The document provides the course calendar and lecture plan for a machine learning course. The course calendar lists the class dates and topics to be covered from September to January, including Bayes estimation, Kalman filters, particle filters, hidden Markov models, Bayesian decision theory, principal component analysis, and clustering algorithms. The lecture plan focuses on clustering methods, including k-means clustering, mixtures of Gaussians models, and using the expectation-maximization (EM) algorithm to estimate the parameters of Gaussian mixture models.