SlideShare a Scribd company logo
MECHANICAL ENGINEERING DESIGN 
TUTORIAL 4 –15: PRESSURE VESSEL DESIGN 
PRESSURE VESSEL DESIGN MODELS FOR CYLINDERS: 
1. Thick-walled Cylinders 
2. Thin-walled Cylinders 
THICK-WALL THEORY 
• Thick-wall theory is developed from the Theory of Elasticity which yields the state of 
stress as a continuous function of radius over the pressure vessel wall. The state of 
stress is defined relative to a convenient cylindrical coordinate system: 
1. σ t — Tangential Stress 
2. σ r — Radial Stress 
3. σ l — Longitudinal Stress 
• Stresses in a cylindrical pressure vessel depend upon the ratio of the inner radius to 
the outer radius ( ro / ri ) rather than the size of the cylinder. 
• Principal Stresses (σ 1,σ 2 ,σ 3 ) 
1. Determined without computation of Mohr’s Circle; 
2. Equivalent to cylindrical stresses (σ t ,σ r ,σ l ) 
• Applicable for any wall thickness-to-radius ratio. 
Cylinder under Pressure 
Consider a cylinder, with capped ends, subjected to an internal pressure, pi, and an 
external pressure, po, 
σ r 
σ l 
FIGURE T4-15-1 
po 
ro 
ri 
pi 
σ t 
σ l 
σ r 
σ t 
† Text Eq. refers to Mechanical Engineering Design, 7th edition text by Joseph Edward Shigley, Charles 
R. Mischke and Richard G. Budynas; equations and figures with the prefix T refer to the present tutorial.
The cylinder geometry is defined by the inside radius, ri , the outside radius, ro , and the 
cylinder length, l. In general, the stresses in the cylindrical pressure vessel (σ t , σ r ,σ l ) 
can be computed at any radial coordinate value, r, within the wall thickness bounded by 
ri and ro , and will be characterized by the ratio of radii, ζ = ro / ri . These cylindrical 
stresses represent the principal stresses and can be computed directly using Eq. 4-50 and 
4-52. Thus we do not need to use Mohr’s circle to assess the principal stresses. 
Tangential Stress: 
2 2 2 2 ( ) / 2 
p r − p r − r r p − 
p r 
i i o o i o o i 
σ = for ri ≤ r ≤ ro (Text Eq. 4-50) 
t r r 
2 2 
− 
o i 
Radial Stress: 
2 2 2 2 ( ) / 2 
p r − p r + r r p − 
p r 
i i o o i o o i 
σ = for ri ≤ r ≤ ro (Text Eq. 4-50) 
r r r 
2 2 
− 
o i 
Longitudinal Stress: 
• Applicable to cases where the cylinder carries the longitudinal load, such as 
capped ends. 
• Only valid far away from end caps where bending, nonlinearities and stress 
concentrations are not significant. 
2 2 
p r − 
p r 
i i o o 
σ = for ri ≤ r ≤ ro (Modified Text Eq. 4-52) 
l r r 
2 2 
− 
o i 
Two Mechanical Design Cases 
1. Internal Pressure Only ( po = 0 ) 
2. External Pressure Only ( pi = 0 ) 
Design Case 1: Internal Pressure Only 
• Only one case to consider — the critical section which exists at r = ri . 
• Substituting po = 0 into Eqs. (4-50) and incorporating ζ = ro / ri , the 
largest value of each stress component is found at the inner surface: 
2 2 2 
r = r = = p r + r = p + = 
p C 
σ σ ζ 
( ) o i 
1 
t i t i i i ti 
,max 2 2 2 
1 
r r 
− − 
o i 
ζ 
(T-1) 
Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 2/10
where 
2 2 2 
2 2 2 
C = + = r + 
r 
1 
1 
o i 
ti 
r r 
− − 
o i 
ζ 
ζ 
is a function of cylinder geometry only. 
σ r (r = ri ) =σ r,max = − pi Natural Boundary Condition (T-2) 
• Longitudinal stress depends upon end conditions: 
piCli Capped Ends (T-3a) 
σ l = 
0 Uncapped Ends (T-3b) 
Cli 
= 
1 
1 where 2 
ζ 
− 
. 
Design Case 2: External Pressure Only 
• The critical section is identified by considering the state of stress at two 
points on the cylinder: r = ri and r = ro. Substituting pi = 0 into Text 
Eqs. (4-50) for each case: 
r = ri σ r (r = ri ) = 0 Natural Boundary Condition (T-4a) 
r r p r p p C 
σ σ ζ 
( ) 
2 2 
2 2 
o 
= = = − = − = − 
t i t o o o to 
,max 2 2 2 
1 
r r 
− − 
o i 
ζ 
(T-4b) 
where, 
2 2 
C 2 2 
r 
o 
ζ 
ζ 
= = 
2 2 2 
− − 
1 
to 
r r 
o i 
. 
r = ro σ r (r = ro ) =σ r,max = − po Natural Boundary Condition (T-5a) 
2 2 2 
2 2 2 
r = r = − p r + r = − p + = − 
p C 
σ ζ 
( ) 1 
t o o o o ti 
1 
o i 
r r 
− − 
o i 
ζ 
(T-5b) 
• Longitudinal stress for a closed cylinder now depends upon external 
pressure and radius while that of an open-ended cylinder remains zero: 
− poClo Capped Ends (T-6a) 
σ l = 
0 Uncapped Ends (T-6b) 
Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 3/10
where 
ζ 
2 
Clo = 
ζ 
2 − 
1 . 
Example T4.15.1: Thick-wall Cylinder Analysis 
Problem Statement: Consider a cylinder subjected to an external pressure of 
150 MPa and an internal pressure of zero. The cylinder has a 25 mm ID and a 50 
mm OD, respectively. Assume the cylinder is capped. 
Find: 
1. the state of stress (σ r , σ t , σ l ) at the inner and outer cylinder 
surfaces; 
2. the Mohr’s Circle plot for the inside and outside cylinder surfaces; 
3. the critical section based upon the estimate of τ max . 
Solution Methodology: 
Since we have an external pressure case, we need to compute the state of 
stress ( , r σ , t σ 
σ l ) at both the inside and outside radius in order to determine 
the critical section. 
1. As the cylinder is closed and exposed to external pressure only, 
Eq. (T-6a) may be applied to calculate the longitudinal stress 
developed. This result represents the average stress across the wall 
of the pressure vessel and thus may be used for both the inner and 
outer radii analyses. 
2. Assess the radial and tangential stresses using Eqs. (T-4) and (T-5) 
for the inner and outer radii, respectively. 
3. Assess the principal stresses for the inner and outer radii based 
upon the magnitudes of ( , r σ , t σ 
σ l ) at each radius. 
4. Use the principal stresses to calculate the maximum shear stress at 
each radius. 
5. Draw Mohr’s Circle for both states of stress and determine which 
provides the critical section. 
Solution: 
1. Longitudinal Stress Calculation: 
OD 50mm 25mm; ID 25mm 12.5mm 
o 2 2 i 2 2 r = = = r = = = 
Compute the radius ratio, ζ 
25 mm 2.0 
12.5 mm 
r 
r 
o 
i 
ζ = = = 
Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 4/10
Then, 
2 2 
2 2 
1.3333 mm2 
2 
2 
lo 
ζ 
ζ 
= = = 
− − 
σ σ ζ 
r r r r p pC 
= = = =− =− = − 
( ) ( ) ( 150MPa)(1.3333 mm ) 
l i l o o o lo 
2 
(2) 
1 (2) 1 
1 
C 
ζ 
− 
σ l = −200MPa 
2. Radial & Tangential Stress Calculations: 
Inner Radius (r = ri) 
2 2 
ζ 
ζ 
2 2(2) 
= = = 
2 2 
2.6667 
2 
− − 
1 (2) 1 
C 
to 
r r p r p C 
( = ) = =− 2 o 
=− = ( − 
150MPa)(2.6667) 
σ σ 
t i t o o to 
,max 2 2 
r − 
r 
o i 
σt (r = ri ) = −400MPa Compressive 
σr (r = ri ) = 0 Natural Boundary Condition for pi = 0 
Outer Radius (r = ro) 
2 2 
2 2 
1.6667 
2 2 
= + = + = 
1 (2) 1 
1 (2) 1 
C 
ti 
ζ 
ζ 
− − 
r r p r r p C 
= = = − + = − = − 
σ σ 
( ) o i 
( 150MPa)(1.6667) 
t o t o o ti 
,min 2 2 
r − 
r 
o i 
σt (r = ro ) = −250MPa Compressive 
σr (r = ri ) = − po = −150MPa Natural Boundary Condition 
3. Define Principal Stresses: 
Inner Radius (r = ri ) Outer Radius (r = ro ) 
0 MPa 
200 MPa 
= = 
σ σ 
r 
σ σ 
= = − 
400 MPa 
1 
2 
σ σ 
3 
l 
= = − 
t 
150 MPa 
200 MPa 
= = − 
σ σ 
r 
σ σ 
= = − 
250 MPa 
1 
2 
σ σ 
3 
l 
= = − 
t 
4. Maximum Shear Stress Calculations: 
τ ( r = r ) =σ −σ = 0 − ( − 400) 
= 200MPa 
i 2 2 Inner Radius (r = ri ) 1 3 
max 
Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 5/10
τ ( r = r ) =σ −σ = ( − 150) − ( − 250) 
= 50MPa 
o 2 2 Outer Radius (r = ro ) 1 3 
max 
5. Mohr’s Circles: 
Inner Radius (r = ri ) 
FIGURE T4-15-2 
σ 3 = -400 MPa 
Outer Radius (r = ro ) 
τ 
τ 
σ 2 = -200 MPa 
τ max = 200 MPa 
σ1 = 0 MPa 
FIGURE T4-15-3 
σ 3 = -250 MPa σ1 = −150 MPa 
σ 
σ 
• 
σ 2 = -200 MPa 
τmax = 50 MPa 
Critical Section 
τ max (r = ri ) = 200MPa ⇐ Critical Section is at Inside Radius! 
Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 6/10
THIN-WALL THEORY 
• Thin-wall theory is developed from a Strength of Materials solution which yields the 
state of stress as an average over the pressure vessel wall. 
• Use restricted by wall thickness-to-radius ratio: 
 
t 
r 
According to theory, Thin-wall Theory is justified for 1 
20 
≤ 
 
t 
r 
In practice, typically use a less conservative rule, 1 
10 
≤ 
• State of Stress Definition: 
1. Hoop Stress, t σ 
, assumed to be uniform across wall thickness. 
2. Radial Stress is insignificant compared to tangential stress, thus, σ r  0. 
3. Longitudinal Stress, l σ 
Exists for cylinders with capped ends; 
Assumed to be uniformly distributed across wall thickness; 
This approximation for the longitudinal stress is only valid far away 
from the end-caps. 
4. These cylindrical stresses (σ t ,σ r ,σ l ) are principal stresses (σ t ,σ r ,σ l )which 
can be determined without computation of Mohr’s circle plot. 
• Analysis of Cylinder Section 
1 
di 
FIGURE T4-15-4 
t 
FV 
FHoop FHoop 
Pressure Acting over 
Projected Vertical Area 
Shigley, Mischke  Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 7/10
The internal pressure exerts a vertical force, FV, on the cylinder wall which is 
balanced by the tangential hoop stress, FHoop. 
F = pA = p {( d )(1)} 
= 
pd 
V proj i i 
F = σ A = σ {( t )(1)} 
= 
σ 
t 
Hoop t stressed t t 
F F F pd σ 
t 
 = = − = − 
0 2 2 
y V Hoop i t 
Solving for the tangential stress, 
σ = Hoop Stress 
(Text Eq. 4-53) 
pd 
2 
t 
i 
t 
• Comparison of state of stress for cylinder under internal pressure verses external 
pressure: 
Internal Pressure Only 
pd Hoop Stress 
t 
σ 
= 
2 
σ 
= 
0 
σ = = 
σ 
(Text Eq.4-55) 
i 
pd i t 
Capped Case 
t 
4 2 
t 
r 
l 
By Definition 
External Pressure Only 
pd Hoop Stress 
t 
σ 
= 
2 
σ 
= 
0 
σ = = 
σ 
o 
pd o t 
Capped Case 
t 
4 2 
t 
r 
l 
By Definition 
Example T4.15.2: Thin-wall Theory Applied to Cylinder Analysis 
Problem Statement: Repeat Example T1.1 using the Thin-wall Theory 
(po = 150 MPa, pi = 0, ID = 25 mm, OD = 50 mm). 
Find: The percent difference of the maximum shear stress estimates found using 
the Thick-wall and Thin-wall Theories. 
Shigley, Mischke  Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 8/10
Solution Methodology: 
1. Check t/r ratio to determine if Thin-wall Theory is applicable. 
2. Use the Thin-wall Theory to compute the state of stress 
3. Identify the principal stresses based upon the stress magnitudes. 
4. Use the principal stresses to assess the maximum shear stress. 
5. Calculate the percent difference between the maximum shear stresses 
derived using the Thick-wall and Thin-wall Theories. 
Solution: 
1. Check t/r Ratio: 
1 
10 
t 
= =  
12.5 mm 1 
or 
20 
1 
2 
25 mm 
r 
The application of Thin-wall Theory to estimate the stress state of this 
cylinder is thus not justified. 
2. Compute stresses using the Thin-wall Theory to compare with Thick-wall 
theory estimates. 
a. Hoop Stress (average stress, uniform across wall) 
podo 
= − = − (150MPa)(50 mm) 
= − 
2(12.5mm) 
t 
2 
r = 
0 
σ 
σ 
t 
b. RadialStress by definition 
300MPa 
c. Longitudinal Stress (average stress, uniform across wall) 
p d 
t 
σ = − σ o o =t 
= −150MPa 
4 2 
l 
3. Identify Principal Stresses in terms of “Average” Stresses: 
0 MPa 
150 MPa 
= = 
σ σ 
r 
σ σ 
= = − 
300 MPa 
1 
2 
σ σ 
3 
l 
= = − 
t 
4. Maximum Shear Stress Calculation: 
150 MPa 
σ − 
σ 
= 0 − ( − 
300 MPa) 
max = + 2 
1 3 
2 
= 
τ 
5. Percent Difference between Thin- and Thick-wall Estimates for the 
Critical Section: 
Shigley, Mischke  Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 9/10
τ − 
τ 
max,Thin max,Thick 
Difference 
= ∗ 
% 100% 
τ 
max,Thick 
= + − + ∗ = − 
( 150) ( 200) (100%) 
+ 
( 200) 
25% 
 Thin -wall estimate is 25% low! ⇐ 
Shigley, Mischke  Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 10/10

More Related Content

What's hot

Lecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equationsLecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equations
Deepak Agarwal
 
Simpale stress and simple strain
Simpale stress and simple strainSimpale stress and simple strain
Simpale stress and simple strain
Keval Patel
 

What's hot (20)

Thin cylinder ppt
Thin cylinder pptThin cylinder ppt
Thin cylinder ppt
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
Statics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula SheetStatics and Strength of Materials Formula Sheet
Statics and Strength of Materials Formula Sheet
 
Normal stress and strain
Normal stress and strainNormal stress and strain
Normal stress and strain
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
 
9 beam deflection
9 beam deflection9 beam deflection
9 beam deflection
 
theories of failure
theories of failure theories of failure
theories of failure
 
Thin and thick cylinders
Thin and thick cylindersThin and thick cylinders
Thin and thick cylinders
 
Lecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equationsLecture 4 3 d stress tensor and equilibrium equations
Lecture 4 3 d stress tensor and equilibrium equations
 
Simpale stress and simple strain
Simpale stress and simple strainSimpale stress and simple strain
Simpale stress and simple strain
 
Numerical Simulation of Buckling of Thin Cylindrical Shells
Numerical Simulation of Buckling of Thin Cylindrical ShellsNumerical Simulation of Buckling of Thin Cylindrical Shells
Numerical Simulation of Buckling of Thin Cylindrical Shells
 
Ch06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearCh06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shear
 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
 
solution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonsolution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnston
 
Thin cylinder
Thin cylinderThin cylinder
Thin cylinder
 
Fluid tutorial 2_ans dr.waleed. 01004444149
Fluid tutorial 2_ans dr.waleed. 01004444149 Fluid tutorial 2_ans dr.waleed. 01004444149
Fluid tutorial 2_ans dr.waleed. 01004444149
 
STRENGTH OF MATERIALS for beginners
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginners
 
6 Machine design theories of failure
6 Machine design theories of failure6 Machine design theories of failure
6 Machine design theories of failure
 
design of pressure vessel (thick and thin cylinders) may 2020
design of pressure vessel (thick and thin cylinders) may 2020design of pressure vessel (thick and thin cylinders) may 2020
design of pressure vessel (thick and thin cylinders) may 2020
 
Solution manual 16
Solution manual 16Solution manual 16
Solution manual 16
 

Similar to Ch04 section15 pressure_vessel_design

Similar to Ch04 section15 pressure_vessel_design (20)

Thick cylinders
Thick cylinders Thick cylinders
Thick cylinders
 
Ch04 section17 press_and_shrink_fits
Ch04 section17 press_and_shrink_fitsCh04 section17 press_and_shrink_fits
Ch04 section17 press_and_shrink_fits
 
26900721058_PCME502_ME_SEM5.pptx
26900721058_PCME502_ME_SEM5.pptx26900721058_PCME502_ME_SEM5.pptx
26900721058_PCME502_ME_SEM5.pptx
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
thick cylinder
thick cylinder thick cylinder
thick cylinder
 
thickcylinders-160605084017.pdf
thickcylinders-160605084017.pdfthickcylinders-160605084017.pdf
thickcylinders-160605084017.pdf
 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
 
Thick cylinders
Thick cylindersThick cylinders
Thick cylinders
 
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
 
PRESSURE VESSELS & STORAGE TANKS.pptx
PRESSURE VESSELS & STORAGE TANKS.pptxPRESSURE VESSELS & STORAGE TANKS.pptx
PRESSURE VESSELS & STORAGE TANKS.pptx
 
Mpe 209 lec 9 Pressized Vessels
Mpe 209 lec 9 Pressized Vessels Mpe 209 lec 9 Pressized Vessels
Mpe 209 lec 9 Pressized Vessels
 
thinandthickcylinders-180511185429.pdf
thinandthickcylinders-180511185429.pdfthinandthickcylinders-180511185429.pdf
thinandthickcylinders-180511185429.pdf
 
Thick and thin cylinders
Thick and thin cylindersThick and thin cylinders
Thick and thin cylinders
 
Ch04 section20 hertz_contact_stresses
Ch04 section20 hertz_contact_stressesCh04 section20 hertz_contact_stresses
Ch04 section20 hertz_contact_stresses
 
Applications Of Mohr's Circle
Applications Of Mohr's CircleApplications Of Mohr's Circle
Applications Of Mohr's Circle
 
Solution manual 1 3
Solution manual 1 3Solution manual 1 3
Solution manual 1 3
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
IARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdfIARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdf
 

More from Paralafakyou Mens

Corriente alterna trifasica
 Corriente alterna trifasica Corriente alterna trifasica
Corriente alterna trifasica
Paralafakyou Mens
 
Introduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moralIntroduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moral
Paralafakyou Mens
 
Marco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemasMarco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemas
Paralafakyou Mens
 
Insalar, compilar y depurar cobol
Insalar, compilar y depurar cobolInsalar, compilar y depurar cobol
Insalar, compilar y depurar cobol
Paralafakyou Mens
 
Ejercicios de sistema de datos
Ejercicios de sistema de datosEjercicios de sistema de datos
Ejercicios de sistema de datos
Paralafakyou Mens
 
Como instalar Cobol en window 7
Como instalar Cobol en window 7Como instalar Cobol en window 7
Como instalar Cobol en window 7
Paralafakyou Mens
 
Instalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dosInstalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dos
Paralafakyou Mens
 
Ingles tecnico i para informática 2013 en oficio
Ingles tecnico i para informática 2013  en oficioIngles tecnico i para informática 2013  en oficio
Ingles tecnico i para informática 2013 en oficio
Paralafakyou Mens
 
Programacion de juegos para celulares
Programacion de juegos para celularesProgramacion de juegos para celulares
Programacion de juegos para celulares
Paralafakyou Mens
 
Un proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobolUn proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobol
Paralafakyou Mens
 
Montaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientosMontaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientos
Paralafakyou Mens
 

More from Paralafakyou Mens (20)

Corriente alterna trifasica
 Corriente alterna trifasica Corriente alterna trifasica
Corriente alterna trifasica
 
Introduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moralIntroduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moral
 
Marco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemasMarco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemas
 
Insalar, compilar y depurar cobol
Insalar, compilar y depurar cobolInsalar, compilar y depurar cobol
Insalar, compilar y depurar cobol
 
Manula de cobol
Manula de cobolManula de cobol
Manula de cobol
 
Guia de cobol
Guia de cobolGuia de cobol
Guia de cobol
 
2° practico p. politica
2° practico p. politica2° practico p. politica
2° practico p. politica
 
Ejercicios de sistema de datos
Ejercicios de sistema de datosEjercicios de sistema de datos
Ejercicios de sistema de datos
 
Etica final
Etica finalEtica final
Etica final
 
Como instalar Cobol en window 7
Como instalar Cobol en window 7Como instalar Cobol en window 7
Como instalar Cobol en window 7
 
Instalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dosInstalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dos
 
Ingles tecnico i para informática 2013 en oficio
Ingles tecnico i para informática 2013  en oficioIngles tecnico i para informática 2013  en oficio
Ingles tecnico i para informática 2013 en oficio
 
Programacion de juegos para celulares
Programacion de juegos para celularesProgramacion de juegos para celulares
Programacion de juegos para celulares
 
Teorías étcias
Teorías étciasTeorías étcias
Teorías étcias
 
Un proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobolUn proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobol
 
Montaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientosMontaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientos
 
Curso de power cobol
Curso de power cobolCurso de power cobol
Curso de power cobol
 
Niquel y sus aleaciones
Niquel y sus aleacionesNiquel y sus aleaciones
Niquel y sus aleaciones
 
Materiales magneticos
Materiales magneticosMateriales magneticos
Materiales magneticos
 
Aluminio
AluminioAluminio
Aluminio
 

Ch04 section15 pressure_vessel_design

  • 1. MECHANICAL ENGINEERING DESIGN TUTORIAL 4 –15: PRESSURE VESSEL DESIGN PRESSURE VESSEL DESIGN MODELS FOR CYLINDERS: 1. Thick-walled Cylinders 2. Thin-walled Cylinders THICK-WALL THEORY • Thick-wall theory is developed from the Theory of Elasticity which yields the state of stress as a continuous function of radius over the pressure vessel wall. The state of stress is defined relative to a convenient cylindrical coordinate system: 1. σ t — Tangential Stress 2. σ r — Radial Stress 3. σ l — Longitudinal Stress • Stresses in a cylindrical pressure vessel depend upon the ratio of the inner radius to the outer radius ( ro / ri ) rather than the size of the cylinder. • Principal Stresses (σ 1,σ 2 ,σ 3 ) 1. Determined without computation of Mohr’s Circle; 2. Equivalent to cylindrical stresses (σ t ,σ r ,σ l ) • Applicable for any wall thickness-to-radius ratio. Cylinder under Pressure Consider a cylinder, with capped ends, subjected to an internal pressure, pi, and an external pressure, po, σ r σ l FIGURE T4-15-1 po ro ri pi σ t σ l σ r σ t † Text Eq. refers to Mechanical Engineering Design, 7th edition text by Joseph Edward Shigley, Charles R. Mischke and Richard G. Budynas; equations and figures with the prefix T refer to the present tutorial.
  • 2. The cylinder geometry is defined by the inside radius, ri , the outside radius, ro , and the cylinder length, l. In general, the stresses in the cylindrical pressure vessel (σ t , σ r ,σ l ) can be computed at any radial coordinate value, r, within the wall thickness bounded by ri and ro , and will be characterized by the ratio of radii, ζ = ro / ri . These cylindrical stresses represent the principal stresses and can be computed directly using Eq. 4-50 and 4-52. Thus we do not need to use Mohr’s circle to assess the principal stresses. Tangential Stress: 2 2 2 2 ( ) / 2 p r − p r − r r p − p r i i o o i o o i σ = for ri ≤ r ≤ ro (Text Eq. 4-50) t r r 2 2 − o i Radial Stress: 2 2 2 2 ( ) / 2 p r − p r + r r p − p r i i o o i o o i σ = for ri ≤ r ≤ ro (Text Eq. 4-50) r r r 2 2 − o i Longitudinal Stress: • Applicable to cases where the cylinder carries the longitudinal load, such as capped ends. • Only valid far away from end caps where bending, nonlinearities and stress concentrations are not significant. 2 2 p r − p r i i o o σ = for ri ≤ r ≤ ro (Modified Text Eq. 4-52) l r r 2 2 − o i Two Mechanical Design Cases 1. Internal Pressure Only ( po = 0 ) 2. External Pressure Only ( pi = 0 ) Design Case 1: Internal Pressure Only • Only one case to consider — the critical section which exists at r = ri . • Substituting po = 0 into Eqs. (4-50) and incorporating ζ = ro / ri , the largest value of each stress component is found at the inner surface: 2 2 2 r = r = = p r + r = p + = p C σ σ ζ ( ) o i 1 t i t i i i ti ,max 2 2 2 1 r r − − o i ζ (T-1) Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 2/10
  • 3. where 2 2 2 2 2 2 C = + = r + r 1 1 o i ti r r − − o i ζ ζ is a function of cylinder geometry only. σ r (r = ri ) =σ r,max = − pi Natural Boundary Condition (T-2) • Longitudinal stress depends upon end conditions: piCli Capped Ends (T-3a) σ l = 0 Uncapped Ends (T-3b) Cli = 1 1 where 2 ζ − . Design Case 2: External Pressure Only • The critical section is identified by considering the state of stress at two points on the cylinder: r = ri and r = ro. Substituting pi = 0 into Text Eqs. (4-50) for each case: r = ri σ r (r = ri ) = 0 Natural Boundary Condition (T-4a) r r p r p p C σ σ ζ ( ) 2 2 2 2 o = = = − = − = − t i t o o o to ,max 2 2 2 1 r r − − o i ζ (T-4b) where, 2 2 C 2 2 r o ζ ζ = = 2 2 2 − − 1 to r r o i . r = ro σ r (r = ro ) =σ r,max = − po Natural Boundary Condition (T-5a) 2 2 2 2 2 2 r = r = − p r + r = − p + = − p C σ ζ ( ) 1 t o o o o ti 1 o i r r − − o i ζ (T-5b) • Longitudinal stress for a closed cylinder now depends upon external pressure and radius while that of an open-ended cylinder remains zero: − poClo Capped Ends (T-6a) σ l = 0 Uncapped Ends (T-6b) Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 3/10
  • 4. where ζ 2 Clo = ζ 2 − 1 . Example T4.15.1: Thick-wall Cylinder Analysis Problem Statement: Consider a cylinder subjected to an external pressure of 150 MPa and an internal pressure of zero. The cylinder has a 25 mm ID and a 50 mm OD, respectively. Assume the cylinder is capped. Find: 1. the state of stress (σ r , σ t , σ l ) at the inner and outer cylinder surfaces; 2. the Mohr’s Circle plot for the inside and outside cylinder surfaces; 3. the critical section based upon the estimate of τ max . Solution Methodology: Since we have an external pressure case, we need to compute the state of stress ( , r σ , t σ σ l ) at both the inside and outside radius in order to determine the critical section. 1. As the cylinder is closed and exposed to external pressure only, Eq. (T-6a) may be applied to calculate the longitudinal stress developed. This result represents the average stress across the wall of the pressure vessel and thus may be used for both the inner and outer radii analyses. 2. Assess the radial and tangential stresses using Eqs. (T-4) and (T-5) for the inner and outer radii, respectively. 3. Assess the principal stresses for the inner and outer radii based upon the magnitudes of ( , r σ , t σ σ l ) at each radius. 4. Use the principal stresses to calculate the maximum shear stress at each radius. 5. Draw Mohr’s Circle for both states of stress and determine which provides the critical section. Solution: 1. Longitudinal Stress Calculation: OD 50mm 25mm; ID 25mm 12.5mm o 2 2 i 2 2 r = = = r = = = Compute the radius ratio, ζ 25 mm 2.0 12.5 mm r r o i ζ = = = Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 4/10
  • 5. Then, 2 2 2 2 1.3333 mm2 2 2 lo ζ ζ = = = − − σ σ ζ r r r r p pC = = = =− =− = − ( ) ( ) ( 150MPa)(1.3333 mm ) l i l o o o lo 2 (2) 1 (2) 1 1 C ζ − σ l = −200MPa 2. Radial & Tangential Stress Calculations: Inner Radius (r = ri) 2 2 ζ ζ 2 2(2) = = = 2 2 2.6667 2 − − 1 (2) 1 C to r r p r p C ( = ) = =− 2 o =− = ( − 150MPa)(2.6667) σ σ t i t o o to ,max 2 2 r − r o i σt (r = ri ) = −400MPa Compressive σr (r = ri ) = 0 Natural Boundary Condition for pi = 0 Outer Radius (r = ro) 2 2 2 2 1.6667 2 2 = + = + = 1 (2) 1 1 (2) 1 C ti ζ ζ − − r r p r r p C = = = − + = − = − σ σ ( ) o i ( 150MPa)(1.6667) t o t o o ti ,min 2 2 r − r o i σt (r = ro ) = −250MPa Compressive σr (r = ri ) = − po = −150MPa Natural Boundary Condition 3. Define Principal Stresses: Inner Radius (r = ri ) Outer Radius (r = ro ) 0 MPa 200 MPa = = σ σ r σ σ = = − 400 MPa 1 2 σ σ 3 l = = − t 150 MPa 200 MPa = = − σ σ r σ σ = = − 250 MPa 1 2 σ σ 3 l = = − t 4. Maximum Shear Stress Calculations: τ ( r = r ) =σ −σ = 0 − ( − 400) = 200MPa i 2 2 Inner Radius (r = ri ) 1 3 max Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 5/10
  • 6. τ ( r = r ) =σ −σ = ( − 150) − ( − 250) = 50MPa o 2 2 Outer Radius (r = ro ) 1 3 max 5. Mohr’s Circles: Inner Radius (r = ri ) FIGURE T4-15-2 σ 3 = -400 MPa Outer Radius (r = ro ) τ τ σ 2 = -200 MPa τ max = 200 MPa σ1 = 0 MPa FIGURE T4-15-3 σ 3 = -250 MPa σ1 = −150 MPa σ σ • σ 2 = -200 MPa τmax = 50 MPa Critical Section τ max (r = ri ) = 200MPa ⇐ Critical Section is at Inside Radius! Shigley, Mischke & Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 6/10
  • 7. THIN-WALL THEORY • Thin-wall theory is developed from a Strength of Materials solution which yields the state of stress as an average over the pressure vessel wall. • Use restricted by wall thickness-to-radius ratio: t r According to theory, Thin-wall Theory is justified for 1 20 ≤ t r In practice, typically use a less conservative rule, 1 10 ≤ • State of Stress Definition: 1. Hoop Stress, t σ , assumed to be uniform across wall thickness. 2. Radial Stress is insignificant compared to tangential stress, thus, σ r 0. 3. Longitudinal Stress, l σ Exists for cylinders with capped ends; Assumed to be uniformly distributed across wall thickness; This approximation for the longitudinal stress is only valid far away from the end-caps. 4. These cylindrical stresses (σ t ,σ r ,σ l ) are principal stresses (σ t ,σ r ,σ l )which can be determined without computation of Mohr’s circle plot. • Analysis of Cylinder Section 1 di FIGURE T4-15-4 t FV FHoop FHoop Pressure Acting over Projected Vertical Area Shigley, Mischke Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 7/10
  • 8. The internal pressure exerts a vertical force, FV, on the cylinder wall which is balanced by the tangential hoop stress, FHoop. F = pA = p {( d )(1)} = pd V proj i i F = σ A = σ {( t )(1)} = σ t Hoop t stressed t t F F F pd σ t = = − = − 0 2 2 y V Hoop i t Solving for the tangential stress, σ = Hoop Stress (Text Eq. 4-53) pd 2 t i t • Comparison of state of stress for cylinder under internal pressure verses external pressure: Internal Pressure Only pd Hoop Stress t σ = 2 σ = 0 σ = = σ (Text Eq.4-55) i pd i t Capped Case t 4 2 t r l By Definition External Pressure Only pd Hoop Stress t σ = 2 σ = 0 σ = = σ o pd o t Capped Case t 4 2 t r l By Definition Example T4.15.2: Thin-wall Theory Applied to Cylinder Analysis Problem Statement: Repeat Example T1.1 using the Thin-wall Theory (po = 150 MPa, pi = 0, ID = 25 mm, OD = 50 mm). Find: The percent difference of the maximum shear stress estimates found using the Thick-wall and Thin-wall Theories. Shigley, Mischke Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 8/10
  • 9. Solution Methodology: 1. Check t/r ratio to determine if Thin-wall Theory is applicable. 2. Use the Thin-wall Theory to compute the state of stress 3. Identify the principal stresses based upon the stress magnitudes. 4. Use the principal stresses to assess the maximum shear stress. 5. Calculate the percent difference between the maximum shear stresses derived using the Thick-wall and Thin-wall Theories. Solution: 1. Check t/r Ratio: 1 10 t = = 12.5 mm 1 or 20 1 2 25 mm r The application of Thin-wall Theory to estimate the stress state of this cylinder is thus not justified. 2. Compute stresses using the Thin-wall Theory to compare with Thick-wall theory estimates. a. Hoop Stress (average stress, uniform across wall) podo = − = − (150MPa)(50 mm) = − 2(12.5mm) t 2 r = 0 σ σ t b. RadialStress by definition 300MPa c. Longitudinal Stress (average stress, uniform across wall) p d t σ = − σ o o =t = −150MPa 4 2 l 3. Identify Principal Stresses in terms of “Average” Stresses: 0 MPa 150 MPa = = σ σ r σ σ = = − 300 MPa 1 2 σ σ 3 l = = − t 4. Maximum Shear Stress Calculation: 150 MPa σ − σ = 0 − ( − 300 MPa) max = + 2 1 3 2 = τ 5. Percent Difference between Thin- and Thick-wall Estimates for the Critical Section: Shigley, Mischke Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 9/10
  • 10. τ − τ max,Thin max,Thick Difference = ∗ % 100% τ max,Thick = + − + ∗ = − ( 150) ( 200) (100%) + ( 200) 25% Thin -wall estimate is 25% low! ⇐ Shigley, Mischke Budynas Machine Design Tutorial 4–15: Pressure Vessel Design 10/10