SlideShare a Scribd company logo
Iterative Techniques in Matrix Algebra 
Jacobi & Gauss-Seidel Iterative Techniques II 
Numerical Analysis (9th Edition) 
R L Burden & J D Faires 
Beamer Presentation Slides 
prepared by 
John Carroll 
Dublin City University 
c
 2011 Brooks/Cole, Cengage Learning
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi & Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi & Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 3 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Looking at the Jacobi Method 
A possible improvement to the Jacobi Algorithm can be seen by 
re-considering 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 4 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Looking at the Jacobi Method 
A possible improvement to the Jacobi Algorithm can be seen by 
re-considering 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
The components of x(k−1) are used to compute all the 
components x(k) 
i of x(k). 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 4 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Looking at the Jacobi Method 
A possible improvement to the Jacobi Algorithm can be seen by 
re-considering 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
The components of x(k−1) are used to compute all the 
components x(k) 
i of x(k). 
But, for i  1, the components x(k) 
1 , . . . , x(k) 
i−1 of x(k) have already 
been computed and are expected to be better approximations to 
the actual solutions x1, . . . , xi−1 than are x(k−1) 
1 , . . . , x(k−1) 
i−1 . 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 4 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Instead of using 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
it seems reasonable, then, to compute x(k) 
i using these most recently 
calculated values. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 5 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Instead of using 
x(k) 
i = 
1 
aii 
2 
Xn 
664 
j=1 
j6=i 
 
−aijx(k−1) 
j 
 
+ bi 
3 
775 
, for i = 1, 2, . . . , n 
it seems reasonable, then, to compute x(k) 
i using these most recently 
calculated values. 
The Gauss-Seidel Iterative Technique 
x(k) 
i = 
1 
aii 
2 
4− 
Xi−1 
j=1 
(aijx(k) 
j ) − 
Xn 
j=i+1 
(aijx(k−1) 
j ) + bi 
3 
5 
for each i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 5 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
starting with x = (0, 0, 0, 0)t 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
starting with x = (0, 0, 0, 0)t and iterating until 
kx(k) − x(k−1)k1 
kx(k)k1 
 10−3 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Example 
Use the Gauss-Seidel iterative technique to find approximate solutions 
to 
10x1 − x2 + 2x3 = 6 
−x1 + 11x2 − x3 + 3x4 = 25 
2x1 − x2 + 10x3 − x4 = −11 
3x2 − x3 + 8x4 = 15 
, 
starting with x = (0, 0, 0, 0)t and iterating until 
kx(k) − x(k−1)k1 
kx(k)k1 
 10−3 
Note: The solution x = (1, 2, −1, 1)t was approximated by Jacobi’s 
method in an earlier example. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 6 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (1/3) 
For the Gauss-Seidel method we write the system, for each 
k = 1, 2, . . . as 
x(k) 
1 = 
1 
10 
x(k−1) 
2 − 
1 
5 
x(k−1) 
3 + 
3 
5 
x(k) 
2 = 
1 
11 
x(k) 
1 + 
1 
11 
x(k−1) 
3 − 
3 
11 
x(k−1) 
4 + 
25 
11 
x(k) 
3 = − 
1 
5 
x(k) 
1 + 
1 
10 
x(k) 
2 + 
1 
10 
x(k−1) 
4 − 
11 
10 
x(k) 
4 = − 
3 
8 
x(k) 
2 + 
1 
8 
x(k) 
3 + 
15 
8 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 7 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (2/3) 
When x(0) = (0, 0, 0, 0)t , we have 
x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 8 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (2/3) 
When x(0) = (0, 0, 0, 0)t , we have 
x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Subsequent iterations give 
the values in the following table: 
k 0 1 2 3 4 5 
x(k) 
1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001 
x(k) 
2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000 
x(k) 
3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000 
x(k) 
4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 8 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (3/3) 
Because 
kx(5) − x(4)k1 
kx(5)k1 
= 
0.0008 
2.000 = 4 × 10−4 
x(5) is accepted as a reasonable approximation to the solution. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 9 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method 
Solution (3/3) 
Because 
kx(5) − x(4)k1 
kx(5)k1 
= 
0.0008 
2.000 = 4 × 10−4 
x(5) is accepted as a reasonable approximation to the solution. 
Note that, in an earlier example, Jacobi’s method required twice as 
many iterations for the same accuracy. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 9 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations 
To write the Gauss-Seidel method in matrix form, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 10 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations 
To write the Gauss-Seidel method in matrix form, multiply both sides of 
x(k) 
i = 
1 
aii 
2 
4− 
Xi−1 
j=1 
(aijx(k) 
j ) − 
Xn 
j=i+1 
(aijx(k−1) 
j ) + bi 
3 
5 
by aii and collect all kth iterate terms, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 10 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations 
To write the Gauss-Seidel method in matrix form, multiply both sides of 
x(k) 
i = 
1 
aii 
2 
4− 
Xi−1 
j=1 
(aijx(k) 
j ) − 
Xn 
j=i+1 
(aijx(k−1) 
j ) + bi 
3 
5 
by aii and collect all kth iterate terms, to give 
ai1x(k) 
1 + ai2x(k) 
2 + · · · + aiix(k) 
i = −ai,i+1x(k−1) 
i+1 − · · · − ainx(k−1) 
n + bi 
for each i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 10 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations (Cont’d) 
Writing all n equations gives 
(k) 
1 = −a12x 
a11x 
(k−1) 
2 − a13x 
(k−1) 
3 − · · · − a1nx 
(k−1) 
n + b1 
(k) 
1 + a22x 
a21x 
(k) 
2 = −a23x 
(k−1) 
3 − · · · − a2nx 
(k−1) 
n + b2 
... 
an1x(k) 
1 + an2x(k) 
2 + · · · + annx(k) 
n = bn 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 11 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
Re-Writing the Equations (Cont’d) 
Writing all n equations gives 
(k) 
1 = −a12x 
a11x 
(k−1) 
2 − a13x 
(k−1) 
3 − · · · − a1nx 
(k−1) 
n + b1 
(k) 
1 + a22x 
a21x 
(k) 
2 = −a23x 
(k−1) 
3 − · · · − a2nx 
(k−1) 
n + b2 
... 
an1x(k) 
1 + an2x(k) 
2 + · · · + annx(k) 
n = bn 
With the definitions of D, L, and U given previously, we have the 
Gauss-Seidel method represented by 
(D − L)x(k) = Ux(k−1) + b 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 11 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
(D − L)x(k) = Ux(k−1) + b 
Re-Writing the Equations (Cont’d) 
Solving for x(k) finally gives 
x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 12 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
(D − L)x(k) = Ux(k−1) + b 
Re-Writing the Equations (Cont’d) 
Solving for x(k) finally gives 
x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . 
Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel 
technique the form 
x(k) = Tgx(k−1) + cg 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 12 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
The Gauss-Seidel Method: Matrix Form 
(D − L)x(k) = Ux(k−1) + b 
Re-Writing the Equations (Cont’d) 
Solving for x(k) finally gives 
x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . 
Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel 
technique the form 
x(k) = Tgx(k−1) + cg 
For the lower-triangular matrix D − L to be nonsingular, it is necessary 
and sufficient that aii6= 0, for each i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 12 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi  Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 13 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (1/2) 
To solve Ax = b given an initial approximation x(0): 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 14 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (1/2) 
To solve Ax = b given an initial approximation x(0): 
INPUT the number of equations and unknowns n; 
the entries aij , 1  i, j  n of the matrix A; 
the entries bi , 1  i  n of b; 
the entries XOi , 1  i  n of XO = x(0); 
tolerance TOL; 
maximum number of iterations N. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 14 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (1/2) 
To solve Ax = b given an initial approximation x(0): 
INPUT the number of equations and unknowns n; 
the entries aij , 1  i, j  n of the matrix A; 
the entries bi , 1  i  n of b; 
the entries XOi , 1  i  n of XO = x(0); 
tolerance TOL; 
maximum number of iterations N. 
OUTPUT the approximate solution x1, . . . , xn or a message 
that the number of iterations was exceeded. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 14 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Step 5 Set k = k + 1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Step 5 Set k = k + 1 
Step 6 For i = 1, . . . , n set XOi = xi 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm (2/2) 
Step 1 Set k = 1 
Step 2 While (k  N) do Steps 3–6: 
Step 3 For i = 1, . . . , n 
set xi = 
1 
aii 
2 
4− 
Xi−1 
j=1 
aijxj − 
Xn 
j=i+1 
aijXOj + bi 
3 
5 
Step 4 If ||x − XO||  TOL then OUTPUT (x1, . . . , xn) 
(The procedure was successful) 
STOP 
Step 5 Set k = k + 1 
Step 6 For i = 1, . . . , n set XOi = xi 
Step 7 OUTPUT (‘Maximum number of iterations exceeded’) 
STOP (The procedure was unsuccessful) 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 15 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
To speed convergence, the equations should be arranged so that 
aii is as large as possible. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
To speed convergence, the equations should be arranged so that 
aii is as large as possible. 
Another possible stopping criterion in Step 4 is to iterate until 
kx(k) − x(k−1)k 
kx(k)k 
is smaller than some prescribed tolerance. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Gauss-Seidel Iterative Algorithm 
Comments on the Algorithm 
Step 3 of the algorithm requires that aii6= 0, for each 
i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is 
nonsingular, a reordering of the equations can be performed so 
that no aii = 0. 
To speed convergence, the equations should be arranged so that 
aii is as large as possible. 
Another possible stopping criterion in Step 4 is to iterate until 
kx(k) − x(k−1)k 
kx(k)k 
is smaller than some prescribed tolerance. 
For this purpose, any convenient norm can be used, the usual 
being the l1 norm. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 16 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi  Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 17 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Introduction 
To study the convergence of general iteration techniques, we need 
to analyze the formula 
x(k) = Tx(k−1) + c, for each k = 1, 2, . . . 
where x(0) is arbitrary. 
The following lemma and the earlier Theorem on convergent 
matrices provide the key for this study. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 18 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Proof (1/2) 
Because Tx = x is true precisely when (I − T)x = (1 − )x, we 
have  as an eigenvalue of T precisely when 1 −  is an 
eigenvalue of I − T. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Proof (1/2) 
Because Tx = x is true precisely when (I − T)x = (1 − )x, we 
have  as an eigenvalue of T precisely when 1 −  is an 
eigenvalue of I − T. 
But ||  (T)  1, so  = 1 is not an eigenvalue of T, and 0 
cannot be an eigenvalue of I − T. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Lemma 
If the spectral radius satisfies (T)  1, then (I − T)−1 exists, and 
(I − T)−1 = I + T + T2 + · · · = 
1X 
j=0 
Tj 
Proof (1/2) 
Because Tx = x is true precisely when (I − T)x = (1 − )x, we 
have  as an eigenvalue of T precisely when 1 −  is an 
eigenvalue of I − T. 
But ||  (T)  1, so  = 1 is not an eigenvalue of T, and 0 
cannot be an eigenvalue of I − T. 
Hence, (I − T)−1 exists. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 19 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Then 
(I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Then 
(I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 
and, since T is convergent, the Theorem on convergent matrices 
implies that 
lim 
m!1 
(I − T)Sm = lim 
(I − Tm+1) = I 
m!1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/2) 
Let 
Sm = I + T + T2 + · · · + Tm 
Then 
(I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 
and, since T is convergent, the Theorem on convergent matrices 
implies that 
lim 
m!1 
(I − T)Sm = lim 
(I − Tm+1) = I 
m!1 
Thus, (I − T)−1 = limm!1 Sm = I + T + T2 + · · · = 
P1j 
=0 Tj 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 20 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Theorem 
For any x(0) 2 IRn, the sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c, for each k  1 
converges to the unique solution of 
x = Tx + c 
if and only if (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 21 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
= T2x(k−2) + (T + I)c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
= T2x(k−2) + (T + I)c 
... 
= Tkx(0) + (Tk−1 + · · · + T + I)c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (1/5) 
First assume that (T)  1. Then, 
x(k) = Tx(k−1) + c 
= T(Tx(k−2) + c) + c 
= T2x(k−2) + (T + I)c 
... 
= Tkx(0) + (Tk−1 + · · · + T + I)c 
Because (T)  1, the Theorem on convergent matrices implies that T 
is convergent, and 
lim 
k!1 
Tkx(0) = 0 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 22 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
= 0 + (I − T)−1c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
= 0 + (I − T)−1c 
= (I − T)−1c 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (2/5) 
The previous lemma implies that 
lim 
k!1 
x(k) = lim 
k!1 
Tkx(0) + 
0 
@ 
1X 
j=0 
Tj 
1 
Ac 
= 0 + (I − T)−1c 
= (I − T)−1c 
Hence, the sequence {x(k)} converges to the vector x  (I − T)−1c 
and x = Tx + c. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 23 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Let z be an arbitrary vector, and x be the unique solution to 
x = Tx + c. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Let z be an arbitrary vector, and x be the unique solution to 
x = Tx + c. 
Define x(0) = x − z, and, for k  1, x(k) = Tx(k−1) + c. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (3/5) 
To prove the converse, we will show that for any z 2 IRn, we have 
limk!1 Tkz = 0. 
Again, by the theorem on convergent matrices, this is equivalent 
to (T)  1. 
Let z be an arbitrary vector, and x be the unique solution to 
x = Tx + c. 
Define x(0) = x − z, and, for k  1, x(k) = Tx(k−1) + c. 
Then {x(k)} converges to x. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 24 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
= 
... 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
= 
... 
= Tk 
 
x − x(0) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (4/5) 
Also, 
x − x(k) = (Tx + c) − 
 
Tx(k−1) + c 
 
= T 
 
x − x(k−1) 
 
so 
x − x(k) = T 
 
x − x(k−1) 
 
= T2 
 
x − x(k−2) 
 
= 
... 
= Tk 
 
x − x(0) 
 
= Tkz 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 25 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
= lim 
k!1 
 
x − x(k) 
 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
= lim 
k!1 
 
x − x(k) 
 
= 0 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Proof (5/5) 
Hence 
lim 
k!1 
Tkz = lim 
k!1 
Tk 
 
x − x(0) 
 
= lim 
k!1 
 
x − x(k) 
 
= 0 
But z 2 IRn was arbitrary, so by the theorem on convergent 
matrices, T is convergent and (T)  1. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 26 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
(i) kx − x(k)k  kTkkkx(0) − xk 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
(i) kx − x(k)k  kTkkkx(0) − xk 
(ii) kx − x(k)k  kTkk 
1−kTkkx(1) − x(0)k 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence Results for General Iteration Methods 
Corollary 
kTk  1 for any natural matrix norm and c is a given vector, then the 
sequence {x(k)}1k 
=0 defined by 
x(k) = Tx(k−1) + c 
converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and 
the following error bounds hold: 
(i) kx − x(k)k  kTkkkx(0) − xk 
(ii) kx − x(k)k  kTkk 
1−kTkkx(1) − x(0)k 
The proof of the following corollary is similar to that for the Corollary to 
the Fixed-Point Theorem for a single nonlinear equation. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 27 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Outline 
1 The Gauss-Seidel Method 
2 The Gauss-Seidel Algorithm 
3 Convergence Results for General Iteration Methods 
4 Application to the Jacobi  Gauss-Seidel Methods 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 28 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Using the Matrix Formulations 
We have seen that the Jacobi and Gauss-Seidel iterative techniques 
can be written 
x(k) = Tjx(k−1) + cj and 
x(k) = Tgx(k−1) + cg 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 29 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Using the Matrix Formulations 
We have seen that the Jacobi and Gauss-Seidel iterative techniques 
can be written 
x(k) = Tjx(k−1) + cj and 
x(k) = Tgx(k−1) + cg 
using the matrices 
Tj = D−1(L + U) and Tg = (D − L)−1U 
respectively. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 29 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Using the Matrix Formulations 
We have seen that the Jacobi and Gauss-Seidel iterative techniques 
can be written 
x(k) = Tjx(k−1) + cj and 
x(k) = Tgx(k−1) + cg 
using the matrices 
Tj = D−1(L + U) and Tg = (D − L)−1U 
respectively. If (Tj ) or (Tg) is less than 1, then the corresponding 
sequence {x(k)}1k 
=0 will converge to the solution x of Ax = b. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 29 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, then 
x = D−1(L + U)x + D−1b 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, then 
x = D−1(L + U)x + D−1b 
This implies that 
Dx = (L + U)x + b and (D − L − U)x = b 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Example 
For example, the Jacobi method has 
x(k) = D−1(L + U)x(k−1) + D−1b, 
and, if {x(k)}1k 
=0 converges to x, then 
x = D−1(L + U)x + D−1b 
This implies that 
Dx = (L + U)x + b and (D − L − U)x = b 
Since D − L − U = A, the solution x satisfies Ax = b. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 30 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
The following are easily verified sufficiency conditions for convergence 
of the Jacobi and Gauss-Seidel methods. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 31 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
The following are easily verified sufficiency conditions for convergence 
of the Jacobi and Gauss-Seidel methods. 
Theorem 
If A is strictly diagonally dominant, then for any choice of x(0), both the 
Jacobi and Gauss-Seidel methods give sequences {x(k)}1k 
=0 that 
converge to the unique solution of Ax = b. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 31 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Is Gauss-Seidel better than Jacobi? 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 32 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Is Gauss-Seidel better than Jacobi? 
No general results exist to tell which of the two techniques, Jacobi 
or Gauss-Seidel, will be most successful for an arbitrary linear 
system. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 32 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Is Gauss-Seidel better than Jacobi? 
No general results exist to tell which of the two techniques, Jacobi 
or Gauss-Seidel, will be most successful for an arbitrary linear 
system. 
In special cases, however, the answer is known, as is 
demonstrated in the following theorem. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 32 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
(Stein-Rosenberg) Theorem 
If aij  0, for each i6= j and aii  0, for each i = 1, 2, . . . , n, then one 
and only one of the following statements holds: 
(i) 0  (Tg)  (Tj )  1 
(ii) 1  (Tj )  (Tg) 
(iii) (Tj ) = (Tg) = 0 
(iv) (Tj ) = (Tg) = 1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 33 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
(Stein-Rosenberg) Theorem 
If aij  0, for each i6= j and aii  0, for each i = 1, 2, . . . , n, then one 
and only one of the following statements holds: 
(i) 0  (Tg)  (Tj )  1 
(ii) 1  (Tj )  (Tg) 
(iii) (Tj ) = (Tg) = 0 
(iv) (Tj ) = (Tg) = 1 
For the proof of this result, see pp. 120–127. of 
Young, D. M., Iterative solution of large linear systems, Academic 
Press, New York, 1971, 570 pp. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 33 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
that when one method gives convergence, then both give 
convergence, 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
that when one method gives convergence, then both give 
convergence, and the Gauss-Seidel method converges faster than 
the Jacobi method. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation 
Convergence of the Jacobi  Gauss-Seidel Methods 
Two Comments on the Thoerem 
For the special case described in the theorem, we see from part 
(i), namely 
0  (Tg)  (Tj )  1 
that when one method gives convergence, then both give 
convergence, and the Gauss-Seidel method converges faster than 
the Jacobi method. 
Part (ii), namely 
1  (Tj )  (Tg) 
indicates that when one method diverges then both diverge, and 
the divergence is more pronounced for the Gauss-Seidel method. 
Numerical Analysis (Chapter 7) Jacobi  Gauss-Seidel Methods II R L Burden  J D Faires 34 / 38
Questions?
Eigenvalues  Eigenvectors: Convergent Matrices 
Theorem 
The following statements are equivalent. 
(i) A is a convergent matrix. 
(ii) limn!1 kAnk = 0, for some natural norm. 
(iii) limn!1 kAnk = 0, for all natural norms. 
(iv) (A)  1. 
(v) limn!1 Anx = 0, for every x. 
The proof of this theorem can be found on p. 14 of Issacson, E. and H. 
B. Keller, Analysis of Numerical Methods, John Wiley  Sons, New 
York, 1966, 541 pp. 
Return to General Iteration Methods — Introduction 
Return to General Iteration Methods — Lemma 
Return to General Iteration Methods — Theorem
Fixed-Point Theorem 
Let g 2 C[a, b] be such that g(x) 2 [a, b], for all x in [a, b]. Suppose, in 
addition, that g0 exists on (a, b) and that a constant 0  k  1 exists 
with 
|g0(x)|  k, for all x 2 (a, b). 
Then for any number p0 in [a, b], the sequence defined by 
pn = g(pn−1), n  1 
converges to the unique fixed point p in [a, b]. 
Return to the Corrollary to the Fixed-Point Theorem
Functional (Fixed-Point) Iteration 
Corrollary to the Fixed-Point Convergence Result 
If g satisfies the hypothesis of the Fixed-Point Theorem then 
|pn − p|  
kn 
1 − k 
|p1 − p0| 
Return to the Corollary to the Convergence Theorem for General Iterative Methods

More Related Content

What's hot

Kelompok 3 integrasi numerik fix
Kelompok 3 integrasi numerik fixKelompok 3 integrasi numerik fix
Kelompok 3 integrasi numerik fix
liabika
 
Graf ( Matematika Diskrit)
Graf ( Matematika Diskrit)Graf ( Matematika Diskrit)
Graf ( Matematika Diskrit)
zachrison htg
 
6. interpolasi polynomial newton
6. interpolasi polynomial newton6. interpolasi polynomial newton
6. interpolasi polynomial newton
Afista Galih Pradana
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
Agus Ginanjar
 
Metode numerik pada persamaan diferensial (new)
Metode numerik pada persamaan diferensial (new)Metode numerik pada persamaan diferensial (new)
Metode numerik pada persamaan diferensial (new)Khubab Basari
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
PT.surga firdaus
 
Matematika Diskrit - 08 kombinatorial - 03
Matematika Diskrit - 08 kombinatorial - 03Matematika Diskrit - 08 kombinatorial - 03
Matematika Diskrit - 08 kombinatorial - 03
KuliahKita
 
Pengantar metode numerik
Pengantar metode numerikPengantar metode numerik
Pengantar metode numerik
putra_andy
 
Penyelesaian sistem persamaan linear dengan
Penyelesaian  sistem persamaan  linear  denganPenyelesaian  sistem persamaan  linear  dengan
Penyelesaian sistem persamaan linear denganBAIDILAH Baidilah
 
Analisis kompleks
Analisis kompleksAnalisis kompleks
Analisis kompleks
UHN
 
Turunan Fungsi Kompleks
Turunan Fungsi KompleksTurunan Fungsi Kompleks
Turunan Fungsi Kompleks
RochimatulLaili
 
Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )
Kelinci Coklat
 
Iterasi gauss seidel
Iterasi gauss seidelIterasi gauss seidel
Iterasi gauss seidelNur Fadzri
 
Relasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi RekursiRelasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi RekursiOnggo Wiryawan
 
Transformasi Laplace
Transformasi LaplaceTransformasi Laplace
Transformasi Laplace
Kelinci Coklat
 
Teorema green dalam bidang
Teorema green dalam bidangTeorema green dalam bidang
Teorema green dalam bidang
okti agung
 
Integral Garis
Integral GarisIntegral Garis
Integral Garis
Kelinci Coklat
 
Metode Numerik Trapesium
Metode Numerik TrapesiumMetode Numerik Trapesium
Metode Numerik Trapesium
Wahyu Priyanti
 

What's hot (20)

Kelompok 3 integrasi numerik fix
Kelompok 3 integrasi numerik fixKelompok 3 integrasi numerik fix
Kelompok 3 integrasi numerik fix
 
Graf ( Matematika Diskrit)
Graf ( Matematika Diskrit)Graf ( Matematika Diskrit)
Graf ( Matematika Diskrit)
 
6. interpolasi polynomial newton
6. interpolasi polynomial newton6. interpolasi polynomial newton
6. interpolasi polynomial newton
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
 
Metode numerik pada persamaan diferensial (new)
Metode numerik pada persamaan diferensial (new)Metode numerik pada persamaan diferensial (new)
Metode numerik pada persamaan diferensial (new)
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
 
Matematika Diskrit - 08 kombinatorial - 03
Matematika Diskrit - 08 kombinatorial - 03Matematika Diskrit - 08 kombinatorial - 03
Matematika Diskrit - 08 kombinatorial - 03
 
Pengantar metode numerik
Pengantar metode numerikPengantar metode numerik
Pengantar metode numerik
 
Penyelesaian sistem persamaan linear dengan
Penyelesaian  sistem persamaan  linear  denganPenyelesaian  sistem persamaan  linear  dengan
Penyelesaian sistem persamaan linear dengan
 
Analisis kompleks
Analisis kompleksAnalisis kompleks
Analisis kompleks
 
Turunan
TurunanTurunan
Turunan
 
Turunan Fungsi Kompleks
Turunan Fungsi KompleksTurunan Fungsi Kompleks
Turunan Fungsi Kompleks
 
Kuliah 12-deret-taylor-maclaurin
Kuliah 12-deret-taylor-maclaurinKuliah 12-deret-taylor-maclaurin
Kuliah 12-deret-taylor-maclaurin
 
Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )
 
Iterasi gauss seidel
Iterasi gauss seidelIterasi gauss seidel
Iterasi gauss seidel
 
Relasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi RekursiRelasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
 
Transformasi Laplace
Transformasi LaplaceTransformasi Laplace
Transformasi Laplace
 
Teorema green dalam bidang
Teorema green dalam bidangTeorema green dalam bidang
Teorema green dalam bidang
 
Integral Garis
Integral GarisIntegral Garis
Integral Garis
 
Metode Numerik Trapesium
Metode Numerik TrapesiumMetode Numerik Trapesium
Metode Numerik Trapesium
 

Similar to metode iterasi Gauss seidel

NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
krishnapriya R
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidelCesar Mendoza
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidelCesar Mendoza
 
The Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal FunctionThe Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal Function
Radboud University Medical Center
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
VjekoslavKovac1
 
2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussiannozomuhamada
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
Amro Elfeki
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
IJECEIAES
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
Meet Nayak
 
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in GraphsAlgorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
IJERA Editor
 
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in GraphsAlgorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
IJERA Editor
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
Wathna
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Tomoya Murata
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
David Gleich
 
Numerical analysis m2 l4slides
Numerical analysis  m2 l4slidesNumerical analysis  m2 l4slides
Numerical analysis m2 l4slides
SHAMJITH KM
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
Fred J. Hickernell
 
555_Spring12_topic06.ppt
555_Spring12_topic06.ppt555_Spring12_topic06.ppt
555_Spring12_topic06.ppt
SnehSinha6
 
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...
Atsushi Nitanda
 
A proposed nth – order jackknife ridge estimator for linear regression designs
A proposed nth – order jackknife ridge estimator for linear regression designsA proposed nth – order jackknife ridge estimator for linear regression designs
A proposed nth – order jackknife ridge estimator for linear regression designs
Alexander Decker
 

Similar to metode iterasi Gauss seidel (20)

NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidel
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidel
 
The Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal FunctionThe Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal Function
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in GraphsAlgorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
 
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in GraphsAlgorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
Algorithmic Aspects of Vertex Geo-dominating Sets and Geonumber in Graphs
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
Anti-differentiating approximation algorithms: A case study with min-cuts, sp...
 
Numerical analysis m2 l4slides
Numerical analysis  m2 l4slidesNumerical analysis  m2 l4slides
Numerical analysis m2 l4slides
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
 
555_Spring12_topic06.ppt
555_Spring12_topic06.ppt555_Spring12_topic06.ppt
555_Spring12_topic06.ppt
 
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Cl...
 
A proposed nth – order jackknife ridge estimator for linear regression designs
A proposed nth – order jackknife ridge estimator for linear regression designsA proposed nth – order jackknife ridge estimator for linear regression designs
A proposed nth – order jackknife ridge estimator for linear regression designs
 

Recently uploaded

weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 

Recently uploaded (20)

weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 

metode iterasi Gauss seidel

  • 1. Iterative Techniques in Matrix Algebra Jacobi & Gauss-Seidel Iterative Techniques II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning
  • 2. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 3. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 4. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 5. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi & Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  • 6. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi & Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 3 / 38
  • 7. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  • 8. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n The components of x(k−1) are used to compute all the components x(k) i of x(k). Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  • 9. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n The components of x(k−1) are used to compute all the components x(k) i of x(k). But, for i 1, the components x(k) 1 , . . . , x(k) i−1 of x(k) have already been computed and are expected to be better approximations to the actual solutions x1, . . . , xi−1 than are x(k−1) 1 , . . . , x(k−1) i−1 . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  • 10. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Instead of using x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n it seems reasonable, then, to compute x(k) i using these most recently calculated values. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 5 / 38
  • 11. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Instead of using x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n it seems reasonable, then, to compute x(k) i using these most recently calculated values. The Gauss-Seidel Iterative Technique x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 5 / 38
  • 12. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 13. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 14. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t and iterating until kx(k) − x(k−1)k1 kx(k)k1 10−3 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 15. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t and iterating until kx(k) − x(k−1)k1 kx(k)k1 10−3 Note: The solution x = (1, 2, −1, 1)t was approximated by Jacobi’s method in an earlier example. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  • 16. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (1/3) For the Gauss-Seidel method we write the system, for each k = 1, 2, . . . as x(k) 1 = 1 10 x(k−1) 2 − 1 5 x(k−1) 3 + 3 5 x(k) 2 = 1 11 x(k) 1 + 1 11 x(k−1) 3 − 3 11 x(k−1) 4 + 25 11 x(k) 3 = − 1 5 x(k) 1 + 1 10 x(k) 2 + 1 10 x(k−1) 4 − 11 10 x(k) 4 = − 3 8 x(k) 2 + 1 8 x(k) 3 + 15 8 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 7 / 38
  • 17. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (2/3) When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 8 / 38
  • 18. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (2/3) When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Subsequent iterations give the values in the following table: k 0 1 2 3 4 5 x(k) 1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001 x(k) 2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000 x(k) 3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000 x(k) 4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 8 / 38
  • 19. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (3/3) Because kx(5) − x(4)k1 kx(5)k1 = 0.0008 2.000 = 4 × 10−4 x(5) is accepted as a reasonable approximation to the solution. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 9 / 38
  • 20. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (3/3) Because kx(5) − x(4)k1 kx(5)k1 = 0.0008 2.000 = 4 × 10−4 x(5) is accepted as a reasonable approximation to the solution. Note that, in an earlier example, Jacobi’s method required twice as many iterations for the same accuracy. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 9 / 38
  • 21. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  • 22. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, multiply both sides of x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 by aii and collect all kth iterate terms, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  • 23. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, multiply both sides of x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 by aii and collect all kth iterate terms, to give ai1x(k) 1 + ai2x(k) 2 + · · · + aiix(k) i = −ai,i+1x(k−1) i+1 − · · · − ainx(k−1) n + bi for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  • 24. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations (Cont’d) Writing all n equations gives (k) 1 = −a12x a11x (k−1) 2 − a13x (k−1) 3 − · · · − a1nx (k−1) n + b1 (k) 1 + a22x a21x (k) 2 = −a23x (k−1) 3 − · · · − a2nx (k−1) n + b2 ... an1x(k) 1 + an2x(k) 2 + · · · + annx(k) n = bn Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 11 / 38
  • 25. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations (Cont’d) Writing all n equations gives (k) 1 = −a12x a11x (k−1) 2 − a13x (k−1) 3 − · · · − a1nx (k−1) n + b1 (k) 1 + a22x a21x (k) 2 = −a23x (k−1) 3 − · · · − a2nx (k−1) n + b2 ... an1x(k) 1 + an2x(k) 2 + · · · + annx(k) n = bn With the definitions of D, L, and U given previously, we have the Gauss-Seidel method represented by (D − L)x(k) = Ux(k−1) + b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 11 / 38
  • 26. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  • 27. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel technique the form x(k) = Tgx(k−1) + cg Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  • 28. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel technique the form x(k) = Tgx(k−1) + cg For the lower-triangular matrix D − L to be nonsingular, it is necessary and sufficient that aii6= 0, for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  • 29. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 13 / 38
  • 30. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  • 31. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): INPUT the number of equations and unknowns n; the entries aij , 1 i, j n of the matrix A; the entries bi , 1 i n of b; the entries XOi , 1 i n of XO = x(0); tolerance TOL; maximum number of iterations N. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  • 32. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): INPUT the number of equations and unknowns n; the entries aij , 1 i, j n of the matrix A; the entries bi , 1 i n of b; the entries XOi , 1 i n of XO = x(0); tolerance TOL; maximum number of iterations N. OUTPUT the approximate solution x1, . . . , xn or a message that the number of iterations was exceeded. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  • 33. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 34. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 35. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 36. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 37. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Step 6 For i = 1, . . . , n set XOi = xi Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 38. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Step 6 For i = 1, . . . , n set XOi = xi Step 7 OUTPUT (‘Maximum number of iterations exceeded’) STOP (The procedure was unsuccessful) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  • 39. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 40. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 41. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 42. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Another possible stopping criterion in Step 4 is to iterate until kx(k) − x(k−1)k kx(k)k is smaller than some prescribed tolerance. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 43. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Another possible stopping criterion in Step 4 is to iterate until kx(k) − x(k−1)k kx(k)k is smaller than some prescribed tolerance. For this purpose, any convenient norm can be used, the usual being the l1 norm. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  • 44. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 17 / 38
  • 45. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Introduction To study the convergence of general iteration techniques, we need to analyze the formula x(k) = Tx(k−1) + c, for each k = 1, 2, . . . where x(0) is arbitrary. The following lemma and the earlier Theorem on convergent matrices provide the key for this study. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 18 / 38
  • 46. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 47. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 48. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. But || (T) 1, so = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I − T. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 49. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. But || (T) 1, so = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I − T. Hence, (I − T)−1 exists. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  • 50. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 51. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 52. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 and, since T is convergent, the Theorem on convergent matrices implies that lim m!1 (I − T)Sm = lim (I − Tm+1) = I m!1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 53. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 and, since T is convergent, the Theorem on convergent matrices implies that lim m!1 (I − T)Sm = lim (I − Tm+1) = I m!1 Thus, (I − T)−1 = limm!1 Sm = I + T + T2 + · · · = P1j =0 Tj Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  • 54. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Theorem For any x(0) 2 IRn, the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c, for each k 1 converges to the unique solution of x = Tx + c if and only if (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 21 / 38
  • 55. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 56. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 57. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 58. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 59. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c ... = Tkx(0) + (Tk−1 + · · · + T + I)c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 60. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c ... = Tkx(0) + (Tk−1 + · · · + T + I)c Because (T) 1, the Theorem on convergent matrices implies that T is convergent, and lim k!1 Tkx(0) = 0 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  • 61. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 62. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 63. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c = (I − T)−1c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 64. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c = (I − T)−1c Hence, the sequence {x(k)} converges to the vector x (I − T)−1c and x = Tx + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  • 65. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 66. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 67. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 68. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define x(0) = x − z, and, for k 1, x(k) = Tx(k−1) + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 69. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define x(0) = x − z, and, for k 1, x(k) = Tx(k−1) + c. Then {x(k)} converges to x. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  • 70. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 71. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 72. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 73. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 74. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... = Tk x − x(0) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 75. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... = Tk x − x(0) = Tkz Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  • 76. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 77. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 78. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) = 0 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 79. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) = 0 But z 2 IRn was arbitrary, so by the theorem on convergent matrices, T is convergent and (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  • 80. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 81. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 82. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk (ii) kx − x(k)k kTkk 1−kTkkx(1) − x(0)k Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 83. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk (ii) kx − x(k)k kTkk 1−kTkkx(1) − x(0)k The proof of the following corollary is similar to that for the Corollary to the Fixed-Point Theorem for a single nonlinear equation. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  • 84. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 28 / 38
  • 85. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  • 86. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg using the matrices Tj = D−1(L + U) and Tg = (D − L)−1U respectively. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  • 87. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg using the matrices Tj = D−1(L + U) and Tg = (D − L)−1U respectively. If (Tj ) or (Tg) is less than 1, then the corresponding sequence {x(k)}1k =0 will converge to the solution x of Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  • 88. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 89. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 90. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 91. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b This implies that Dx = (L + U)x + b and (D − L − U)x = b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 92. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b This implies that Dx = (L + U)x + b and (D − L − U)x = b Since D − L − U = A, the solution x satisfies Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  • 93. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 31 / 38
  • 94. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods. Theorem If A is strictly diagonally dominant, then for any choice of x(0), both the Jacobi and Gauss-Seidel methods give sequences {x(k)}1k =0 that converge to the unique solution of Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 31 / 38
  • 95. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  • 96. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  • 97. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system. In special cases, however, the answer is known, as is demonstrated in the following theorem. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  • 98. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods (Stein-Rosenberg) Theorem If aij 0, for each i6= j and aii 0, for each i = 1, 2, . . . , n, then one and only one of the following statements holds: (i) 0 (Tg) (Tj ) 1 (ii) 1 (Tj ) (Tg) (iii) (Tj ) = (Tg) = 0 (iv) (Tj ) = (Tg) = 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 33 / 38
  • 99. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods (Stein-Rosenberg) Theorem If aij 0, for each i6= j and aii 0, for each i = 1, 2, . . . , n, then one and only one of the following statements holds: (i) 0 (Tg) (Tj ) 1 (ii) 1 (Tj ) (Tg) (iii) (Tj ) = (Tg) = 0 (iv) (Tj ) = (Tg) = 1 For the proof of this result, see pp. 120–127. of Young, D. M., Iterative solution of large linear systems, Academic Press, New York, 1971, 570 pp. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 33 / 38
  • 100. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 101. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 102. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, and the Gauss-Seidel method converges faster than the Jacobi method. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 103. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, and the Gauss-Seidel method converges faster than the Jacobi method. Part (ii), namely 1 (Tj ) (Tg) indicates that when one method diverges then both diverge, and the divergence is more pronounced for the Gauss-Seidel method. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  • 105. Eigenvalues Eigenvectors: Convergent Matrices Theorem The following statements are equivalent. (i) A is a convergent matrix. (ii) limn!1 kAnk = 0, for some natural norm. (iii) limn!1 kAnk = 0, for all natural norms. (iv) (A) 1. (v) limn!1 Anx = 0, for every x. The proof of this theorem can be found on p. 14 of Issacson, E. and H. B. Keller, Analysis of Numerical Methods, John Wiley Sons, New York, 1966, 541 pp. Return to General Iteration Methods — Introduction Return to General Iteration Methods — Lemma Return to General Iteration Methods — Theorem
  • 106. Fixed-Point Theorem Let g 2 C[a, b] be such that g(x) 2 [a, b], for all x in [a, b]. Suppose, in addition, that g0 exists on (a, b) and that a constant 0 k 1 exists with |g0(x)| k, for all x 2 (a, b). Then for any number p0 in [a, b], the sequence defined by pn = g(pn−1), n 1 converges to the unique fixed point p in [a, b]. Return to the Corrollary to the Fixed-Point Theorem
  • 107. Functional (Fixed-Point) Iteration Corrollary to the Fixed-Point Convergence Result If g satisfies the hypothesis of the Fixed-Point Theorem then |pn − p| kn 1 − k |p1 − p0| Return to the Corollary to the Convergence Theorem for General Iterative Methods