"
Principles of Microeconomics Midterm 3 "Cheat Sheet"
 
Principles of Microeconomics Midterm 2 "Cheat Sheet"
Principles of Microeconomics Midterm 2 "Cheat Sheet"Principles of Microeconomics Midterm 2 "Cheat Sheet"
Principles of Microeconomics Midterm 2 "Cheat Sheet"
 
Principles of Microeconomics Midterm 1 "Cheat Sheet"
Principles of Microeconomics Midterm 1 "Cheat Sheet"Principles of Microeconomics Midterm 1 "Cheat Sheet"
Principles of Microeconomics Midterm 1 "Cheat Sheet"
 
IB Theory of Knowledge EA: Disagreement Between Experts in a Discipline
IB Theory of Knowledge EA: Disagreement Between Experts in a DisciplineIB Theory of Knowledge EA: Disagreement Between Experts in a Discipline
IB Theory of Knowledge EA: Disagreement Between Experts in a Discipline
 
IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...
IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...
IB History of the Americas IA: A Historical Analysis of the Effectiveness of ...
 
IB Math SL IA: Probability in Guess Who
IB Math SL IA: Probability in Guess WhoIB Math SL IA: Probability in Guess Who
IB Math SL IA: Probability in Guess Who
 
IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...
IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...
IB Spanish SL IA: An Interview with Jose Hernandez on the Day of Tradition in...
 
IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...
IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...
IB Extended Essay: Comparison of the Effects of Vegan and Meat Inclusive Diet...
 

Recently uploaded

Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Recently uploaded (20)

Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Calculus III

  • 2. 3D Space AZ JE :# tangent plane . , × ' I • v ' Y n a L Z Z 2 7 y L X - y L × y ' × > h2 ( X , 0,2 ) X - z y - 2 L O , y , 2) plane plane x - y plane > y L ( X. y , O ) x
  • 3. ^ Distance ix. y ) • D= V ( X - X ' )2t ( y - y ' )2 • ( X ' , y ' ) > ^ 2 ( X , y , 2) • I Iz - z 't ' d ' = #I d ( X - X ' )2 t ( y - y ' 32 - - di- - - - - d = FEZ ' )2 •• C X ' , Y ' ' Z ' ) D= j , × . x. yz + ( y - y' 72 t ( 2 - 2 ' ) Z L ) × Y Z = f ( × , y ) → surface in 3D space equation involving x. y , 2 2=2 a - Z X L dy In y = I I I I l L S X t y t 2=1 Nz • L 0,0 , I ) o ( O , I , O ) X L @ s ( 1,0 , O ) Y
  • 4. X Z t y 2 t 22 = 4 ( X - O ) 2 t ( y - O ) 2 t ( 2 - O ) 2 = 2 ↳ sphere w/ center at origin w/ radius 2 ( X - 2) Z is L y - 3) 2 t L 2 - 4) 2 = I ↳ sphere w/ center at ( 2.3 , 4) with r = I Xt y = I X t y = I X t y = I I equation x = y X = y Surface in 3D 2 equations 2=2 curve in 3D 3 equations point Cs ) ^ • L ) ^ # X Z t y 2 =/ # X 2 t y 2=4 ) , ± ×z + y z e 4 - L S
  • 5. Vectors ' Vector : a quantity that has both magnitude da direction - ex : velocity , forces . Vector addition → a 7 b → • a a → → → atb b 7 → • a . Subtraction ^5 - of 5 - a→ta→=b→ → a x• → b . scalar multiplication v→ 7 A → → • → Ov - v • ZV , L • . vector components A NZ → , ( 5,4 ) ✓ ( a , , az.az ) 7 y a→= a. Ttazjtazk^ n a < ' n , > > , µ, = sa . .az , as > < → s x V→=5Tt 45=45,4 > i u e ✓ a→= La , .az ) b→=Lb , .bz > = a. Ttazj = b. Ttbzj A→tb→= A. Ttazjtb , Ttbzj = ( A. tb , ) it ( Aztbz )j = L A. tb , , Aztbz > T = ( V , , Vz ) cP=Ccv . , Cuz >
  • 6. ^ magnitude L length ) of of = I at I = . 9,2 t Azz 7 ( a. , Az ) Az ( ) : ^ → > L COS O , since ) Ts =/Tl Loso , Sino > o ) =L 181050 , 181 Sino > L S ✓ . Rules of Vectors ( look in textbook ) . Geometry Application Thm : the diagonals of a parallelogram bisect each other > → → → → a t bb - of - 5 2 → × Is + IF = Etba 2 - Physics Application a ) C is TT =L 1171 cost , ITT Is in a > Fir IT TT =L ITT I COS B , ITT Isin B > ✓ LO , -100 > TT t TT = LO , 1007 100 lbs . 1171 cos × t 1171 COS 13=0 ITT Isin x t ITT Isin 13=100
  • 7. Dot Product E Cross Product : Geometry of Vectors Dot Product - A- vectors → At . B- number B ZD : At = Ca . . Az ) A- . B- = a , b , t Azbz B- = ( b , .bz ) - 3D A = La , , Az . As > At . B- = a , b , t azbz t As bs- B = S b , .bz , bs ) Properties : A- . B- = B- oft At o ( B- t I ) = ATB- t A- . I At •At = Eid ; 2 = I A- 12 - A 7 o ) At . B- = I All BI Cos O - Its - At proof : Law of CosinesB ' 1B - A- 12=1 At 12+1 B- 12 - 21 All BICOSO ( B- - F) L B- - F) = B- . B- t At . F - 2ft . B- = I A 12 t I B12 - 2nF . B- Projection , - = lil = I A I o ) I A- . ( c B- ) = CLIO B- I = ( CF ) OF T Y , IATCOSO i I IF Hill cos O = IF I . lil dot product w/ a unit vector gives projection T = ( A . i ) it - un = -4 III J = C Ao FF, 1¥, = F. T I IT 12
  • 8. Example : What is the force vector E on the box ? - ( 2 , I ) F = projection of G- onto I u - U =L - 2 , - I 7 E a- a- = - mai < E = FEIT = -39 C - z . - I > = C ⇒ , - ⇒ > ( O , O ) A- . B- = O ↳ perpendicular L cos 909=0 or Orthogonal A- = O , 15=0 AT . I = a , At = La , , Az , 937 A- . j = Az I = L I , O , O ) A- . I = as
  • 9. Cross Product Dot product A- . B- = a ,b , tdzbztazbz - 7 A i = ITIIIBTCOSO ' - - , - O ) i T= B y s ' BIBI' s Q : What is the area of a parallelogram spanned by A- and B- ? ZD : y n Yr , B- =Lb , .bz > Area = LATH a = IATIBTSINO h 7 B- A- = IATIBTICOSO ' ' > a X B-' , = At o B- ' ~ s B-' =Lbz , - b . > × = La , .az ) - Lbz , - bi ) = a .bz - azb , a Right hand a Left-hand + - I > 7 = I di 22 B A-=L .bz - azb , • - O Bb , bae n A n [ right hand or left F- a - - - A I 2 B 34 - = I (4) - 2131=-2 - = 2 - a B 3 4 A I 2 - I I I I - > - Byz - - - . 3D : ^Z - ' - Area ( Eff )= - - - - r B - Ayz ) - - XZ B 7 - - - - T T . 2 2 2 - YZ t XZ t Xy - - - - < A A I - XZ > y I = At xD - > - Bxy- - I X - - L At xy ) -
  • 10. ^ A' xD such that thx B- I = area L £57 ) F. = IATIBI since I f)O B I = A' tB Tt ' I = ab:% i - as:3; it }:3: k + - t i J I = a , 22 23 b , bz bs ^ n i n J a k = t L 2223 - J d , 23 t K d , 22 bzbz b , bz b.bz Example : in j kn I 2 O - - 6T - 3J - II O - I 3 Area ( parallelogram )=T6¥k ^ A' xD → jfc ? Volume -_lFxB- 1h F. =L At x B- IIEICOSQ I > JO B- = ( At xD ) . I - , A
  • 11. 12.5 Lines and Planes Line in 3D Space I . Parametric Equation II. Solution to 2 Equations 2¥ ! Y ( t ) , 2 C t ) ) #← Lines Given P= ( Xo , Yo , Zo ) J = La , b , C > Line going through P in T direction T a ( Xo , yo , Zo ) # r Lt ) - To = to Taco L - ' ' r Lt ) - To II T ' ' ro Tht ) r Lt ) = ro t tv ( Xo , yo , Zo ) • X Lt ) = Xo t at O y Ltt = yo tbt Z Lt ) = Zo tbt If ( Xo , yo , Zo ) = LO , O . O ) → L passes through origin Xlt ) = I t t y Lt 1=2+2 t } t = - I → x Lt ) = y Lt ) = 2 ( t 1=0 2 L t ) =3 +3T Solution to 2 Equations X = Xo t at → t = y = yo tbt → t = eye b 2 = Zo t Ct → t = X - Xo y - yo 2 - Zo a b C
  • 12. Example : Find line perpendicular to A- = 4. 2,0 > G 15=50,3 , 47 passing through F- ( S , 6,7 ) - na i j I r - ← I L I 2 O At xD =L 8 , -4,37 B • T=AtxBL 5. 6,7 ) O 3 4 rlt ) = rot tv = L 5. 6,7 ) t tL8 , -4,3 ) = L St 8T , 6- 4T ,7t3t ) P, = ( X , , y , ,2 , ) - ooo Po = L Xo , yo , Zo 8=7, - to • r Lt )=FottJ ^ - t-rottlr.ro ) - r , % Lx , ,y , ,z , > = l I - t )Fottr ( Xo , yo ,2o ) Given pair of lines L , & Lz 3 possibilities :{ infested Skew - - L , : Xlt )=X , t a. t Lill Lz # La , , ?, , C , > =L Laz , bz.cz > y Lt )=y , +bit I k€0 vz Ztt ) = 2. tat L ,HLzc= > L , intersects ↳ or L , 4 Lzskew Lz : X L s ) = Xztazs ↳ Solve for L . du Lz simultaneously , G determine if there y ( s )=yztbzS is a solution Z (5) = Zztczs Xlt )=lt2t=S y Ctl =2t3t=2s =) 2t3t=2t4t zLtI=3t4t=3S 3T - 4t=O X ( s )=S a t=OYLSKZS ( 2151=35 t - - O 3=35--3 ✓ to 5=1
  • 13. Planes Equation of a plane : Line - ^ Ttt ) = tvtro D= Fx B- J direction of line - - n B 7 To point on line •7 A- > a - n = C a. b. C 7 T - ro a-* ( F - To ) .rT=O E t.n-ro.rs ro = axtbytcztd =O L Xo , yo , Zo ) D= O iff plane passes through the origin F = ( X , y , 27 Example : What is the equation for a plane containing p , ( I , 2,3 ) , pz ( 3. 4,3 ) , Ps ( 1. 3,4 ) At = L2 , 2,07 B- =L 0,1 , 17 RT = Atx B- = L2 , -2 , 27 a b c D= - To opt = - (1.2-2.2+3.2)=-4 2X - 24+22-4=0 Example : What is line perpendicular to the plane : Xt2y +32+4=0 passing through the point ( S , 6,7 ) ? Fit) = tvtro = L t +5 , Ztt 6,3T +77 What is the distance between a point p , = L X , , y , , 2 , ) and a plane axtbytcztd F. - rT= PIP = C x , Y , z ) T - n = La , b , C) To= L Xo . yo . 20£. nee- - - E. T projnv- i - ' it , D= lprojnvt - Y rt = ' Yon? ' in , = ly-n-j-l-KF-roi.nlInt O • = Irion - troon , = tax , t by,tC2 , + d I Int 22 t BZ t ( Z
  • 14. Example : L , :FLtI=Llt2t,2t3t,4t4t7 skew : Lz : g- G) = LS , 25,357 Distance btw them ? D= I XVI
  • 15. (€ty ) , 2 C t ) ) Tct ) TLtI=LXLt ) , yet ) ,zCt ) ) drat → at tangent Fctttvtro IF - T.at ftp..atDF - at - = v lim ~v dt at → oat drat = Speed Velocity J=ddI=r ' a- = IF = r " Speed 181=1*71 Plane X p T Tht ) = C Xlt ) , yet ) > , I =L cos Ltl , sink ) > p - × I l . I I I I l 147I - T . Lt ) =L - yet , Xlt ) > Sint - it Fits t =L - sink ) , Cost ) ) - Y 7 cost Y F' L t ) = L X ' Lt ) , y ' Lt ) ) I l - y x 3- D I Flt )=LXLt ) , ylt ) , Ztt ) > an 7 =L cos Lt ) , sink ) , 7 B - F' Lt ) =L - sina.cosltl.IT ) o%Ya'heating IIEI its , - sina.co > 3{ ' T - E unit tangent vector * osculating plane ^ TXT plane spanned by B = Txt unit binormal Vector tanda = T ' xrT , IT 'xT" I Normal plane : plane N^=Bx 'T spanned by A. BL -1T )
  • 16. at : tangential acceleration at = lprojgal-T.tt ' IT 't lat = rattan an = -V 1212 - af Example : compute normal plane for Flt ) = cost , Sint , 3¥ ) att - 21T F' (f) It -2 it =L - Sint , cost , It ) lzit =L 0,1 , It 7 axtbytcztd-OL-rooca.b.cl O . Xt I . yt It 2 - ( 1. 0,3740 , I , 7=0 Remark : N - ^ 7 V - Class :N^=B^×F Book : = , T > I = -V B T 'T D= -1 > , g ITI 18×81 IT 't J J=T . D= xaTxT a- =p Ihtxalxvl B
  • 17. Integration of Vectors Flt ) = L Xlt ) , ylt ) , zlt ) ) [ Differentiation ] ( Xlt ) ,yLt ) . bit ) ) F' Lt ) = points in tangent (F) direction t=b with magnitude Ir ' tht speed J →=L X' Lt ) , y ' ( t ) , Z' C t ) > ( X ( b ) , ylb ) , 2lb ) ) Integration : Flt ) • gba-rthdt-e.LI?so..IrTtiktit=acxca).ycas.zcaD=LSbaXLt Idt , sbayltldt.SE zltldt ) ftarltsdt Sbaxutdt Stay # dt SEZ # dt = f- avg " average b - a b - a b - a b - a position ' ' ? l S :* Lost , Sint . Et ) at b- a = C SE 't costdt.SZotsintdt.SI 't at ) 211=20,0, EFFIE 7=20,0 , 31T ) = C 0,0 , Z > ZIT 21T fbalr.lt/dt=arclength- speed Example : arclength of our helix from t= Oto t . - 21T STILL - Sint , cost , It > ldt-fftvsinzttcosti-44itzdt-fztffahtitzd.li= 21T #/4I2 Flt ) = ( cos Lt ) , sin L ta ) , 3¥ > What is the trajectory ? ' ' re parameterization " U=t2 F = Lcosu , sina.FI )
  • 18. Canonical Parameterization : " parameterization by a rclength ' ' ⇐ IT ' I = I ( X L S ) , y CS ) , 2 ( S ) ) Foo ' €. ✓s ¥ Parameterization of our helix by arc length : ( cos (¥%z) , sin ( FEW) , ¥tz )
  • 19. Newton 's Law of Motion F-- mainpractice : particle object know F derive trajectory ZD MY parabola - - - - , lxcthyctyyt gravity , - F= - mgjy - Vo ( Vocosx , ' , ground la Vo sin > > know a- letter " Lt ) × then get JLtl-r.lt ) by anti - differentiating a- Jlt )=rTt ) t Vo then get Flt ) = - ttvotv , F=ma- = - mgj a- =rT= - gj F. Hi-Fi- gtj-vocosxitlvosinx-g.tl J @ to Fltkrotlvocosxtitlcvosinxlt - Igt )j f- O → To = FLO ) =L 0,07 FLtI= ( Vocosxltitllvosinx )t - Igt )j Tangential and normal acceleration An : how quickly you 're turning at n At : how much your speed is changing at . - - - *⇐ - - - - say sa' ^ , i An - -
  • 20. Z I ¥¥i÷¥¥¥n¥¥¥. . - Sint , cost , 3121T ) Tz' Lt ) =L- Ztsint ' , Zt cost ? 341T ) n n n T n OT r , ' ' Ltl =L - cost , - Sint , O ) ' B Este inssinn?iii.ftp.tj-4#sintZ . " it ' Jz x g- z = ( ' H' ht Sint 2 , - I ZTYIT Cost 2 , 8t3 ) × Y
  • 21. Functions of Several Variables I 14 . I ) . Single variable calculus : . I variable . graph in ZD space . Domain in ID space . Function of 2 Variables : . graph in 3D space . domain in 2b space Contour Plot ^ ' ÷÷÷i÷÷" " " " " " " × . ↳ paraboloid ⇐ O . f ( x , y ) = XZ - y Z 2 my C = 0×2- y 2=0 ¥:÷:÷÷¥↳÷¥÷÷÷. ↳ pringle N y ✓ C = I C= - I ✓ y . a Xt by t CZ t D= O ' - 2=1 - ax - by - d) 1C • 3 × E.I:{yt.goyi.co/-/ C = 2 C = I ⇐ O
  • 22. . Function of 3 Variables . 3D domain . 4 D graph ↳ t = f L x , y , 2 ) → level surfaces in 3D
  • 23. Limits da Continuity ( 14.2 ) and Partial Derivatives L 14.3 ) Example : sink ) iim ×→ot sin ( I ) undefined Iim µ '' → O - sin ( I ) undefined lim IX. y ) → l Xo , yo ) FIX , y ) =L for LX , y ) Sufficiently close to ( Xo , yo ) , fl X. y ) is close to L distance ( l x , y ) , ( Xo , yo ) ) is small Iim S - • X → Xo ft X ) =3 joy f ( Xo ) ¥3 → discontinuous I Xo lim Def : f L X , y ) is continuous if for all ( Xo , yo ) in domain , IX. y ) → L Xo , yo ) = f ( Xo , yo ) Iim sincxy ) ( X , y ) → ( Xo , yo ) X2tyZ Partial Derivatives : slopes of the tangent line in the X direction FI L Xo , yo )=f× ( Xo , yo ) ↳ treaty as a constant ) tangent line in the y direction f- ( X , y ) = XZTYZ +3C ( Xy ) f- × = 2x - 3 ysinlxy ) f- y = Zy - 3 xsinlxy ) If× )×=2 - 3yZcosLxy ) → at fxy =-3 xycoscxy ) - 3sinLxy ) → Tatya ↳ f × first
  • 24. Z /•#f yl Y iv.× f ( x , y ) = XEZY t sin ( Xy ) f × = e 29 t y COS ( Xy ) f- y = ZXEZY t x cos ( Xy ) f××= - y 25in L Xy ) f- y y = 4 XEZY - XZ sin ( Xy ) f y × = IT = 2e2y t cos ( Xy ) - Xy sin ( Xy ) = fxy Theorem : Suppose fxy and f- y × exist near ( Xo , yo ) and fxy , fyx are continuous at ( X o , yo ) Then fxy ( Xo . yo ) = fyx ( Xo , yo ) ↳ Mixed partials commute
  • 25. Chain Rule Single Variable Chain Rule adz Hg ( x )) = f ' ( g L x ) ) g ' ( x ) or W = flu ) u = g L x ) off = days . dat . What does it mean ? . Q : How much does w change as I change X ? . know : 4W I dadu LIU dx DX U = -81 a × → 4W = -84 due a = Fx ax Multi - Variable Chain Rule W = f L X , y ) X = x Lt ) y - - Y Lt ) W Lt ) = f I X L t ) , y Lt ) ) What is IF in terms of IQ , ? aw = Fx ax t IF ay Also know : DX = Etat ay = IF at 4W = FIEF at t IF dat at = I FIFI t Fwy date lat IF = # eat . -38 It More generally W = w ( X , y ) × = XLS.tt y = yes , t ) W = w L X ( s , t ) , y I s , t ) ) ETI Ee ⇒ + ⇒ ⇒ -273ft # IF Rule : as many summand S as variables that w depends on
  • 26. de Example : x Lt ) = t t 2 y Lt ) =3 t +4 WLX , y ) = X 2 t 2yZ at ? I . Could substitute E " brute force it " W Lt ) = ( t t 2) 2 t 213 t t 4 ) = t 2+4 t t 4 t 18 t2 t 48T t 32 = 19 EZ +52T +36 W ' Lt 1=38 t t 52 2. Use chain rule Fat = IT at + Efta = 2x . I t 4 y . 3 = 2 ( t t 2) t 12 ( 3 t t 4) = Ztt 4 +3Gt t 48=38t t 52 Implicit Functions : I . e . X 2 t y 2 =/ dy Tx ? Implicit Differentiation ↳ chain rule . Apply Ex to equation -3×1×2 t y 2) . - Ix LI ) 2x t 2 y FL = O 8¥ = - f- W = w ( X , y , 2. a , b ) x = x Lt ) y = y Lt ) : b = b Lt ) Ldf = IT Eft -37 It t # at at
  • 27. Review Contour Plots . Set z equal to constant E solve TNB Frames f= J=r . Lt ) A a- =tT=r " vq a ta 's, N=BxT Fcc ) Tian^ an = a- oN^ - - - - ; a- or = Eat an at-compta-a.T-a.IE , I AT Old Exam I # to FLtI=L4t , costs 'll ,sint3t ) ) Jlt ) = C 4 , -35in t ) , -30553T ) ) a- HI = SO , -90513T) , -95hL -3T ) ) At = OT OFF, = ( Ot 27sihbtkosbtlt27sihl-3tkosl-3.tl ) . ( 16+9 sin ' Gt ) tacos ' Est)) - I An = ✓ 8105434+81 sink -3T ) - 16+9517213+1+9054 -3T ) t → at 9
  • 28. Practice Exam I # 8 concentric circles ? 8- x - y=c y=8 - X - C ← line e- 1×2+427=(-1×2+42) = Inc X2ty2= - Inc OCCLI → circles e 4×2 - y 4×2 - y = Inc 4=4×2 - Inc ← parabola sihlxty ) - I > c > I Xty=0 , IT , - IT , 21T , . . . y= - Xt KIT Kisan integer Xz - y2 saddle point rltl-54t.cosbtl.sinl-3.tl ) r 'LtI=S4 , -35in t ) , -305L -3T ) ) r "LtI=L0 , -905Gt) , -951hL -347 At -- A- ° I =O NT An = 19-1=9 Old Exam I # 6 r Lt )=( t2 - I , 1h42 ) ,t4 - t 's - Htt ) Slt ) = ( 2ft - 4. coscittltl.tt - I ) Fios '=Ir7l5tcosO F' =L Zt , E. 4T ' - 3tZ - Zttl ) I ' = ( ( tt3 ) - ' ' 2 , Hsin Litt ) , It - " 2 ) t = I r 'Ll ) -_ l 2. 2,0 ) S 'Ll ) = CE , O , I ) r 'Ll )oS' (1) =L IF 't- Too 15'I=fz 1=2050 COS @ = I
  • 29. Practice Exam I # 6 f- = e XYZ f × = y Ze XYZ f×y = 2ye×Y ' t y ' ( 2x y ) ex Y ' = 2ye×Y ' t 2×y3e×y2 Practice Exam # 8 htt =L cost , Sint , t ) Osculating plane @ L 1,0 , O ) plane that contains TE I ✓ Lt ) =L - Sint , cost , 17 a Ltt = C - cost , - Sint , O ) t = I I !I! I so . - ins O X - y t 2 = d d = OLI ) - L O ) t O - y t 2=0 Practice Exam I # 9 r Lt ) = L2 cost , et , t ) point in tangent line at 12.1.01 r ' Ltt =L - Zs int , et , I ) t = O r ' ( O ) = SO , I , I ) eqn for line : 5ft I = tvtro 5 Lt ) =L 2 , t t I , t ) 541=52 , 2 , I )
  • 30. Directional Derivative E Gradient it = unit vector Question : What is the rate of change of f in the un direction at ( Xo , yo ) ? this number Dun f I Xo . yo ) " directional derivative of f at ( Xo , yo ) " h ( s ) = f ( Xo t Sa , yo t Sb ) Dun f L Xo , yo ) = Is Is = o h L S ) = Is Is = o f ( Xo tsa , yo t sb ) = f × ( Xo , yo la t fy ( Xo , yo ) b Dun f ( Xo , yo ) = ( f × , fy ) • ( a , b ) - - gradient of f I grid f = If ⑦ = L at , Ey ) TT = C Ix , Fy ) f = tax , If ) Dj f = TT f o is What is the meaning of TT f ? I fo un = I If I I ill COS 0 = I If I COSO for which Un is Dun f biggest ? 0=0 If points in the direction of greatest increase left = Slope in this direction f L X , y ) = Ii ( X 2 t y 2) If = Lf × , y x ) = 'T ( 2x , Zy ) =L E . ¥7 Vector field → a different vector at each point TT I level curves
  • 31. Level curves for functions of 2 variables The ' ' C - level curve " of f L x , y ) is defined to be the set { ( x , y ) I f ( X , y ) = C } f ( X , y ) = X 2 t y 2 C = O , X 2 t y 2 = O C = I , X 2 t y Z = I C = r 2 , XZ t y 2 =p 2 ↳ equation for the circle centered at 0 of radius r ' ' Gradient of f " or If , which is in the field in the domain of f whose value at p is Dflp ) = tax ( p ) , L p ) > Duff L x , y ) = at ( Xt tu , , y t tu z ) I t - - o ¥ L X , y ) U , t I x , y ) Uz = If L x , y ) out =/ If I x , y ) I I it I COS O 17 f I Level curves of f Given w = f ( X , y , 2 ) Dw L X , y , 2) = ( If L X , y . 2) , L x , y , 2) , It ( X , y , 2 ) ) Dw is I to level surfaces Tangent Plane Problem Given a surface ' ' 2 = f I x , y ) " , find eqn for a tangent plane a point ( X , y , f- L X , y ) ) need a normal Vector for the tangent plane ;Surface ' ' 2 = f ( x , y ) " is level surface of a new function Wl X , y , 2 ) W ( X , y , 2) = 2 - f L X , y ) → the O - level surface of w is " z = f L x , y ) " 17W L X , y , 2) =L - f × ( X , y ) , - fy ( X , y I , I ) - fx ( X , y ) l X - Xo ) - fy L X , y ) ( y - yo ) t 2 - Zo = O Z = Zo - fx L X , y ) ( X - Xo ) - f y L X , y ) L y - yo )
  • 32. Minimal Maximal critical points of f- L X , y ) • I - var : - local minimax ' absolute minimax . f ' ( X ) = O ↳ find critical points . Places of potential minimax : critical point , end points - f ' ' L Xo ) > O → local min . f ' ' ( Xo ) ( O → local Max - f ' ' ( Xo 1=0 → no conclusion Multi - Variable . z = f I X , y ) Ivorry about local maxima on bound ry = ( f × , f- y ) = O → critical point ↳ horizontal tangent planes . places of potential Maximin : critical point , bound ry EX : L X - 1) ( y - 1) ( Xtlkytl ) 2yZ - 2 4 Xy 4 Xy 2×2 - z = {4 l 0,01 = 1×2 - 1) ( yz - I ) - 16 ( 1,1111 , - Ill - I , Ill - I , - I ) = Xzyz - Xz - y - t I ↳ saddle point If =L 2X y ' - 2x , 2×2 y - Zy > = SO , 07 ZXYZ - 2x = O = 2x L y 2 - 11=0 2×2 y - 24=0 = 2yLX2 - I 1=0 I O , O ) ( I , 1) l I . - Ill - I , 1) Hi - I ) The " second derivative test ' ' f xx fy× iffyYy = fxxfyy - f Ly =D d) O → local min or Max do → saddle point D= O → no conclusion
  • 33. f ( X , y ) = XZy2 - xz - yz t I - 22×22 - 22 y 22 critical points :L X. yl = 10,01L - I . - II. C- I. 17 ( I , - 1) L 1,11 mint # Max saddle points f xx ( Xo , yo ) concave down in x direction concave up in x direction Checking the Boundary (a) X = 2 - 22422 f C 2. y )=4y2 - 4 - y ' - 1=342-3 Tdy f L 2. y ) = by =O y=o → minimum f L 2. y ) =-3 f ( 2 , 2) =f( 2 , -27=9 min :L O , - 2) ( 0,21L - 2. 0712,0 ) Max : ( - 2 , - 2) L 2 . - 2) L - 2. 2) ( 2,21 Find minimax of flx , y )=X2t2y2 on unit disk I. interior • t = The TT = ( 2X , 4y ) = SO , O ) f=2 m.in Lt ) - - cost 2X=0 44=0 , yet ) - - sint • • • f =/ X = O y = O t = IT f- =L f=O t =O Max Max ( 0,0 ) f=z } 40 = 8 → minimax • t= 3172 min f××= 270 → min fLtl= cost t 2 Sint = ltsinzt f- ' ( t ) = Zsintcost = O t=O , IT , The , 3172 f ' ' Lt ) = - Zsinzt +2057 to → 2 Checking boundary for absolute minimax , not local Maximin t=T/z→ -2 t = IT - 2 t =3 → - 2
  • 34. Rectangular box w/ surface area 12 2X y t 2×2 i Zyz = 12 V = Xyz z = z ( X , y ) = ? V ( X , y I = Xyz C X , y l
  • 35. Lagrange Multipliers Idea : f C x , y ) or f C X , y , 2 ) Wrt a constraint g ( X , y 7=2 Or g l X , y , 2) = C f ( x , y ) = X 2 t 2y2 , find Maximin on unit disc constraint : x 2 t y 2=1 I . An extrema point Off With constraint g is where level curve for f first touches level curve for g 2. Tangents to level curves for f and g are same 3. If I I TTg TT f = HTT g ( X , y ) is extremal iff If I X , y ) = XTTGLX , y ) g ( X , y ) = c In above example : f- ( X , y ) = X 2 t 2 y 2 g ( X , y ) . - X 2 t y 2 = I If =L 2X , 4 y ) TT g =L 2X . 2y7 If = X # g ( 2X , 4 y > = X C 2X , Zy ) 2X . - X 2x 4y=X2y X 2 t y 2 =/ Case I : X to → X = I → y = O → x = I I Case 2 : X = O → y = I I ✓ = Xyz 2X y t 2×2+242=12 yz = X I Ly t 22 ) X 2 = X ( 2X t 22 ) yz = X ( 2 y t 22 ) 2X y t 2×2 t Zyz = 12
  • 36. Given fl X , y , 2) want to Maximin subject to constraint g L X , y , 2) = C ' I Volume =3 2 I Xyz =3 . - - - - ! 212×21+242+3 l Xy ) = f ( X , Y , 2) ' IZ i 42+3 y = XYZX ' ' n 22+3 X = XXZ 3 Y 4×+2 y = X Xy Xyz =3 x=4 = Ey '' I gq=¥→z×=y → x - Ey 22+3 X 2 3 X = Tz = I+ I ; -32 4g → 34=42 → 2=-34Y X = -4×+24=-4+-2 Xy IEy ) y I I y ) =3 = I y 's y 3=8 y = 2 X =L (2) = I z - - I, (2) = I 2 constraints f L X , y , 2) subject to g L X , Y , 21 = C and h L X , y . 2) = k intersection of g G h satisfy both Constraints T tangent to Level surface , i. e . If IT If is in normal plane of the curve ( Ig x ⑦ h ) . TTV = O i. e. If is in the plane spanned by Ig t Ih g ( x , y , 27 =C If = XTTF t mtg h ( X , y . 2) = K Example : f ( X , y , 2) = Xt2y +32 . g ( X , y , 2) = X - y -12=1 , h L X , y , 2) = XZ t y ' = I I = X t M 2X } x + may } FIFE; } Ey
  • 37. Integration Sdc Sba Hx . yldxdy → volume a ex Eb C Eyed Compute volume using ring method ith Volume ( slab ) = ( area of face ) ay - Sba f- L x. yldx Volume = -2 (Sba ft x. yildx ) ay J !( Sba f ( x , y ) dx ) dy Ex : SIS : lxztyzldxdy → SISI XZ t y Z dydx If 3×3 t XYZ I ' o dy go I + y ' dy I y t Ty 318 It's = ¥ Area of Slab at fixed X : Shg, fix , y ) dy Volume : Sba SITE's fix , y ) dydx Ex : f ( x , y ) = y R : y = fix = hlx ) 9"% . × y = I - x = g ( X ) fo ' Sixy dydx Sj Eye IIE dx = SIEH - N - u - xp ) DX = fo 2x DX ×2 I ' o = I x= ray = hey ) SIS ' y dxdy S ' oxy IFI ' dy "%%. y - . > S ' oyvfyi - yu - y ) dy ×=I - y = gly )
  • 38. Sometimes the integrand prefers a certain order of integration Ex : SS r sing dxdyIT 12 Y S × sings dydx S : " So dxdy V R R Tk a The > I l The The Sometimes a region of integration prefers one order over another x= - REF - 4 ) Z ! I " fix . ysdydx v or p y Sit Siri " fix , yidxdy t fifty , f l x , yldxdytfof-Ttyflx.gl dxdy x= - Ty try y = E t 2 y - z = ×=±T2y-4 x = try Volume Between 2 Surfaces IS r f ( x. yldxdy - SIR glx , y ) dxdy = Sfr I f L X , y ) - g ( x , Y ) ) dxdy EX : Volume of a sphere of radius I - Fye z = TEY z = - T¥yd , x = iffy fi, S 2M¥42 dxdy Can use double integrals to compute area Volume = SIR I dxdy = area of region Volume of Paraboloid X 't y Z - I under Xy plane IS R 1×2 t y ' - 1) dxdy → neg . Volume ↳ Sfp I I - XZ - y 2) dxdy multiply by - I
  • 39. Mass of Bar = I Slxldxdy () ) Where 8 l X ) is density function T SIX ) Or SIR 81×1 dxdy depending on shape
  • 40. Polar Coordinates OEOEZIT y - ← • RIO rsin0{ / ×=rcoso rt-VXZ.ly ' 10 , y=rsinO 07am ' ( E )#rcoso z=T¥y Sphere of Radius a Volume ? SSDZTE-yzdxdyze-rafz.gr ,⑧ " " → ← Ira . If ftx.yldxdy~Eflrijcosoij.rijsinoijlrijdraodxdy-rdrdof.fi , 2T¥yZdxdy SITS.az#rzrdrdOt Example : DD X2tyZd×dy Zcoso S Too rzrdrdoo % -1 2
  • 41. Exam 2 8:00am What did we do ? Chain Rule * f L X , y ) X = X ( U , V ) y = y ( u . V ) Ef - - If . + Ef * Implicit Differentiation a Constraint : K2 t y 2 t 22=1 ) Ty What is -38 ? ↳ 2=2 l x , y ) O t 2 y t 22 toy = O Ey = - 24/22 = - Y 12 Directional Derivatives and Gradients * TT f = C f× , fy ) Dj f = slope in u direction = If oil ↳ direction of largest increase length = Slope in that direction f ( X , y . 2) → If = ( f × , f y , f- z > Tangent Plane TT f = 54 , 5 , 67 4 X t Sy t 62 t d = O Normal Line Flt ) = t C 4,5 , 67 t C p , , Pz . Ps ) gradient ( X , y , 2) Local Maximin Check interior , boundary , E corners TT f = O f × . - O f y = O → crit . points given crit . point Iffffyyy I } If 70 minimax → If fxx or fyy > O : min , CO : Max If CO saddle point
  • 42. Lagrange Multipliers One constraint : Max f- ( X , y , 2 ) subject to glx , y , 2) =L If = x Fg two constraint : Max f L X , y , 2 ) subject to g L X , y , 2) and h L X , y . 2) If = XTTG t MTT h
  • 43. Applications of Double Integral e. g . D is a lamina l thin stab plate ) f C x , y ) = density ex , y ) Mass = SSD f IX. y ) dxdy Center of Mass : I I , 4- I I = th SSD XC ( X. yldxdy g- = Im SSD yet x. yldxdy where m= SSD Ctx , yldxdy Ex : ELX . Y ) =3 for [0,23×50,2] F-tmf:S } x. 3 dxdy=L . 12=1 5=1 Why does this work ? Averages : the Xi Assume uniform density → e is constant ÷÷÷. not ' values : Fifties y ' fidgety ↳ ¥, Laxey More generally : E Wi Xi EXisjelxi.j.yin.la/Ly → Axe L x. yldxdy E Wi E e L Xi , j , Yi . j ) IX dy Sf e ( x. yldxdy Moment of Inertia Solid e= I Si " So ' r2 . I rdrdo rot • R SI " Er " to do Io = ZIT (E) = I M = IT bigger same mass smaller R= TIME = VII = ÷ Io . - Sf ( X 't y ' ) e ( x. yldxdy p2 R2 = Io m
  • 44. Triple Integrals Mass = SSSDCLX.y.ztdxdydZI-tmSSSDXCCX.y.UA/dYd2y-=-mSSSDyecx.y , 2) dxdydz I = Tn SSS.pzecx.ly , 2) dxdydz Ex : Z Mass =L . It . ooh = Z C = I = I = SSSDXDV ± . . " " " x=V€ Y =¥S'of xdxdydz - Y I M¥2 , y , z ) X 2×2+42+22=1=¥fIfF" ' 2×21 " dydz y=o =¥S'oSoF" ELI - YZ - 22 )dyd2 - ) y . = ¥ S ' o y - Ey ' - zzyl dz , - RE ✓ y Switch order : S 'oST*SF⇒X dzdydx '
  • 45. Cylindrical Coordinates ( r , 0,2 ) I c 421¥ X=rcosO y - - f - I # LIA - - rooter y=rsino § }z ¥Tio> 2=2 Example : Compute mass of density Elr , O , 2) =p Z ^ 2 o rdrdoedz . } Ksi 's " . v . Zr x y Example : Find center of mass bounded by 2=X2ty2 and 2=24 Where C =L I = Im SSSD Xdxdydz ↳ ' a is rcosordxdydz= fordz 2y=2rsinO X2ty2=rZZrsino frz RCOSO r d2 fordo X2ty2=2
  • 46. Spherical Coordinates z r = es in Q ( x , y , 2 ) ( e , O , 0 ) X = rcoso = e sin ① cos O e - to = e Zo y = rsino = esinosin O - = - y 020121T 2 = Pcos Q - - O r = 0202 IT × fffpflx , y , 2) dxdydz rectangular = fffpflrcoso , rsino , 2) rdrdodz cylindrical = SSS is f- I e sin locos O , esinosino , Pcos Q ) e ' sin Oded 0 do spherical EX : Volume of a sphere of radius R S I. ezsinodedodo Sf 't SI 7- sin 0 DODO goat - RI cos lol 't do 12ft I R 's cos 0 do R 3 Ex : mass of upside down cone in first octant density = f ( X , y , 2) = xztyz Mass = SSS is XZTYZ dxdydz = SSS ( e sin 012 e sin 0 de DODO = Stones 't ' 4S go.TO ( e sinope Zsin Oded 0 do Example : center of mass of part of sphere with radius I in first octant constant density = I m = volume = too . = If Myz= SE " SIT " SL e sin cos O e ' sin Oded 0 do = Stones S ' o essinzocoso.de DODO =f to " Sto " IT sin 20 cos Od 0 do = f to " got " I . I ( I - cos ( 20 ) ) COSO DO DO M×y= I 't " SI " S ' o e cos 0 P2 sin Qdpd Q do = S I " SI " I, cos 0 sin dado = S 't " too sin 2018 " do
  • 47. General Change of Variables for Multiple Integrals I . - La . .az ) b- = Lb . .bz ) a .az = LIA b , bz frandomvalueofv Fi ( u )=LX( U.ll.ylu.lt ) RT ( UI = L x ( 2. VI. yl2.ir ) ) T a- = -dF Gu random value of u du =L Fu xlu.D.dauylu.lt > =L Fu )Liu b- =8LW=c£×cz.rs , IT ycz.us > = at , Lw 4A= 443¥04 ex aye ZU 24 IF LIV au = ex aye dully OV OV dXdy= If If pay dudu - Jacobian f ( X. y ) ( 4. V ) Ex : ffp l 4×2 - YZ ) ' 00 dxdy 4×2-42=12×+4 ) ( 2X - y ) - - U v 100 24,41 y Sf U V ' °° one ,v , dudu 2 * ( u=2,V= - 21 4=2×+4 4=2 - 2X V = 2x - y R 2=2×+4 UtV=4X U - V =2y * 2=4 114=2,V= 2) X X = 'Ll ( Utv ) y=E( u - V ) X=O U goes up 4 I = - I ¥( UTVKO y= - 2t2× I - I 4 U= - V 2=2×-4- 2x V goes upFfs' ' u9do!9ouf¥,auauu⇒v⇒ ⇐ u . 3 Variables Eu Ew ex at ey all OV ow ⇐ ez ⇐ OU OV 2W
  • 48. Line Integral fit , L Xlt ) , ylt ) ) . I It Integrate a function over c art( Illntegratea vector fieldoverc@IifLx.y ) fcflx ,y)dS " adding up function over curve " { I :FL x. y ) ScFodF= ' ' work done by force field F " I Ilfflx , yids siarclength I -_ Tn SXFCX.ytdsy-tmsyflx.ly/dS Computing Line Integrals Steph : parameterize curve Steps : do this I - var integral l integrate wrtt ) FLTKLXHI , ylt ) > Step 2 computed ds= ( EE ) ! ⇒ Zdt =/ Idt Compute mass of semicircle w/ density f L x. y )=y2 z - Mass =Ly ' IS =L , yzdstfczyds J C , irlt ) = SO , t ) - 2EtE2 Cz :FHI=C2cost . Zsint ) Etc ^ " ds=TEdt=dt ds=FsinEI2dt=V4dt=2dt c , SI tzdt SITE 4sinZLt ) . Zdt-2- C
  • 49. Start with a vector field F L x , y ) = L M l x , y ) , N I X , y I ) . wind . ocean currents . Tff . force field , e. g . gravity Jc F . dir = integral of F- along C = work done by F along C Work = force . distance - y F ! I i n . > T- F . I : force in I direction Sc F . I ds = Sc Food F - # Sc F. Tds = SEES EL x Lt ) , yet I I . ¥¥{I ¥1Idt = Sc F . dir Step I : parameterize r Lt I =L x Lt ) , y It I ) Step 2 : Write as integral of t - d F I = I at IT I = TarIt EX : C = part of a parabola y = X 2 • ( I , I ) Sc F . IF ✓ for F = - yi t XJ ( O , O ) Step I : parameterize C : X Lt I = t y L t ) = t 2 r Lt I = Ct , t 27 Step 2 : Write as integral of t : Sc F . dir . - S ' o F . 8¥ at = I s - t 2 , t > . C I , Zt > At Step 3 : Integrate I ' o - t ' t 2E d t = f ' o t Z at = I
  • 50. Ex : F = - yi - xj • ( I , I ) y=x ( 0,0 ) X L tht yCtI=t So ' C - t , t > o ( 1. I > dt=0
  • 51. Fundamental Theorem of Calculus Sba tax dx = f ( b ) - f La ) For line integrals : Sc F . IF = f L X , , y , ) - f ( Xo . yo ) Example : F = ( x 2 t y 2) I t 2 Xy J , . X = Cost OE t E Iz y = s int , SE " F . EE at Sto " l cos 't t Sint , 2 costs int ) . C - Sint , cost > at SE " - s int t 2 cos 't Sint dt cost lot " - E cos 't It " - I t I = - I f- ( X , y ) = I × 3 t Xy 2 TT f = L X ' t y 2 , 2X y ) = F Using FTC : f- ( O , I ) - f ( I , O ) O - I = - I Given E , how do you get fix , y ) so that If = F Note : not every F has an f Physics Example : x E = - mg j t t I I I f- = - mg y = - mgh " potential energy " ✓ If = ( O , - mg ) I Work : Sc E . IF = - Mgh , + Mgh o y
  • 52. Finding Anti - Derivatives Given Fix , y I = Mit Nj Ql : When does there exist fix , y ) so that If = F TT f = f , I t f y Jw w M N My = fxy f exists → My = Nx Nx = f y × " F is conservative " ex : F = L x ' t y 2) it Zxyj- - M N My = 2y ✓ Nx = 2 y ex : F = - y it xj My = - I × Nx = I Q2 : If My = Mx , does f exist ? A lot of the time F = 1×2 t y ' Ii + Zxyj Want f f- × = X 2 t y 2 → f = I X 't XYZ t C ( y ) f- y = 2X y → f = X y 2 i C L x ) f = 5×3 t XYZ
  • 53. Missed Class 415 - a L , ← . TF t ' → i r we
  • 54. Curl Green 's Theorem ' > Fundamental Thm of Line Integrals SSD curl " (F) dxdy = !F. IF Sc TT fo DF = FIX , , y , ) - flxz. yz ) F - - Pit Qj Ex say p Q = Qx - Py = curl 20 ( F , - ZD boundary of D ① Orient boundrysotha.to?.isuca!waysonuttC , D F conservative → curl " > (E) = O E = x2ty2 Curl ZD F = O IFI = 5×+52=1×2ty 2 XZTYZ Sc , Fo dF=§ , L Fo Tlds = Soc . Ids = 21T 11 * O SSD DFdxdy=O O ↳ proof stuff 21T F = - yitxj Curl 20 E ' ' -2 2- 2X ay = +2 - y x
  • 55. curl 3D F = Vector = curl F ↳ points in axis of rotation I CUTI F I = rate of rotation F = Pi t n Q j t RE i j k a- ee2x a y 22 P Q R
  • 56. 213 : TT = JI I t Tay j 3D : TT = IT t Ey j t -2 I n i j k curl E- Ex Ey IT = TT x F P Q R F = pit Qj t RE 3D : E TT x E = curl F I . E = div E TT . E = taxi + Ey j to II ) . ( Pi + Qj t RE ) = t t FF F = - yitxj t OI IT x F = i J k ' Ix Ey Iz = Oi t Oj t 2E - y x O TT . F = Ex L - y ) t Tay X t Iz O = O F- = xityjtznk Ex E = i J I Ex Ey of = Oi t Oj t OI = O X y 2 I . F = Ex X t Ey y t IT 2 . - I t I t I =3 Divergence measures creation of fluid . Curl measures swirling of fluid . ZD : curl ZD ( Ff ) = O am 3D : for I rt If = O for E div curl F = O I I I I TT x ( I f ) = O I . (TT F ) = O Q : Is F conservative ? i. e . F = If Q : Is F = curl G- ? First check is curl E = O Only possible if div F . - O
  • 57. Parameter icing Surfaces sphere with radius I : X ( O , 0 ) = sin COSO y ( O , O ) = sin since Z ( O , O ) = cos 01 sphere with radius 2 : X l O , 01=2 sin locos O E = 2 y ( O , 01=2sin since Z ( O , 07=2cos Q cylinder on side w/ center on y axis with radius 3 2 ( U , V ) =3 COS U X Lu , v ) =3 sin u y ( U , V ) = v Arc length (c) = Sods = Sba HII Idt Where THI =L Xlt ) , y L t ) , z t t ) ) Italia 't day ' + ¥ Surfaces : Flu , V ) = C X L u , V ) , y Lu . V ) , 2 LU , V ) ) Tangent Vectors - - er er OU , OV Chunk of Area → - or aux Or IV OU OV → - NGA = Or Aux Or IV ou OV surface Area : IS 3%37 dudu
  • 58. EX : Find Surface area of a paraboloid , z=X 't y ' L top disk of radius 2 ) ( vi. V ) = ( r , @ ) or ( U , V ) = ( x , Y ) X=u y=V Z ( vi. V ) = f ( U , V ) F = L X ( UN ) , y L UN ) , ZCU , V ) ) = ( U , v , flu , V ) ) n n I k x -37 = It O f×C a. V ) =L - f× , - fy , I ) O I f y ( UN ) f) Vf×2tfy 't 12 dudu where D is circle of radius 2:22 =X2tyZD y dxdy SIS EEy. V 4×2+442+1 dxdy X = UCOSV y=usinV ZLU , V ) = XZTYZ =p 2=42 F= LUCOSV , usinv , U2 )
  • 59. Flux Integrals Last Time : DA = III ldudv Surface area : Ds DA Iff .in#uxFIdUdV Today : F =P I X , Y , 2) it QLX , Y , 21 j t R I x , y , 2) I Flux : the amount of fluid that passes through surface per unit time z → → → → ⇐ ' %¥##E- I→ → y × → → → → Constant vector field : Flux = I E . N I l areal Generally : Flux = IS CF . NIDA = IS F. DE = SS E . ( Eru '' E) dudu Ex : F = xityjtzk Compute flux through a sphere of radius 2 u = to ✓ = O X LU , v ) = Zsinucosv y LU , V ) = 2 sinus inv 2 I U , V ) = 2 cos U DF = Eu × -37 dudu ^ n n L j k Zcosucosv Zcosusinv - Zsinu = ( 45in ZUCOSV , 45in Zusinv , 4 sihucosu ) dudu - 2 sinus inv Zsinucosv O F. d A=L Zsinucosv , Zsinusihv , ZCOSU > o L 4S in ZUCOSV , 4 sin Zusihv , 4 sinucosu ) IT I } " to C Zsinucosv , Zsinusihv , ZCOSU > 044 sin ZUCOSV , 4 sin Zusihv , 4 sinucosu ) dudu 13 " SE8 sins ut 8 sin UCOSZU dudu , fo " SE8 since dudu = to" - 8 cos u to du = SI 't 16 DV = 321T
  • 60. Simplifications I . dV= e' sin ① d ed Odo = de DA DA = e2sin0dQdO I Fux I = Ve 's in " utesinhicos ' u = Tetsu = Esinu
  • 61. Review Polar Coordinates y X=rcosO • y=rsinO r RIO O ) x 020121T dXdy=rdrdO Mass , Centers of Mass , E Moments g. m :¥÷ .IE#i:7.iaax.aa . Triple Integrals f L X , y , 2) = density SSSD fix , g. 2) dxdydz = mass Cylindrical Coordinates ×=rcosO RIO • y=rsinO 020221T Z 2=2 2 El - Cs , co ) F r dxdydzt-rdrdo.dz Spherical Coordinates X= esinocoso r=esinQ it • y = esinosino EZO e z = ECOSQ 020121T g- r e = Tty 020221T dxdydztesinodedodo
  • 62. General Change of Variables X = X ( U , V ) y = y LU , V ) ffyf.nl#syldxdy=u.ffimitsxcuivl.ylu.vHFYu7lidudV =/ Eu ⇐ ⇒ ⇒ I Line Integrals Sc f L X , y , 2) AS SF L X , y , 2) od F work done by F I . Parameterize F Lt ) =L X It ) , y l t ) , 2 I t ) ) 2 . Sc f L x , y , 2) ds ds = Ideaf ) 't fffYt¥ ' at = II at Sc Fo DF = So ( F . N^ ) ds = Sc Pdx t Q dy t Rd z F = L P L X , y , 2) , Q ( X , y , 2) , R ( X , y , 2 ) ) dried at dt Sc F . dir = Sba F . at Sc ds = arc length Fundamental Theorem of Calc for Line Integrals I TT f od F = f L X , , y , , 2 , ) - f- ( X o , yo , Zo ) w E F is conservative if F = If for some f F = LP , Q , R ) ZD : conservative → Q × - Py = O 3D : conservative → curl F = I Given F such that Q x - Py = O If = E f × = p f y = Q f- = f Pdx t.ly) SQdy t CfX )
  • 63. Green 's Theorem ④ c SSD ( Qx - Py )dXdy=&cPdXtQdy=§cFodr Curl F=LP,Q , R ) n Curie :FxE=a¥ Ey at Q R divE-TT.FI II + If to ⑦ = L II. Ey , -32 ) f- Unc → rect → rect → fun I Fx TT . f If Ix f) =O F TT xF TT . x E 1=0
  • 64. Stoke 's Theorem ^ IN → # Givens . an orientation is a choice of D ↳→ Make sure III points indirection of orientation← If F. DF = Sfs I F. in )dA=ffFlxlu, VI. ycu.vt.zcu.VH.IE ° -37 )dudv u - V limits Z - ' ← parabola in y - z S= surface of revolution obtained by rotating y=I - zz this parabola around z-axis , " " y l outwards orientation ) I Compute flux of E - xityjtzk throughs - - I Think cylindrical : U= " O ' ' Check orientation V X=rcosO 4=0 } → X= ( I - VZ ) cos u y=rsihO V=z y= I I - v2 ) since 2=2 r =/ - 22 Z= V ✓ O EOE ZIT - 12221 I - ' ' ' ' I U U V - I - LIT Do F. CEE Idudv II =L - ( I - ✓ 2) sina.LI - VZICOSU , O ) =L - Zvcosu , - Zvsinu , 17 n k ⇒ FI = I - v 2) since L I 2) cosy O = L L I - V 2) cosy , ( I - v 2) since , ZVLI - V2 ) ) - ZVCOSU - Zvsinu I Stiff " L ( I - V 2) cosy , Ll - v 2) since , V ) . ( ( I - V 2) cosy , Ll - V 2) since , ZVLI - V2 ) ) dudu
  • 65. N SOE . dt-SSCUHE.DE - - - - - . if Example : use Stoke 's theorem to evaluate §FodF where F = s 2. X. y > C is unit circle , centered at origin in the plane xtyt 2=0 ↳ Nestor's . 't ) J= ftp. - tf , Oy I Perpendicular check To N=O I. T=O - D= Ciro , %) Parameterize c : TH )= cost Jtsintw =L ¥ - s , t - sing , t ) . . . Or using Stoke 's theoryi j k curl E = Ix By Ez = ( 1. 1,1) z X y ISCURIF .dF=fSkurIE . NIDA = 554,1 , 1) ol 't . Is . To I da =SSr5dA=BSSdA=T3 IT Some Interesting Examples : f- = - xi - yJ - 2K where e=yxE E3 C is unit circle in x - y plane ft .dF=O = Note : I ( f) =L x y z ( X2ty 2+2213/2 , 1×2+42+221312, 1×2+42+221312 ) curl E = curl ( I ( et ) ) = I for all IX. y , 2) not at LO , O.O )
  • 66. Divergence Theorem let D be a region in 3D space Where S = surface which forms the boundary of D ( outward orientation ) and F- = Vector field in 3D space SSSDTT . Edu = Sss F. DE EX : D= hemisphere , X 2 t y 2+22=4 ( radius = 2) , with y 10 ( so D is a half hemisphere ) F = C X . y , 27 LHS : SSS is TT . Fav RHS : Sss Fod At = Sfs, E . DA t Sss . F. DA TT . F = Ex Xt Ey y to 2 . - I + It I =3 where S , is the curved hemisphere part E ISS D 3 DV =3 SSS DV Sz is the flat back - volume As , IF o D) dat Sss , LF . D) DA - - 3 . I ( 4J IT 23 ) = 161T IF 1=2 O 2. Area L S , ) 2. I 41T 22 16 IT
  • 67. Calc Review Vector Geometry : . NT : normal Vector La , b , C > ↳ plane : a x t by t CZ = d . Lines : II t ) =L Xo , yo , Zo ) t t VT → r It I - - r ' I t I = V Lt ) T " Lt ) = T ' ( t ) = a Lt ) Arc length Kds = Sc I at Idt = So VEE 't eat 4- IT ' at Mass Ic f ( x , y , z Ids = Sba f ( x Lt I . y I t ) , 2 Lt ) ) / dat Idt Sc Eod F = SLF . F) ds = Sba F . FE at TN B Frames T T - - II • Bn " s N I = Tv Fits I J I B = T ' x F " I F ' XT ' ' I N = B × I Chain Rule f ( X , y ) X ( U , v I y l u , v ) tf = If + If .eu ZU all Gradients f- I points in direction of greatest increase 15ft I : rate of change in this direction Directional derivative : If ° IT
  • 68. Tangent Plane r Lu , v ) → FI × = N- = La , b. c) → axtbytcz =D z = f ( X , y ) parameterize U = X , V = y → FLU , V ) = ( y , V , fly , v ) ) D= FIX FI = - fi - f y J t I a b C - f × X - f y y t z =D D= - f , Xo - f y yo t f ( Xo , yo ) Z = d t f × X t f y y = f ( Xo , yo ) t f × ( X - Xo ) t f y ( y - yo ) Maximal Minima TT f = O → critical points I ft ffxyyy / =D D > O min f xx ) O or fyy > O Max f xx LO D SO Saddle point D= O ? Max I min f ( X , y ) Subject to constraint g L x , y I = C If = XTTG Polar I Cylindrical I Spherical dxdy = rdrdo dxdydz = rdrdocdz dxdydz =Psin Old ed ① do × = X Lu , V ) y = y Lu , V ) dxdy = 1¥71, I dxdy =/ III dudu
  • 69. Surface Integrals FLU ,V ) Asda = surface area ffsflx ,y,z1dAd# I × FIldudv Flux Integral Is Fo DE dF=FI× # dudu ↳ = ( F. NIDA .fSs3dA=3 . surface area