Minerals phase transformation by hydrogen (MPTH)
reduction technology.
Dr. Hassan Z. Harraz
hharraz2006@yahoo.com
2024
The clean minerals phase transformation by hydrogen reduction
A n ea sy w a y to p r o ce s s h a r d - t o - b e n e f i c i a te I r o n O r e
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024
DOI: 10.13140/RG.2.2.25226.44489
KEYWORDS
• Beneficiation of Refractory Iron Ores;
• Refractory Low Grade Iron Ore
• Magnetic Separation
• Phase Transformation
• Hydrogen-based Fluidized Bed Roasting
• Minerals Phase Transformation by Hydrogen reduction
• MPTH technology
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 2
Highlights
❖ There are plenty of hard-to-beneficiate iron ores and high-grade tailings in India and all over the world;
As the volume of high-grade iron ores declines.
➢ Minerals phase transformation by hydrogen reduction (MPTH) can efficiently revitalize hard-to-
beneficiate iron ore resources and tailings, turning the waste into profitable products. It may also
improve the concentrate quality comparing to that from the previous method. From the economic
and environmental aspects, MPTH is the most effective method to recover iron oxides.
❖ The clean minerals phase transformation by hydrogen reduction (MPTH) was proposed.
❖ Industrial utilization of limonite/goethite, limonite-hematite, sulfur-bearing refractory iron ore was
achieved, where Sulfur-bearing minerals decomposed or formed sulfate after oxidation roasting.
➢ Sulfur content of iron ore concentrate was significantly reduced to 0.038 %.
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 3
INTRODUCTION
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 4
INTRODUCTION…………..(Cont.)
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 5
WHAT IS MPTH
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 6
HOW DOES MINERAL PHASE TRANSFER
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 7
Schematic diagram of the suspension roasting (MPTH) system.
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 8
HOW MPTH WORKS
Diagram shows the Multi-stage Processing Method
during suspension roasting system
Fe2O3•nH2O
Precise Control of Mineral Phase Transformation
Fe3O4
Isometric system
γFe2O3
Isometric system
Amorphous
FeCO3
Trigonal system
Fe2O3
Hexagonal system
Paramagnetic
Feromagnetic
Non-magnetic
1/20/2024 9
TECHNICAL COMPARISON
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 10
• Refractory Low Grade Iron Ore
• Magnetic Separation
• Phase Transformation
• Hydrogen-based Fluidized Bed Roasting
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 11
Distribution of iron in the sample before and after MPTH.
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 12
TECHNICAL ADVANTAGES
@Hassan Harraz 2024
@Hassan Harraz 2024
14
GREEN H2
GREEN ELECTRICITY
GREEN IRON ORE
GREEN STEEL
MPTH
ZERO CARBON PROCESS ROADMAP
GLOBAL EXPERIMENTAL DATA
Industrialized Projects
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 15
Pilot-scale MPTH System and Its Principle
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 16
Schematic diagram of pilot-scale MPTH system (from Yu et al., 2023 ).
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 17
COMPLETED EXPERIMENTS
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 18
Jiuquan Iron & Steel (Group) Corporation (JISCO) PROJECT
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 19
Zambia Iron-bearing Manganese Ore
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 20
Hainan Mining Project
Raw Ore
Grade
40.6
Fe%
Fe in form of
Hematite and Magnetite
Capacity
2.0 million t/a
Built In
2023.7
Conventional
Method
Fe: 61~62%
Fe RR: 60~61%
MPTH Fe: 65.68%
Fe RR: 85.56%
1/20/202 21
DAFENG PROJECT
Raw Ore
Grade
50.51
Fe%
Fe in form of
Hematite
Capacity
2.0 million t/a
About to build in
late 2023
Conventional
Method
Fe: 63.39%
MRR: 31.46%
MPTH Fe: 65.00%
Fe RR: 94.96%
1/20/202 22
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 23
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 24
Conclusions
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 25
References
1. T.E. Graedel, E.M. Harper, N.T. Nassar, K. Reck Barbara, On the materials basis of modern society, Proc. Natl. Acad. Sci. 112 (2015) 6295–6300.
2. P. Wang, S. Zhao, T. Dai, K. Peng, Q.i. Zhang, J. Li, W.-Q. Chen, Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis, Renew. Sustain. Energy Rev. 161 (2022) 112367.
3. W. Chen, Q. Zhang, C. Wang, Z. Li, Y. Geng, J. Hong, Y. Cheng, Environmental sustainability challenges of China’s steel production: impact-oriented water, carbon and fossil energy footprints assessment, Ecol. Ind. 136 (2022).
4. Q. Yue, X. Chai, Y. Zhang, Q. Wang, H. Wang, F. Zhao, W. Ji, Y. Lu, Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry, Environ. Dev. Sustain. (2022).
5. H. Li, Z. Zhang, L. Li, Z. Zhang, J. Chen, T. Yao, Types and general characteristics of the BIF-related iron deposits in China, Ore Geol. Rev. 57 (2014) 264–287.
6. J. Wu, J. Yang, L. Ma, Z. Li, X. Shen, A system analysis of the development strategy of iron ore in China, Resour.Policy 48 (2016) 32–40.
7. Z.-X. Wang, Y.-F. Zhao, L.-Y. He, Forecasting the monthly iron ore import of China using a model combining empirical mode decomposition, non-linear autoregressive neural network, and autoregressive integrated moving average, Appl. Soft
Comput. 94 (2020).
8. P. Zhao, Z. He, L. Yin, R. Xiao, J. Chen, J. Tang, Z.Y. Gong, W. Zhang, Changes in the geographical distribution of global iron ore shipping flows, 2000–2019, J. Transp. Geogr. 99 (2022).
9. J. Yu, Y. Han, Y. Li, P. Gao, Recent advances in magnetization roasting of refractory iron ores: a technological review in the past decade, Miner. Process. Extr. Metall. Rev. 41 (5) (2020) 349–359.
10. R.J. Holmes, Y. Lu, L. Lu, Chapter 1 - introduction: overview of the global iron ore industry, in: L. Lu (Ed.), Iron Ore (second edition), Woodhead Publishing, 2022, pp. 1–56.
11. H. He, X. Lv, J. Wang, Characteristics evaluation and high effective utilization of limonite ores in sintering process, Min. Metall. Explor. 38 (2021) 2271–2283.
12. G.Y. Xu, D.W. Liu, P.R. Wang, B.L. Xu, W.J. Zhao, J.J. Yuan, Recovering limonite by high intensity magnetic separation technology from Honghe limonite ore, Adv. Mater. Res. 634–638 (2013) 3437–3441.
13. V. Nunna, S.P. Suthers, M.I. Pownceby, G.J. Sparrow, Beneficiation strategies for removal of silica and alumina from low-grade hematite-goethite iron ores, Miner. Process. Extr. Metall. Rev. 43 (8) (2022) 1049–1067.
14. Y. Sun, X. Zhu, Y. Han, Y. Li, P. Gao, Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot-scale study, J. Cleaner Prod. 261 (2020) 121221.
15. P. Chen, T. Chen, Q. Xie, L. Xu, H. Liu, Y. Zhou, Mineralogy and geochemistry of limonite as a weathering product of ilvaite in the Yeshan Iron Deposit, Tongling, China, Clays Clay Miner. 66 (2018) 190–207.
16. S. Dey, M.K. Mohanta, R. Singh, Mineralogy and textural impact on beneficiation of goethitic ore, Int. J. Min. Sci. Technol. 27 (2017) 445–450.
17. D. Zhu, H. Wang, J. Pan, Removing silica and alumina from limonite using wet high gradient magnetic separator, in: S.J. Ikhmayies, B. Li, J.S. Carpenter, J.-.-Y. Hwang, S.N. Monteiro, J. Li, D. Firrao, M. Zhang, Z. Peng, J.P. Escobedo-Diaz, C. Bai
(Eds.), Characterization of Minerals, Metals, and Materials 2016, Springer International Publishing, Cham, 2016, pp. 99–106.
18. C. Liu, J. Deng, C. Ni, D. Wang, K. Xue, L. Xu, X. Zhang, Reverse froth flotation separation of limonite and quartz with cationic Gemini surfactant, Miner. Eng. 177 (2022).
19. F. O’Connor, W.H. Cheung, M. Valix, Reduction roasting of limonite ores: effect of dehydroxylation,Int. J. Miner. Process. 80 (2-4) (2006) 88–99.
20. S.P. Suthers, V. Nunna, A. Tripathi, J. Douglas, S. Hapugoda, Experimental study on the beneficiation of low-grade iron ore fines using hydrocyclone desliming, reduction roasting and magnetic separation, Trans. Inst. Min. Metall. Sect. C: Mineral
Process. Extract. Metall. 123 (4) (2014) 212–227.
21. S.K. Roy, D. Nayak, S.S. Rath,A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol. 367 (2020) 796–808.
22. D.Q. Zhu, Q. Zhao, G.Z. Qiu, J. Pan, Z.Q. Wang, C.J. Pan, Magnetizing roasting magnetic separation of limonite ores from Anhui Province in east China, J. Univ. Sci. Technol. Beijing 32 (2010) 713–718.
23. Z. Tang, P. Gao, Y. Sun, Y. Han, E. Li, J. Chen, Y. Zhang, Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting, Powder Technol. 360 (2020) 649–657.
24. Z. Tang, Q. Zhang, Y. Sun, P. Gao, Y. Han, Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resour. Conserv. Recycl. 172 (2021).
25. S. Yuan, Q. Zhang, H. Yin, Y. Li, Efficient iron recovery from iron tailings using advanced suspension reduction technology: a study of reaction kinetics, phase transformation, and structure evolution, J. Hazard. Mater. 404 (2021).
26. J. Yu, Y. Han, Y. Li, P. Gao, Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation, J. Min.Metall. Sect. B: Metall. 54 (2017) 50.
27. S. Yuan, H. Xiao, T. Yu, Y. Li, P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol. 372 (2020) 1–7.
28. S. Yuan, X. Liu, P. Gao, Y. Han, A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud, J. Hazard. Mater. 394 (2020).
29. X. Liu, P. Gao, S. Yuan, Y. Lv, Y. Han, Clean utilization of high-iron red mud by suspension magnetization roasting, Miner. Eng. 157 (2020).
30. Z. Tang, P. Gao, Y.X. Han, W. Guo, Fluidized bed roasting technology in iron ores dressing in China: a review on equipment development and application prospect, J. Min. Metall. Sect. B: Metall. (2019) 51.
31. Z. Wei, J. Zhang, B. Qin, Y. Dong, Y. Lu, Y. Li, W. Hao, Y. Zhang, Reduction kinetics of hematite ore fines with H2 in a rotary drum reactor, Powder Technol. 332 (2018) 18–26.
32. W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,Appl. Catal. A 326 (2007) 17–27.
33. M.N. Abu Tahari, F. Salleh, T.S. Tengku Saharuddin, N. Dzakaria, A. Samsuri, M. W. Mohamed Hisham, M.A. Yarmo, Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature, Int. J.
Hydrogen Energy 44 (2019) 20751–20759.
34) Z.Tang, Li, P., Gao, P., Li, Y., Han, Y. (2022): Minerals phase transformation by hydrogen reduction technology: A new approach to recycle iron from refractory limonite for reducing carbon emissions. Advanced Powder
Technology 33 (2022) 103870
@Hassan Harraz 2024
MPTH Technology
@Hassan Harraz 2024
MPTH Technology
1/20/2024 26
Thank You For Your Attention !

Minerals phase transformation by hydrogen reduction.pdf

  • 1.
    Minerals phase transformationby hydrogen (MPTH) reduction technology. Dr. Hassan Z. Harraz hharraz2006@yahoo.com 2024 The clean minerals phase transformation by hydrogen reduction A n ea sy w a y to p r o ce s s h a r d - t o - b e n e f i c i a te I r o n O r e @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 DOI: 10.13140/RG.2.2.25226.44489
  • 2.
    KEYWORDS • Beneficiation ofRefractory Iron Ores; • Refractory Low Grade Iron Ore • Magnetic Separation • Phase Transformation • Hydrogen-based Fluidized Bed Roasting • Minerals Phase Transformation by Hydrogen reduction • MPTH technology @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 2
  • 3.
    Highlights ❖ There areplenty of hard-to-beneficiate iron ores and high-grade tailings in India and all over the world; As the volume of high-grade iron ores declines. ➢ Minerals phase transformation by hydrogen reduction (MPTH) can efficiently revitalize hard-to- beneficiate iron ore resources and tailings, turning the waste into profitable products. It may also improve the concentrate quality comparing to that from the previous method. From the economic and environmental aspects, MPTH is the most effective method to recover iron oxides. ❖ The clean minerals phase transformation by hydrogen reduction (MPTH) was proposed. ❖ Industrial utilization of limonite/goethite, limonite-hematite, sulfur-bearing refractory iron ore was achieved, where Sulfur-bearing minerals decomposed or formed sulfate after oxidation roasting. ➢ Sulfur content of iron ore concentrate was significantly reduced to 0.038 %. @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 3
  • 4.
    INTRODUCTION @Hassan Harraz 2024 MPTHTechnology @Hassan Harraz 2024 MPTH Technology 1/20/2024 4
  • 5.
    INTRODUCTION…………..(Cont.) @Hassan Harraz 2024 MPTHTechnology @Hassan Harraz 2024 MPTH Technology 1/20/2024 5
  • 6.
    WHAT IS MPTH @HassanHarraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 6
  • 7.
    HOW DOES MINERALPHASE TRANSFER @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 7
  • 8.
    Schematic diagram ofthe suspension roasting (MPTH) system. @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 8
  • 9.
    HOW MPTH WORKS Diagramshows the Multi-stage Processing Method during suspension roasting system Fe2O3•nH2O Precise Control of Mineral Phase Transformation Fe3O4 Isometric system γFe2O3 Isometric system Amorphous FeCO3 Trigonal system Fe2O3 Hexagonal system Paramagnetic Feromagnetic Non-magnetic 1/20/2024 9
  • 10.
    TECHNICAL COMPARISON @Hassan Harraz2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 10
  • 11.
    • Refractory LowGrade Iron Ore • Magnetic Separation • Phase Transformation • Hydrogen-based Fluidized Bed Roasting @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 11
  • 12.
    Distribution of ironin the sample before and after MPTH. @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 12
  • 13.
    TECHNICAL ADVANTAGES @Hassan Harraz2024 @Hassan Harraz 2024
  • 14.
    14 GREEN H2 GREEN ELECTRICITY GREENIRON ORE GREEN STEEL MPTH ZERO CARBON PROCESS ROADMAP
  • 15.
    GLOBAL EXPERIMENTAL DATA IndustrializedProjects @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 15
  • 16.
    Pilot-scale MPTH Systemand Its Principle @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 16
  • 17.
    Schematic diagram ofpilot-scale MPTH system (from Yu et al., 2023 ). @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 17
  • 18.
    COMPLETED EXPERIMENTS @Hassan Harraz2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 18
  • 19.
    Jiuquan Iron &Steel (Group) Corporation (JISCO) PROJECT @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 19
  • 20.
    Zambia Iron-bearing ManganeseOre @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 20
  • 21.
    Hainan Mining Project RawOre Grade 40.6 Fe% Fe in form of Hematite and Magnetite Capacity 2.0 million t/a Built In 2023.7 Conventional Method Fe: 61~62% Fe RR: 60~61% MPTH Fe: 65.68% Fe RR: 85.56% 1/20/202 21
  • 22.
    DAFENG PROJECT Raw Ore Grade 50.51 Fe% Fein form of Hematite Capacity 2.0 million t/a About to build in late 2023 Conventional Method Fe: 63.39% MRR: 31.46% MPTH Fe: 65.00% Fe RR: 94.96% 1/20/202 22
  • 23.
    @Hassan Harraz 2024 MPTHTechnology @Hassan Harraz 2024 MPTH Technology 1/20/2024 23
  • 24.
    @Hassan Harraz 2024 MPTHTechnology @Hassan Harraz 2024 MPTH Technology 1/20/2024 24
  • 25.
    Conclusions @Hassan Harraz 2024 MPTHTechnology @Hassan Harraz 2024 MPTH Technology 1/20/2024 25
  • 26.
    References 1. T.E. Graedel,E.M. Harper, N.T. Nassar, K. Reck Barbara, On the materials basis of modern society, Proc. Natl. Acad. Sci. 112 (2015) 6295–6300. 2. P. Wang, S. Zhao, T. Dai, K. Peng, Q.i. Zhang, J. Li, W.-Q. Chen, Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis, Renew. Sustain. Energy Rev. 161 (2022) 112367. 3. W. Chen, Q. Zhang, C. Wang, Z. Li, Y. Geng, J. Hong, Y. Cheng, Environmental sustainability challenges of China’s steel production: impact-oriented water, carbon and fossil energy footprints assessment, Ecol. Ind. 136 (2022). 4. Q. Yue, X. Chai, Y. Zhang, Q. Wang, H. Wang, F. Zhao, W. Ji, Y. Lu, Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry, Environ. Dev. Sustain. (2022). 5. H. Li, Z. Zhang, L. Li, Z. Zhang, J. Chen, T. Yao, Types and general characteristics of the BIF-related iron deposits in China, Ore Geol. Rev. 57 (2014) 264–287. 6. J. Wu, J. Yang, L. Ma, Z. Li, X. Shen, A system analysis of the development strategy of iron ore in China, Resour.Policy 48 (2016) 32–40. 7. Z.-X. Wang, Y.-F. Zhao, L.-Y. He, Forecasting the monthly iron ore import of China using a model combining empirical mode decomposition, non-linear autoregressive neural network, and autoregressive integrated moving average, Appl. Soft Comput. 94 (2020). 8. P. Zhao, Z. He, L. Yin, R. Xiao, J. Chen, J. Tang, Z.Y. Gong, W. Zhang, Changes in the geographical distribution of global iron ore shipping flows, 2000–2019, J. Transp. Geogr. 99 (2022). 9. J. Yu, Y. Han, Y. Li, P. Gao, Recent advances in magnetization roasting of refractory iron ores: a technological review in the past decade, Miner. Process. Extr. Metall. Rev. 41 (5) (2020) 349–359. 10. R.J. Holmes, Y. Lu, L. Lu, Chapter 1 - introduction: overview of the global iron ore industry, in: L. Lu (Ed.), Iron Ore (second edition), Woodhead Publishing, 2022, pp. 1–56. 11. H. He, X. Lv, J. Wang, Characteristics evaluation and high effective utilization of limonite ores in sintering process, Min. Metall. Explor. 38 (2021) 2271–2283. 12. G.Y. Xu, D.W. Liu, P.R. Wang, B.L. Xu, W.J. Zhao, J.J. Yuan, Recovering limonite by high intensity magnetic separation technology from Honghe limonite ore, Adv. Mater. Res. 634–638 (2013) 3437–3441. 13. V. Nunna, S.P. Suthers, M.I. Pownceby, G.J. Sparrow, Beneficiation strategies for removal of silica and alumina from low-grade hematite-goethite iron ores, Miner. Process. Extr. Metall. Rev. 43 (8) (2022) 1049–1067. 14. Y. Sun, X. Zhu, Y. Han, Y. Li, P. Gao, Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot-scale study, J. Cleaner Prod. 261 (2020) 121221. 15. P. Chen, T. Chen, Q. Xie, L. Xu, H. Liu, Y. Zhou, Mineralogy and geochemistry of limonite as a weathering product of ilvaite in the Yeshan Iron Deposit, Tongling, China, Clays Clay Miner. 66 (2018) 190–207. 16. S. Dey, M.K. Mohanta, R. Singh, Mineralogy and textural impact on beneficiation of goethitic ore, Int. J. Min. Sci. Technol. 27 (2017) 445–450. 17. D. Zhu, H. Wang, J. Pan, Removing silica and alumina from limonite using wet high gradient magnetic separator, in: S.J. Ikhmayies, B. Li, J.S. Carpenter, J.-.-Y. Hwang, S.N. Monteiro, J. Li, D. Firrao, M. Zhang, Z. Peng, J.P. Escobedo-Diaz, C. Bai (Eds.), Characterization of Minerals, Metals, and Materials 2016, Springer International Publishing, Cham, 2016, pp. 99–106. 18. C. Liu, J. Deng, C. Ni, D. Wang, K. Xue, L. Xu, X. Zhang, Reverse froth flotation separation of limonite and quartz with cationic Gemini surfactant, Miner. Eng. 177 (2022). 19. F. O’Connor, W.H. Cheung, M. Valix, Reduction roasting of limonite ores: effect of dehydroxylation,Int. J. Miner. Process. 80 (2-4) (2006) 88–99. 20. S.P. Suthers, V. Nunna, A. Tripathi, J. Douglas, S. Hapugoda, Experimental study on the beneficiation of low-grade iron ore fines using hydrocyclone desliming, reduction roasting and magnetic separation, Trans. Inst. Min. Metall. Sect. C: Mineral Process. Extract. Metall. 123 (4) (2014) 212–227. 21. S.K. Roy, D. Nayak, S.S. Rath,A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol. 367 (2020) 796–808. 22. D.Q. Zhu, Q. Zhao, G.Z. Qiu, J. Pan, Z.Q. Wang, C.J. Pan, Magnetizing roasting magnetic separation of limonite ores from Anhui Province in east China, J. Univ. Sci. Technol. Beijing 32 (2010) 713–718. 23. Z. Tang, P. Gao, Y. Sun, Y. Han, E. Li, J. Chen, Y. Zhang, Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting, Powder Technol. 360 (2020) 649–657. 24. Z. Tang, Q. Zhang, Y. Sun, P. Gao, Y. Han, Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resour. Conserv. Recycl. 172 (2021). 25. S. Yuan, Q. Zhang, H. Yin, Y. Li, Efficient iron recovery from iron tailings using advanced suspension reduction technology: a study of reaction kinetics, phase transformation, and structure evolution, J. Hazard. Mater. 404 (2021). 26. J. Yu, Y. Han, Y. Li, P. Gao, Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation, J. Min.Metall. Sect. B: Metall. 54 (2017) 50. 27. S. Yuan, H. Xiao, T. Yu, Y. Li, P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol. 372 (2020) 1–7. 28. S. Yuan, X. Liu, P. Gao, Y. Han, A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud, J. Hazard. Mater. 394 (2020). 29. X. Liu, P. Gao, S. Yuan, Y. Lv, Y. Han, Clean utilization of high-iron red mud by suspension magnetization roasting, Miner. Eng. 157 (2020). 30. Z. Tang, P. Gao, Y.X. Han, W. Guo, Fluidized bed roasting technology in iron ores dressing in China: a review on equipment development and application prospect, J. Min. Metall. Sect. B: Metall. (2019) 51. 31. Z. Wei, J. Zhang, B. Qin, Y. Dong, Y. Lu, Y. Li, W. Hao, Y. Zhang, Reduction kinetics of hematite ore fines with H2 in a rotary drum reactor, Powder Technol. 332 (2018) 18–26. 32. W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,Appl. Catal. A 326 (2007) 17–27. 33. M.N. Abu Tahari, F. Salleh, T.S. Tengku Saharuddin, N. Dzakaria, A. Samsuri, M. W. Mohamed Hisham, M.A. Yarmo, Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature, Int. J. Hydrogen Energy 44 (2019) 20751–20759. 34) Z.Tang, Li, P., Gao, P., Li, Y., Han, Y. (2022): Minerals phase transformation by hydrogen reduction technology: A new approach to recycle iron from refractory limonite for reducing carbon emissions. Advanced Powder Technology 33 (2022) 103870 @Hassan Harraz 2024 MPTH Technology @Hassan Harraz 2024 MPTH Technology 1/20/2024 26
  • 27.
    Thank You ForYour Attention !