SlideShare a Scribd company logo
1. Stress Analysis 
Moment of Inertias 
1. Atalet moment of inertia; 2. Polar moment of inertia; 
2 
x I   y dA 
2 
y I   x dA 
2 2 
( ) z J   x  y dA 
Shape Ix Iy J 
Rectangle bh3/12 hb3/12  2 2 
12 
bh 
b h 
Triangle bh3/36 hb3/36 2 2 
18 
h b 
bh 
   
  
  
  
Circle πd4/64 πd4/64 πd4/32 
Stresses 
Normal Stresses Shear Stresses 
Axial 
Tensile 
F 
A 
  
Torsional 
Tr 
J 
  
 
3 
Compression   16T / d for solid circular beam 
F 
A 
  
Bending 
b 
Mc 
I 
  
 
3 
32 
b 
M 
d 
 
 
 for solid circular beam 
Transverse 
(Flexural) 
VQ 
Ib 
  , Q A y 
 
 
 max   4V / 3A for solid circular beam 
 max   2V / A for hollow circular section 
 max   3V / 2A for rectangular beam 
Principle stresses 
2 
2 
1,2 
2 2 
x y x y 
xy 
    
  
   
   
  
  
  
2 
tan 2 
xy 
x y 
 
 
  
 
 
Max. and min shear stresses 
2 
2 
1,2 
2 
x y 
xy 
  
  
  
   
  
  
  
Von-Mises stresses 
2 2 
1 1 2 2  '      or 2 2 
' 3 x xy      (for biaxial) 
Stress States 
Triaxial stress state 
1 2 3 
1 
E E 
   
  
 
  
2 1 3 
2 
E E 
   
  
 
  
3 1 2 
2 
E E 
   
  
 
  
Stress in Cylinders 
Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized cyclinders): 
2 2 2 2 2 
2 2 
( ) / i o o i 
t 
p a p b a b p p r 
b a 
 
   
 
 
2 2 2 2 2 
2 2 
( ) / i o o i 
r 
p a p b a b p p r 
b a 
 
   
 
 
2 
2 2 
i 
l 
p a 
b a 
  

 If the external pressure is zero (po=0); 
2 2 
2 2 2 
1 i 
t 
a p b 
b a r 
   
 
  
  
  
2 2 
2 2 2 
1 i 
r 
a p b 
b a r 
   
 
  
  
  
r=a  r   pi 
2 2 
t i 2 2 
b a 
p 
b a 
 
 
 
 
r=b 0 r   
2 
2 2 
2 
t i 
a 
p 
b a 
  
 
 If the internal pressure is zero (pi=0); 
2 2 
2 2 2 
1 t o 
b a 
p 
b a r 
    
 
  
  
  
2 2 
2 2 2 
1 r o 
b a 
p 
b a r 
    
 
  
  
  
r=a  0 r   
2 
2 2 
2 
t o 
b 
p 
b a 
   
 
r=b r o    p 
2 2 
t o 2 2 
b a 
p 
b a 
 
 
  
 
a=inside radius of the cylinder b=outside radius of the cylinder pi=internal pressure po=external pressure 
Thin-Walled Wessels(t/r<1/20): 
2 
i 
t 
pd 
t 
  
4 
i 
l 
pd 
t 
  
Curved Members In Flexure: 
 
A 
r 
dA 
 
 
 
 
( ) 
My 
Ae r y 
  
 
 o 
o 
o 
Mc 
Aer 
  , i 
i 
i 
Mc 
Aer 
  
Press and Shrink Fit: 
 
2 2 
it 2 2 
b a 
p 
b a 
 
 
  
 
 
2 2 
ot 2 2 
c b 
p 
c b 
 
 
  
 
 
2 2 
o 2 2 o 
o 
bp c b 
E c b 
  
 
  
 
  
  
  
 
2 2 
i 2 2 i 
i 
bp b a 
E b a 
  
 
   
 
  
  
  
 
2 2 2 2 
o i 2 2 o 2 2 i 
o i 
bp c b bp b a 
E c b E b a 
       
  
    
  
    
    
    
 
   
  
2 2 2 2 
2 2 2 
; interface pressure 
2 
o i 
E c b b a 
if E E E = p = 
b b c a 
   
  
 
  
  
 
2. Deflection Analysis 
F 
k 
y 
 , k=spring constant 
T GJ 
k 
 l 
  ,k=Torsional spring rate for tension or compression loading 
AE 
k 
l 
 
Castigliano’s Theorem: 
Strain Energy 
Axial Load 
2 
2 
F L 
U 
AE 
 Direct Shear Force 
2 
2 
F L 
U 
AG 
 
Torsional Load 
2 
2 
T L 
U 
GJ 
 Bending Moment 
2 
2 
M 
U dx 
EI 
  
Flexural Shear 
2 
2 
CF 
U dx 
GA 
  , C is constant 
Buckling Consideration: 
Slenderness ratio= 
l 
k 
  
  
  
, 
I 
k 
A 
 
1/2 
1 
l 2 EC 
k Sy 
 
 
    
          
 
  
  
2 
2 
1 
Critical Unit Load = Euler Column 
/ 
cr l l P C E 
k k A l k 
 
   
    
    
    
; 
2 
2 
P 
cr 
C EI 
l 
 
 
   
2 2 
1 
1 
Critital Unit Load Johnson's Column 
2 
cr y 
y = 
l l P S l 
= S 
k k A  CE k 
   
         
         
         
1. Both ends are rounded-simply supported C=1 
2. Both ends are fixed C=4 
3. One end fixed, one end rounded and guided C=2 
4. One end fixed, one end free C=1/4 
U Total energy 
F Force on the deflection point 
 Angular deflection 
U 
y 
F 
 
 
 
Tl 
GJ 
 
3.Design For Static Strength 
Ductile Materials 
1. Max. Normal Stress Theory (MNST): 
 If, 1 2 3    
 
1 
y S 
n 
 
 
3. Distortion Energy Theory 
 If, 1 2 3    
 
2 2 2 
1 2 2 3 3 1 ( ) ( ) ( ) 
' 
2 
      
 
     
 
 For baxial stress state; 
2 2 
' 3 x xy      
 1 
y S 
n 
 
 
2. Max. Shear Stress Theory (MSST): 
 Yield strength in shear (Ssy)=Sy/2 
 
  1 3 
max 
2 
  
 
 
 , for biaxial stress state; 
max 
1 2 2 
4 
2 
x xy      
 
max 
sy S 
n 
 
 
Brittle Materials 
1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory (MMT) 
 If, 1 2 3     
1 
ut S 
n 
 
 or 
3 
uc S 
n 
 
 
 If, 1 2 3    
 3 
1 
3 
1 
uc 
uc ut 
ut 
S 
S 
S S 
S 
 
 
 
 
 
 3 
3 
S 
n 
 
 
2. The Column Mohr Theory (CMT) or Internal 
Friction Theory (IFT): 
 3 
1 
3 
1 
uc 
uc 
ut 
S 
S 
S 
S 
 
 
 
 
 3 
3 
S 
n 
 

5. Design for Fatigue Strength 
Endurance limit for test specimen (Se’); 
 For ductile materials: 
Se’=0.5 Sut if Sut<1400 MPa 
Se’=700 MPa if Sut  1400 MPa 
 For irons: 
Se’=0.4 Sut if Sut<400 MPa 
Se’=160 MPa if Sut  400 MPa 
 For Aliminiums: 
Se’=0.4 Sut if Sut<330 MPa 
Se’=130 MPa if Sut  330 MPa 
 For copper alloys: 
Se’  0.4 Sut if Sut<280 MPa 
Se’  100 MPa if Sut  280 MPa 
Se = ka kb kc kd ke Se’ 
Sf=10c Nb 
u 
e 
1 0.8S 
b log 
3 S 
  
    
  
 2 
u 
e 
0.8S 
c log 
S 
  
   
  
 ka= surface factor, ka=aSut 
b 
Surface Finish Factor a Factor b 
Ground 1.58 -0.065 
Machined or Cold Drawn 4.51 -0.265 
Hot Rolled 57.7 -0.718 
As Forged 272 -0.995 
 kb= size factor; 
kb=1 if d  8 mm and kb= 1.189d-0.097 if 8 mm<d  250 mm for bending & torsional loading. 
For non-rotating element, 0.097 
b eq k 1.189d   deq=0.37d 
For pure axial loading, kb=1 and Se’=0.45Sut 
For combined loading,  =1.11 if Sut  1520 MPa and  =1 if Sut  1520 MPa for ductile materials. 
 kc=reliability factor 
 kd=temperature effects, kd=1 if T 3500 and kd=0.5 if 3500<T 5000 
 ke=stress concentration factor, ke=1/Kf Kf=1+q(Kt-1) 
Kt=geometric stress concentration factor, q=notch sensitivity. 
Modified Goodman Soderberg 
Infinite Life Finite Life Infinite Life Finite Life 
a m 
e u 
1 
n = 
σ σ 
+ 
S S 
a m 
f u 
1 
n = 
σ σ 
+ 
S S 
a m 
e y 
1 
n = 
σ σ 
+ 
S S 
a m 
f y 
1 
n = 
σ σ 
+ 
S S 
 Fa=(Fmax-Fmin)/2  Fm=(Fmax+Fmin)/2
6. Tolerances and Fits 
TF=Cmax-Cmin dL=DU-c Cmax=DU-dL Cmin=DL-dU 
TF=Imax+Cmax dU=dL+TS Imax=dU-DL Imin=dL-Du 
TF=Imax-Imin dU=DL+Imax 
TS=dU-dL TH=DU-DL TF=TH+TS 
7. Design of Power Screws 
m m 
R 
m 
Fd L d 
T 
2 d L 
     
   
    
m m 
L 
m 
Fd d L 
T 
2 d L 
     
   
    
Or considering   tan ; 
  m 
R 
Fd 
T tan 
2 
      m 
R 
Fd 
T tan 
2 
    
If the friction between the stationary member and the collar of the screw is taken into consideration; 
  m c c 
R 
Fd d F 
T tan 
2 2 
 
       m c c 
R 
Fd d F 
T tan 
2 2 
 
     
o 
R R 
T FL 
T 2 T 
   
 
when collar friction is negligible, we obtain  as, 
  
tan 
tan 
 
  
   
If   tan or 
m 
L 
d 
then screw is self locking. 
 Bearing Stresses 
  b 2 2 
r 
4pF 
h d d 
  
  
b 
m 
Fp 
d th 
  
 
p 
t 
2 
 
 Shear Stresses 
For Screw Thread For Nut Thread 
s 
r 
2F 
d h 
  
 
n 
2F 
dh 
  
 
 Bending Stresses 
The maximum bending stress, 
m 
6F 
d Np 
  
 
N=h/p
 Tensile or Compressive stresses 
x 
t 
F 
A 
  
2 
t 
t 
d 
A 
4 
 
 r m 
t 
d d 
d 
2 
 
 
 Combined Stresses 
R 
xy 3 
t 
16T 
d 
  
 
Based on distortion energy theory; 
R 
xy 3 
t 
16T 
d 
  
 
2 2 
'  x 3xy y S 
n 
' 
 
 
Based on maximum shear stres theory; 
2 2 
max x xy 
1 
4 
2 
     sy 
max 
S 
n  
 
8. Design of Bolted Joints 
Fe=Feb+Fep Feb=CFe Fep=(1-C)Fe b 
b m 
k 
C = 
k  k 
Fb=Fi+CFe Fm=Fi-(1-C)Fe 
b b 
b 
A E 
k 
L 
 
m 1 2 n 
1 1 1 1 
.......... 
k k k k 
    
i 
b 
b 
F 
k 
  i 
m 
m 
F 
k 
  
 Shigley and Mishke approach; 
For cone angle of 0   30 , 
i 
i 
i 
i 
1.813E d 
k 
1.15L 0.5d 
ln 5 
1.15L 2.5d 
 
   
  
   
m 1 2 n 
1 1 1 1 
.......... 
k k k k 
    
If L1=L2=L/2 and materials are same, m 
1.813Ed 
k 
2.885L 2.5d 
2ln 
0.577L 2.5d 
 
   
  
  
For cone angle of 0   45 , 
  
  
i 
i 
i 
i 
E d 
k 
5 2L 0.5d 
ln 
2L 2.5d 
 
 
   
     
If L1=L2=L/2 and materials are same, m 
Ed 
k 
L 0.5d 
2ln 5 
L 2.5d 
 
 
   
  
   
 Wileman approach; 
(Bid/L) 
m i k  EdA e 
Where Ai and Bi are constants related to the material. For Steel Ai=0.78715 and Bi=0.62873, for 
Aliminium Ai=0.79670 and Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616. 
 Filiz approach; 
1 
d 
B 
5 L 
m eq 
2 
1 
k E d e 
2 1 B 
    
    
    
 
 
1 2 
eq 
1 2 
E E 
E 
E E 
 
 
2 
1 
0.1d 
B 
L 
  
  
  
8 
1 
1 
2 
L 
B 1 
L 
  
    
  
Static loading; 
b y t F  S A or b p t F  S A   p y S  0.85S mF  0 
  e i p t e 1C nF  F  S A CnF n=load factor of safety 
Critical load= i 
ce 
F 
F 
1 C 
 
 
Dynamic Loading: 
e 
a 
t 
CnF 
2A 
  i 
m a 
t 
F 
A 
    s 
a m 
e u 
1 
n 
S S 
 
  
 
t u e u 
i 
s e 
A S CnF S 
F 1 
n 2 S 
  
     
  
Fi=the maximum value of preload for there is no fatigue failure. 
Limitations: 
 p i p 0.6F  F  0.9F where p t p F  A S 
 e ut 
imax t ut 
e 
cF n S 
F A S 1 
2N S 
  
     
  
 e e 
i t p 
F cF 
(1 c) F A S 
N N 
    b 3.5d  c 10d b 
180 
c 
N 
 

9. Design of Riveted Joints 
 Shearing of Rivets: 
F 
A 
  , F=Force on each rivet 
2 d 
A 
4 
 
 
 Secondary Shear Force 
i 
i N 
2 
i 
1 
Mr 
F '' 
r 
 
 
 
 Bearing (compression) Failure: 
F 
A 
   , A=td, t=thickness of the plate 
 Plate Tension Failure: 
F 
A 
  , A  w Nd t 
w=width of plate 
N=number of rivets on the 
selected cross section 
 
 Primary Shear Force 
N 
i 
1 
F 
F' 
A 
 
 
 
10. Design of Welded Joints 
 Primary Shear Stress 
F 
' 
A 
  
 u J  0.707hJ  
 Secondary Shear Stress 
Mr 
'' 
J 
  
 u I  0.707hI  
 Bending Stress 
Mc 
I 
  

Table 9-3 Minimum weld-metal properties 
AWS electrode 
Number 
n 
Tensile Strength 
MPa 
Yield Strength 
MPa 
Percent 
Elongation E60xx 420 340 17-25 E70xx 480 390 22 E80xx 530 460 19 E90xx 620 530 14-17 E100xx 690 600 13-16 E120xx 830 740 14 
Table 9-5 Fatigue-strength reduction factors 
Type of Weld 
Kf Reinforced butt weld 1.2 Toe of transverse fillet weld 1.5 End of parallel fillet weld 2.7 T-butt joint with sharp corners 2.0
Table 9-1 Torsional Properties of Fillet Welds* 
Weld 
Throat Area 
Location of G 
Unit Polar Moment of Inertia 
*G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of the same size.
Table 9-2 Bending Properties of Fillet Welds* 
Weld 
Throat Area 
Location of G 
Unit Moment of Inertia 
*Iu, unit moment of inertia, is taken about a horizontal axis through G, the centroid of the weld group; h is weld size; the plane of the bending couple is normal to the paper; all welds are of the same size
Table A3-8 Stress concentration factors for round shaft with 
shoulder fillet in tension 
d 
r 
D 
. 
o= F/A, where A= d2/4 
D/d =1,02 D/d =1,05 D/d =1,1 D/d=1,5 
r/d Kt Kt Kt Kt 
0,025 1,800 - - - 
0,028 1,728 - 2,200 - 
0,031 1,678 2,000 2,125 - 
0,037 1,610 1,868 2,020 - 
0,044 1,550 1,778 1,938 2,522 
0,050 1,508 1,714 1,866 2,400 
0,062 1,452 1,626 1,766 2,235 
0,075 1,408 1,550 1,684 2,086 
0,088 1,370 1,502 1,624 1,970 
0,100 1,336 1,457 1,568 1,893 
0,125 1,286 1,400 1,496 1,760 
0,150 1,254 1,364 1,452 1,662 
0,175 1,230 1,340 1,400 1,600 
0,200 1,220 1,314 1,372 1,546 
0,250 1,216 1,292 1,342 1,508 
0,275 1,200 1,270 1,325 1,480 
0,300 1,200 1,250 1,296 1,452 
* Adopted from Ref. [12]
Table A3-9 Stress concentration factors for round shaft with shoulder fillet 
in torsion 
d 
r 
D 
T T 
. 
o= Tc/J, where c=d/2 and J=d4/32 
D/d =1,09 D/d =1,20 D/d =1,33 D/d =2,0 
r/d Kt Kt Kt Kt 
0,009 - - - - 
0,012 1,800 2,300 - 2,600 
0,030 1,566 2,040 2,144 2,288 
0,025 1,472 1,894 2,020 2,122 
0,033 1,384 1,761 1,878 1,966 
0,042 1,322 1,644 1,755 1,828 
0,050 1,283 1,576 1,677 1,750 
0,062 1,244 1,500 1,600 1,644 
0,075 1,206 1,434 1,516 1,572 
0,087 1,184 1,378 1,458 1,510 
0,100 1,166 1,342 1,412 1,466 
0,125 1,144 1,275 1,344 1,400 
0,150 1,122 1,220 1,294 1,344 
0,200 1,110 1,160 1,220 1,266 
0,250 1,100 1,130 1,178 1,222 
0,300 1,100 1,120 1,160 1,200 
* Adopted from Ref. [12]
Table A3-10 Stress Concentration factors for round shaft with shoulder 
fillet in bending 
d 
r 
M D M 
. 
o= Mc/I, where c=d/2 and I=d4/64 
D/d =1,02 D/d =1,05 D/d =1,1 D/d =1,5 D/d =3 
r/d Kt Kt Kt Kt Kt 
0,012 2,290 2,553 2,700 - - 
0,017 2,120 2,378 2,500 3,000 - 
0,021 2,000 2,240 2,366 2,774 3,000 
0,025 1,926 2,134 2,260 2,600 2,862 
0,036 1,760 1,936 2,046 2,310 2,600 
0,050 1,644 1,782 1,865 2,060 2,310 
0,062 1,574 1,700 1,750 1,925 2,140 
0,075 1,518 1,628 1,688 1,800 1,986 
0,087 1,472 1,563 1,630 1,728 1,880 
0,100 1,440 1,534 1,580 1,660 1,804 
0,125 1,380 1,468 1,500 1,584 1,684 
0,150 1,330 1,412 1,450 1,510 1,584 
0,175 1,297 1,358 1,400 1,450 1,510 
0,200 1,264 1,336 1,360 1,400 1,457 
0,225 1,242 1,308 - - 1,410 
0,250 1,225 1,286 - - 1,374 
0,275 1,210 1,264 - - 1,340 
0,300 1,200 1,242 - - 1,320 
* Adopted from Ref. [12]

More Related Content

What's hot

Stress concentration
Stress concentrationStress concentration
Stress concentration
Simasiku Pollen Mwilima
 
Strength of materials_I
Strength of materials_IStrength of materials_I
Strength of materials_I
Pralhad Kore
 
Unit 2 design of shaft
Unit 2 design of shaftUnit 2 design of shaft
Unit 2 design of shaft
Somnath Kolgiri
 
The Thick-Walled cylinder
The Thick-Walled cylinder The Thick-Walled cylinder
The Thick-Walled cylinder
Ghassan Alhamdany
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
zammok
 
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Darawan Wahid
 
Unit 3 Design of Fluctuating Loads
Unit 3 Design of Fluctuating LoadsUnit 3 Design of Fluctuating Loads
Unit 3 Design of Fluctuating Loads
Mahesh Shinde
 
1 introduction - Mechanics of Materials - 4th - Beer
1 introduction - Mechanics of Materials - 4th - Beer1 introduction - Mechanics of Materials - 4th - Beer
1 introduction - Mechanics of Materials - 4th - Beer
Nhan Tran
 
Solution manual 10 12
Solution manual 10 12Solution manual 10 12
Solution manual 10 12
Rafi Flydarkzz
 
Hoop strain2
Hoop strain2Hoop strain2
Hoop strain2
Mayank Pathak
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
Himanshu Keshri
 
Power screws
Power screwsPower screws
Solution manual 4 6
Solution manual 4 6Solution manual 4 6
Solution manual 4 6
Rafi Flydarkzz
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
propaul
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
rahul183
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
Alessandro Palmeri
 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdf
AnujSingh543
 
Thin and thick cylinders
Thin and thick cylindersThin and thick cylinders
Thin and thick cylinders
Shivendra Nandan
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strain
Deepak Agarwal
 
Statics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula SheetStatics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula Sheet
yasinabolfate
 

What's hot (20)

Stress concentration
Stress concentrationStress concentration
Stress concentration
 
Strength of materials_I
Strength of materials_IStrength of materials_I
Strength of materials_I
 
Unit 2 design of shaft
Unit 2 design of shaftUnit 2 design of shaft
Unit 2 design of shaft
 
The Thick-Walled cylinder
The Thick-Walled cylinder The Thick-Walled cylinder
The Thick-Walled cylinder
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11
 
Unit 3 Design of Fluctuating Loads
Unit 3 Design of Fluctuating LoadsUnit 3 Design of Fluctuating Loads
Unit 3 Design of Fluctuating Loads
 
1 introduction - Mechanics of Materials - 4th - Beer
1 introduction - Mechanics of Materials - 4th - Beer1 introduction - Mechanics of Materials - 4th - Beer
1 introduction - Mechanics of Materials - 4th - Beer
 
Solution manual 10 12
Solution manual 10 12Solution manual 10 12
Solution manual 10 12
 
Hoop strain2
Hoop strain2Hoop strain2
Hoop strain2
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
 
Power screws
Power screwsPower screws
Power screws
 
Solution manual 4 6
Solution manual 4 6Solution manual 4 6
Solution manual 4 6
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdf
 
Thin and thick cylinders
Thin and thick cylindersThin and thick cylinders
Thin and thick cylinders
 
Lecture 2 principal stress and strain
Lecture 2 principal stress and strainLecture 2 principal stress and strain
Lecture 2 principal stress and strain
 
Statics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula SheetStatics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula Sheet
 

Similar to Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer University of Gaziantep

Ch04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_designCh04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_design
Paralafakyou Mens
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
HaHoangJR
 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
Rafi Flydarkzz
 
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3dean129
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
Hugo Méndez
 
Solution manual 1 3
Solution manual 1 3Solution manual 1 3
Solution manual 1 3
Rafi Flydarkzz
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
rabeamatouk
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
BaaselMedhat
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
PawanKumar391848
 
Thin cylinder ppt
Thin cylinder pptThin cylinder ppt
Thin cylinder ppt
Er Alfaj Shaikh
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
Priyanka Anni
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
Dr.Jagadish Tawade
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
yashdeep nimje
 
thickcylinders-160605084017.pdf
thickcylinders-160605084017.pdfthickcylinders-160605084017.pdf
thickcylinders-160605084017.pdf
SukantaMandal17
 
Sasoli1
Sasoli1Sasoli1
Sasoli1
buetk khuzdar
 
7903549.ppt
7903549.ppt7903549.ppt
7903549.ppt
Doctor Sadaf Qasim
 
Tính tần số riêng của dầm
Tính tần số riêng của dầm Tính tần số riêng của dầm
Tính tần số riêng của dầm
Chieu Hua
 
Sa-1_strain energy
Sa-1_strain energySa-1_strain energy
Sa-1_strain energy
brijesh raychanda
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
tejasp
 
Thick cylinders
Thick cylindersThick cylinders
Thick cylinders
Dheirya Joshi
 

Similar to Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer University of Gaziantep (20)

Ch04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_designCh04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_design
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
 
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
 
Solution manual 1 3
Solution manual 1 3Solution manual 1 3
Solution manual 1 3
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Thin cylinder ppt
Thin cylinder pptThin cylinder ppt
Thin cylinder ppt
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
thickcylinders-160605084017.pdf
thickcylinders-160605084017.pdfthickcylinders-160605084017.pdf
thickcylinders-160605084017.pdf
 
Sasoli1
Sasoli1Sasoli1
Sasoli1
 
7903549.ppt
7903549.ppt7903549.ppt
7903549.ppt
 
Tính tần số riêng của dầm
Tính tần số riêng của dầm Tính tần số riêng của dầm
Tính tần số riêng của dầm
 
Sa-1_strain energy
Sa-1_strain energySa-1_strain energy
Sa-1_strain energy
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
 
Thick cylinders
Thick cylindersThick cylinders
Thick cylinders
 

More from Erdi Karaçal

afm of Ti6Al4V
afm of Ti6Al4V afm of Ti6Al4V
afm of Ti6Al4V
Erdi Karaçal
 
Met ch1
Met ch1Met ch1
Met ch1
Erdi Karaçal
 
Met ch0
Met ch0Met ch0
Met ch0
Erdi Karaçal
 
Ch40 design selection
Ch40 design selectionCh40 design selection
Ch40 design selection
Erdi Karaçal
 
Ch39 computer aided manufacturing
Ch39 computer aided manufacturingCh39 computer aided manufacturing
Ch39 computer aided manufacturing
Erdi Karaçal
 
Ch38 computer aided
Ch38 computer aidedCh38 computer aided
Ch38 computer aided
Erdi Karaçal
 
Ch37 automation
Ch37 automationCh37 automation
Ch37 automation
Erdi Karaçal
 
Ch36 quality
Ch36 qualityCh36 quality
Ch36 quality
Erdi Karaçal
 
Ch35 measurement
Ch35 measurementCh35 measurement
Ch35 measurement
Erdi Karaçal
 
Ch34 coating
Ch34 coatingCh34 coating
Ch34 coating
Erdi Karaçal
 
Ch33 surface roughness
Ch33 surface roughnessCh33 surface roughness
Ch33 surface roughness
Erdi Karaçal
 
Ch32 brazing soldering
Ch32 brazing solderingCh32 brazing soldering
Ch32 brazing soldering
Erdi Karaçal
 
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Erdi Karaçal
 
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepCh30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Erdi Karaçal
 
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Erdi Karaçal
 
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of GaziantepCh27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Erdi Karaçal
 
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of GaziantepCh25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of GaziantepCh24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 

More from Erdi Karaçal (20)

afm of Ti6Al4V
afm of Ti6Al4V afm of Ti6Al4V
afm of Ti6Al4V
 
Met ch1
Met ch1Met ch1
Met ch1
 
Met ch0
Met ch0Met ch0
Met ch0
 
Ch40 design selection
Ch40 design selectionCh40 design selection
Ch40 design selection
 
Ch39 computer aided manufacturing
Ch39 computer aided manufacturingCh39 computer aided manufacturing
Ch39 computer aided manufacturing
 
Ch38 computer aided
Ch38 computer aidedCh38 computer aided
Ch38 computer aided
 
Ch37 automation
Ch37 automationCh37 automation
Ch37 automation
 
Ch36 quality
Ch36 qualityCh36 quality
Ch36 quality
 
Ch35 measurement
Ch35 measurementCh35 measurement
Ch35 measurement
 
Ch34 coating
Ch34 coatingCh34 coating
Ch34 coating
 
Ch33 surface roughness
Ch33 surface roughnessCh33 surface roughness
Ch33 surface roughness
 
Ch32 brazing soldering
Ch32 brazing solderingCh32 brazing soldering
Ch32 brazing soldering
 
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
 
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepCh30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
 
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
 
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of GaziantepCh27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
 
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of GaziantepCh25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of GaziantepCh24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
 

Recently uploaded

TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 

Recently uploaded (20)

TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 

Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer University of Gaziantep

  • 1. 1. Stress Analysis Moment of Inertias 1. Atalet moment of inertia; 2. Polar moment of inertia; 2 x I   y dA 2 y I   x dA 2 2 ( ) z J   x  y dA Shape Ix Iy J Rectangle bh3/12 hb3/12  2 2 12 bh b h Triangle bh3/36 hb3/36 2 2 18 h b bh          Circle πd4/64 πd4/64 πd4/32 Stresses Normal Stresses Shear Stresses Axial Tensile F A   Torsional Tr J    3 Compression   16T / d for solid circular beam F A   Bending b Mc I    3 32 b M d    for solid circular beam Transverse (Flexural) VQ Ib   , Q A y    max   4V / 3A for solid circular beam  max   2V / A for hollow circular section  max   3V / 2A for rectangular beam Principle stresses 2 2 1,2 2 2 x y x y xy                   2 tan 2 xy x y       Max. and min shear stresses 2 2 1,2 2 x y xy                Von-Mises stresses 2 2 1 1 2 2  '      or 2 2 ' 3 x xy      (for biaxial) Stress States Triaxial stress state 1 2 3 1 E E         2 1 3 2 E E         3 1 2 2 E E         Stress in Cylinders Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized cyclinders): 2 2 2 2 2 2 2 ( ) / i o o i t p a p b a b p p r b a       2 2 2 2 2 2 2 ( ) / i o o i r p a p b a b p p r b a       2 2 2 i l p a b a   
  • 2.  If the external pressure is zero (po=0); 2 2 2 2 2 1 i t a p b b a r           2 2 2 2 2 1 i r a p b b a r           r=a  r   pi 2 2 t i 2 2 b a p b a     r=b 0 r   2 2 2 2 t i a p b a     If the internal pressure is zero (pi=0); 2 2 2 2 2 1 t o b a p b a r            2 2 2 2 2 1 r o b a p b a r            r=a  0 r   2 2 2 2 t o b p b a     r=b r o    p 2 2 t o 2 2 b a p b a      a=inside radius of the cylinder b=outside radius of the cylinder pi=internal pressure po=external pressure Thin-Walled Wessels(t/r<1/20): 2 i t pd t   4 i l pd t   Curved Members In Flexure:  A r dA     ( ) My Ae r y     o o o Mc Aer   , i i i Mc Aer   Press and Shrink Fit:  2 2 it 2 2 b a p b a       2 2 ot 2 2 c b p c b       2 2 o 2 2 o o bp c b E c b              2 2 i 2 2 i i bp b a E b a               2 2 2 2 o i 2 2 o 2 2 i o i bp c b bp b a E c b E b a                                  2 2 2 2 2 2 2 ; interface pressure 2 o i E c b b a if E E E = p = b b c a            
  • 3. 2. Deflection Analysis F k y  , k=spring constant T GJ k  l   ,k=Torsional spring rate for tension or compression loading AE k l  Castigliano’s Theorem: Strain Energy Axial Load 2 2 F L U AE  Direct Shear Force 2 2 F L U AG  Torsional Load 2 2 T L U GJ  Bending Moment 2 2 M U dx EI   Flexural Shear 2 2 CF U dx GA   , C is constant Buckling Consideration: Slenderness ratio= l k       , I k A  1/2 1 l 2 EC k Sy                      2 2 1 Critical Unit Load = Euler Column / cr l l P C E k k A l k                 ; 2 2 P cr C EI l      2 2 1 1 Critital Unit Load Johnson's Column 2 cr y y = l l P S l = S k k A  CE k                               1. Both ends are rounded-simply supported C=1 2. Both ends are fixed C=4 3. One end fixed, one end rounded and guided C=2 4. One end fixed, one end free C=1/4 U Total energy F Force on the deflection point  Angular deflection U y F    Tl GJ  
  • 4. 3.Design For Static Strength Ductile Materials 1. Max. Normal Stress Theory (MNST):  If, 1 2 3     1 y S n   3. Distortion Energy Theory  If, 1 2 3     2 2 2 1 2 2 3 3 1 ( ) ( ) ( ) ' 2               For baxial stress state; 2 2 ' 3 x xy       1 y S n   2. Max. Shear Stress Theory (MSST):  Yield strength in shear (Ssy)=Sy/2    1 3 max 2      , for biaxial stress state; max 1 2 2 4 2 x xy       max sy S n   Brittle Materials 1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory (MMT)  If, 1 2 3     1 ut S n   or 3 uc S n    If, 1 2 3     3 1 3 1 uc uc ut ut S S S S S       3 3 S n   2. The Column Mohr Theory (CMT) or Internal Friction Theory (IFT):  3 1 3 1 uc uc ut S S S S      3 3 S n  
  • 5. 5. Design for Fatigue Strength Endurance limit for test specimen (Se’);  For ductile materials: Se’=0.5 Sut if Sut<1400 MPa Se’=700 MPa if Sut  1400 MPa  For irons: Se’=0.4 Sut if Sut<400 MPa Se’=160 MPa if Sut  400 MPa  For Aliminiums: Se’=0.4 Sut if Sut<330 MPa Se’=130 MPa if Sut  330 MPa  For copper alloys: Se’  0.4 Sut if Sut<280 MPa Se’  100 MPa if Sut  280 MPa Se = ka kb kc kd ke Se’ Sf=10c Nb u e 1 0.8S b log 3 S          2 u e 0.8S c log S         ka= surface factor, ka=aSut b Surface Finish Factor a Factor b Ground 1.58 -0.065 Machined or Cold Drawn 4.51 -0.265 Hot Rolled 57.7 -0.718 As Forged 272 -0.995  kb= size factor; kb=1 if d  8 mm and kb= 1.189d-0.097 if 8 mm<d  250 mm for bending & torsional loading. For non-rotating element, 0.097 b eq k 1.189d   deq=0.37d For pure axial loading, kb=1 and Se’=0.45Sut For combined loading,  =1.11 if Sut  1520 MPa and  =1 if Sut  1520 MPa for ductile materials.  kc=reliability factor  kd=temperature effects, kd=1 if T 3500 and kd=0.5 if 3500<T 5000  ke=stress concentration factor, ke=1/Kf Kf=1+q(Kt-1) Kt=geometric stress concentration factor, q=notch sensitivity. Modified Goodman Soderberg Infinite Life Finite Life Infinite Life Finite Life a m e u 1 n = σ σ + S S a m f u 1 n = σ σ + S S a m e y 1 n = σ σ + S S a m f y 1 n = σ σ + S S  Fa=(Fmax-Fmin)/2  Fm=(Fmax+Fmin)/2
  • 6. 6. Tolerances and Fits TF=Cmax-Cmin dL=DU-c Cmax=DU-dL Cmin=DL-dU TF=Imax+Cmax dU=dL+TS Imax=dU-DL Imin=dL-Du TF=Imax-Imin dU=DL+Imax TS=dU-dL TH=DU-DL TF=TH+TS 7. Design of Power Screws m m R m Fd L d T 2 d L             m m L m Fd d L T 2 d L             Or considering   tan ;   m R Fd T tan 2       m R Fd T tan 2     If the friction between the stationary member and the collar of the screw is taken into consideration;   m c c R Fd d F T tan 2 2         m c c R Fd d F T tan 2 2       o R R T FL T 2 T     when collar friction is negligible, we obtain  as,   tan tan       If   tan or m L d then screw is self locking.  Bearing Stresses   b 2 2 r 4pF h d d     b m Fp d th    p t 2   Shear Stresses For Screw Thread For Nut Thread s r 2F d h    n 2F dh     Bending Stresses The maximum bending stress, m 6F d Np    N=h/p
  • 7.  Tensile or Compressive stresses x t F A   2 t t d A 4   r m t d d d 2    Combined Stresses R xy 3 t 16T d    Based on distortion energy theory; R xy 3 t 16T d    2 2 '  x 3xy y S n '   Based on maximum shear stres theory; 2 2 max x xy 1 4 2      sy max S n   8. Design of Bolted Joints Fe=Feb+Fep Feb=CFe Fep=(1-C)Fe b b m k C = k  k Fb=Fi+CFe Fm=Fi-(1-C)Fe b b b A E k L  m 1 2 n 1 1 1 1 .......... k k k k     i b b F k   i m m F k    Shigley and Mishke approach; For cone angle of 0   30 , i i i i 1.813E d k 1.15L 0.5d ln 5 1.15L 2.5d          m 1 2 n 1 1 1 1 .......... k k k k     If L1=L2=L/2 and materials are same, m 1.813Ed k 2.885L 2.5d 2ln 0.577L 2.5d         
  • 8. For cone angle of 0   45 ,     i i i i E d k 5 2L 0.5d ln 2L 2.5d           If L1=L2=L/2 and materials are same, m Ed k L 0.5d 2ln 5 L 2.5d            Wileman approach; (Bid/L) m i k  EdA e Where Ai and Bi are constants related to the material. For Steel Ai=0.78715 and Bi=0.62873, for Aliminium Ai=0.79670 and Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616.  Filiz approach; 1 d B 5 L m eq 2 1 k E d e 2 1 B               1 2 eq 1 2 E E E E E   2 1 0.1d B L       8 1 1 2 L B 1 L         Static loading; b y t F  S A or b p t F  S A   p y S  0.85S mF  0   e i p t e 1C nF  F  S A CnF n=load factor of safety Critical load= i ce F F 1 C   Dynamic Loading: e a t CnF 2A   i m a t F A     s a m e u 1 n S S     t u e u i s e A S CnF S F 1 n 2 S          Fi=the maximum value of preload for there is no fatigue failure. Limitations:  p i p 0.6F  F  0.9F where p t p F  A S  e ut imax t ut e cF n S F A S 1 2N S           e e i t p F cF (1 c) F A S N N     b 3.5d  c 10d b 180 c N  
  • 9. 9. Design of Riveted Joints  Shearing of Rivets: F A   , F=Force on each rivet 2 d A 4    Secondary Shear Force i i N 2 i 1 Mr F '' r     Bearing (compression) Failure: F A    , A=td, t=thickness of the plate  Plate Tension Failure: F A   , A  w Nd t w=width of plate N=number of rivets on the selected cross section   Primary Shear Force N i 1 F F' A    10. Design of Welded Joints  Primary Shear Stress F ' A    u J  0.707hJ   Secondary Shear Stress Mr '' J    u I  0.707hI   Bending Stress Mc I   
  • 10. Table 9-3 Minimum weld-metal properties AWS electrode Number n Tensile Strength MPa Yield Strength MPa Percent Elongation E60xx 420 340 17-25 E70xx 480 390 22 E80xx 530 460 19 E90xx 620 530 14-17 E100xx 690 600 13-16 E120xx 830 740 14 Table 9-5 Fatigue-strength reduction factors Type of Weld Kf Reinforced butt weld 1.2 Toe of transverse fillet weld 1.5 End of parallel fillet weld 2.7 T-butt joint with sharp corners 2.0
  • 11. Table 9-1 Torsional Properties of Fillet Welds* Weld Throat Area Location of G Unit Polar Moment of Inertia *G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of the same size.
  • 12. Table 9-2 Bending Properties of Fillet Welds* Weld Throat Area Location of G Unit Moment of Inertia *Iu, unit moment of inertia, is taken about a horizontal axis through G, the centroid of the weld group; h is weld size; the plane of the bending couple is normal to the paper; all welds are of the same size
  • 13. Table A3-8 Stress concentration factors for round shaft with shoulder fillet in tension d r D . o= F/A, where A= d2/4 D/d =1,02 D/d =1,05 D/d =1,1 D/d=1,5 r/d Kt Kt Kt Kt 0,025 1,800 - - - 0,028 1,728 - 2,200 - 0,031 1,678 2,000 2,125 - 0,037 1,610 1,868 2,020 - 0,044 1,550 1,778 1,938 2,522 0,050 1,508 1,714 1,866 2,400 0,062 1,452 1,626 1,766 2,235 0,075 1,408 1,550 1,684 2,086 0,088 1,370 1,502 1,624 1,970 0,100 1,336 1,457 1,568 1,893 0,125 1,286 1,400 1,496 1,760 0,150 1,254 1,364 1,452 1,662 0,175 1,230 1,340 1,400 1,600 0,200 1,220 1,314 1,372 1,546 0,250 1,216 1,292 1,342 1,508 0,275 1,200 1,270 1,325 1,480 0,300 1,200 1,250 1,296 1,452 * Adopted from Ref. [12]
  • 14. Table A3-9 Stress concentration factors for round shaft with shoulder fillet in torsion d r D T T . o= Tc/J, where c=d/2 and J=d4/32 D/d =1,09 D/d =1,20 D/d =1,33 D/d =2,0 r/d Kt Kt Kt Kt 0,009 - - - - 0,012 1,800 2,300 - 2,600 0,030 1,566 2,040 2,144 2,288 0,025 1,472 1,894 2,020 2,122 0,033 1,384 1,761 1,878 1,966 0,042 1,322 1,644 1,755 1,828 0,050 1,283 1,576 1,677 1,750 0,062 1,244 1,500 1,600 1,644 0,075 1,206 1,434 1,516 1,572 0,087 1,184 1,378 1,458 1,510 0,100 1,166 1,342 1,412 1,466 0,125 1,144 1,275 1,344 1,400 0,150 1,122 1,220 1,294 1,344 0,200 1,110 1,160 1,220 1,266 0,250 1,100 1,130 1,178 1,222 0,300 1,100 1,120 1,160 1,200 * Adopted from Ref. [12]
  • 15. Table A3-10 Stress Concentration factors for round shaft with shoulder fillet in bending d r M D M . o= Mc/I, where c=d/2 and I=d4/64 D/d =1,02 D/d =1,05 D/d =1,1 D/d =1,5 D/d =3 r/d Kt Kt Kt Kt Kt 0,012 2,290 2,553 2,700 - - 0,017 2,120 2,378 2,500 3,000 - 0,021 2,000 2,240 2,366 2,774 3,000 0,025 1,926 2,134 2,260 2,600 2,862 0,036 1,760 1,936 2,046 2,310 2,600 0,050 1,644 1,782 1,865 2,060 2,310 0,062 1,574 1,700 1,750 1,925 2,140 0,075 1,518 1,628 1,688 1,800 1,986 0,087 1,472 1,563 1,630 1,728 1,880 0,100 1,440 1,534 1,580 1,660 1,804 0,125 1,380 1,468 1,500 1,584 1,684 0,150 1,330 1,412 1,450 1,510 1,584 0,175 1,297 1,358 1,400 1,450 1,510 0,200 1,264 1,336 1,360 1,400 1,457 0,225 1,242 1,308 - - 1,410 0,250 1,225 1,286 - - 1,374 0,275 1,210 1,264 - - 1,340 0,300 1,200 1,242 - - 1,320 * Adopted from Ref. [12]