SlideShare a Scribd company logo
Chapter 24 
Machining Processes Used to Produce 
Various Shapes: Milling, Broaching, 
Sawing, and Filing; Gear Manufacturing 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Parts Made with Machining Processes of Chapter 24 
Figure 24.1 Typical parts and shapes that can be produced 
with the machining processes described in this chapter. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Milling Cutters and Milling Operations 
Figure 24.2 Some basic types of milling cutters and milling operations. (a) Peripheral 
milling. (b) Face milling. (c) End milling. (d) Ball-end mill with indexable coated-carbide 
inserts machining a cavity in a die block. (e) Milling a sculptured surface with an end mill, 
using a five-axis numerical control machine. Source: (d) Courtesy of Iscar. (e) Courtesy 
of The Ingersoll Milling Machine Co. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Milling Operations 
Figure 24.3 (a) Schematic illustration of conventional milling and climb milling. (b) lab-milling 
operation showing depth-of-cut, d; feed per tooth, f; chip depth-of-cut, tc; and 
workpiece speed, v. (c) Schematic illustration of cutter travel distance, lc, to reach full 
depth-of-cut. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Face-Milling Operation 
Figure 24.4 Face-milling operation showing (a) action of an insert in face 
milling; (b) climb milling; (c) conventional milling; (d) dimensions in face milling. 
The width of cut, w, is not necessarily the same as the cutter radius. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Summary of Peripheral Milling Parameters and Formulas 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Face-Milling Cutter with Indexable Inserts 
Figure 24.5 A face-milling cutter with indexable inserts. 
Source: Courtesy of Ingersoll Cutting Tool Company. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Effect of Insert 
Shape on Feed 
Marks on a Face- 
Milled Surface 
Figure 24.6 Schematic illustration of the effect of insert shape on feed marks on a face-milled 
surface: (a) small corner radius, (b) corner flat on insert, and (c) wiper, consisting of 
small radius followed by a large radius which leaves smoother feed marks. (d) Feed marks 
due to various insert shapes. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Face-Milling Cutter 
Figure 24.7 Terminology for a face-milling cutter. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Effect of Lead Angle on Undeformed Chip 
Thickness in Face Milling 
Figure 24.8 The effect of the lead angle on the undeformed chip thickness in face 
milling. Note that as the lead angle increases, the chip thickness decreases, but 
the length of contact (i.e., chip width) increases. The edges of the insert must be 
sufficiently large to accommodate the contact length increase. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Position of Cutter and Insert in Face Milling 
Figure 24.9 (a) Relative position of the cutter and insert as it first engages the 
workpiece in face milling. (b) Insert positions towards the end of cut. (c) Examples of 
exit angles of insert, showing desirable (positive or negative angle) and undesirable 
(zero angle) positions. In all figures, the cutter spindle is perpendicular to the page and 
rotates clockwise. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Ball Nose End Mills 
Figure 24.10 Ball nose end mills. 
These cutters are able to produce 
elaborate contours and are often 
used in the machining of dies and 
molds. (See also Fig. 24.2d.) 
Source: Courtesy of Dijet, Inc. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Cutters 
Figure 24.11 Cutters for (a) straddle milling, (b) form 
milling, (c) slotting, and (d) slitting with a milling cutter. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
T-Slot Cutting and Shell Mill 
Figure 24.12 (a) T-slot cutting with a milling cutter. (b) A shell mill. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
General Recommendations for Milling Operations 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Troubleshooting Guide for Milling Operations 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Machined Surface Features in Face Milling 
Figure 24.13 Machined surface features in face milling. See also Fig. 24.6. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Edge Defects in Face Milling 
Figure 24.14 Edge defects in face milling: (a) burr formation along 
workpiece edge, (b) breakout along workpiece edge, and (c) how it can be 
avoided by increasing the lead angle (see also last row in Table 24.4). 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Column-and-Knee Type Milling Machines 
Figure 24.15 Schematic illustration of (a) a horizontal-spindle column-and-knee 
type milling machine and (b) vertical-spindle column-and-knee type 
milling machine. Source: After G. Boothroyd. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
CNC Vertical-Spindle Milling Machine 
Figure 24.17 A computer numerical-control (CNC) vertical-spindle milling 
machine. This machine is one of the most versatile machine tools. The 
original vertical-spindle milling machine iused in job shops is still referred 
to as a “Bridgeport”, after its manufacturer in Bridgeport, Connecticut. 
Source: Courtesy of Bridgeport Machines Dibision, Textron Inc. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Five-Axis Profile Milling Machine 
Figure 24.18 Schematic illustration of a five-axis profile milling machine. Note that 
there are three principal linear and two angular movements of machine components. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Parts Made on a Planer 
Figure 24,19 Typical parts that can be made on a planer. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Broaching 
Figure 24.20 (a) Typical parts made by internal broaching. (b) Parts made by 
surface broaching. Heavy lines indicate broached surfaces. (c) Vertical broaching 
machine. Source: (a) and (b) Courtesy of General Broach and Engineering 
Company. (c) Courtesy of Ty Miles, Inc. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Broach Geometry 
Figure 24.21 (a) Cutting action of a broach showing various features. 
(b) Terminology for a broach. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Chipbreaker Features on Broaches 
Figure 24.22 Chipbreaker features on (a) a flat broach and (b) a round broach. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Pull-Types Internal Broach 
Figure 24.23 Terminology for a pull-type internal broach used for enlarging long holes. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Part with Internal Splines Made by Broaching 
Figure 24.24 Example of a part with internal splines produced by broaching. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Sawing Operations 
Figure 24.25 Examples of various sawing operations. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Saw Teeth 
Figure 24.26 (a) Terminology for saw teeth. (b) Types of tooth sets on saw teeth 
staggered to provide clearance for the saw blade to prevent binding during sawing. 
Figure 24.27 (a) High-speed- 
steel teeth welded 
on a steel blade. (b) 
Carbide inserts brazed to 
blade teeth. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Types of Burs 
Figure 24.28 Types of burs used in burring operations. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Involute Spur Gear 
Figure 24.29 Nomenclature for an involute spur gear. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Gear Generating 
with Various 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. 
Cutters 
Figure 24.30 (a) Producing gear 
teeth on a blank by form cutting. 
(b) Schematic illustration of gear 
generating with a pinion-shaped 
gear cutter. (c) and (d) Gear 
generating on a gear shaper 
using a pinion-shaped cutter. 
Note that the cutter reciprocates 
vertically. (e) Gear generating 
with rack-shaped cutter. Source: 
(d) Schafer Gear Works, Inc.
Hobbing 
Figure 24.31 (a) Schematic illustration of gear cutting with a hob. (b) Production of 
worm gear through hobbing. Source: Courtesy of Schafer Gear Works, Inc. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Bevel Gears 
Figure 24.32 (a) Cutting a straight bevel-gear blank with two cutter. (b) 
Cutting a helical bevel gear. Source: Courtesy of Schafer Gear Works, Inc. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. 
Finishing Gears 
by Grinding 
Figure 24.33 Finishing 
gears by grinding: (a) 
form grinding with shaped 
grinding wheels; (b) 
grinding by generating 
with two wheels.
Gear Manufacturing Cost as a Function of Gear Quantity 
Figure 24.34 Gear manufacturing cost as a function of gear quality. 
The numbers along the vertical lines indicate tolerances. 
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. 
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

More Related Content

What's hot

Manufacturing Proecesses
Manufacturing ProecessesManufacturing Proecesses
Manufacturing Proecesses
Arvind Bhosale
 
Theory of Metal Cutting
Theory of Metal CuttingTheory of Metal Cutting
Theory of Metal Cutting
Kunduru Srinivasulu Reddy
 
Ch 21 sand casting
Ch 21 sand castingCh 21 sand casting
Ch 21 sand casting
Nandan Choudhary
 
sheet metal
sheet metalsheet metal
sheet metal
Vivek Tyagi
 
Fundamentals of metal forming processes
Fundamentals of metal forming processesFundamentals of metal forming processes
Fundamentals of metal forming processes
Naman Dave
 
prakash agrawal rapid tooling presentation
prakash agrawal   rapid tooling presentationprakash agrawal   rapid tooling presentation
prakash agrawal rapid tooling presentation
Akash Maurya
 
Reciprocating machine tools shaper
Reciprocating machine tools shaperReciprocating machine tools shaper
Reciprocating machine tools shaper
rmkcet
 
Shafts and Shafts Components
Shafts and Shafts ComponentsShafts and Shafts Components
Shafts and Shafts Components
V-Motech
 
3D printing research
3D printing research3D printing research
3D printing research
Jiwoo Seo
 
Metal forming processes
Metal forming processesMetal forming processes
Metal forming processes
Er Deepak Sharma
 
press operation
press operationpress operation
press operation
Yash Patel
 
Unit 5.2 Welded joints
Unit 5.2 Welded jointsUnit 5.2 Welded joints
Unit 5.2 Welded joints
Yugal Kishor Sahu
 
ADDITIVE MANUFACTURING
ADDITIVE MANUFACTURINGADDITIVE MANUFACTURING
ADDITIVE MANUFACTURING
Denny John
 
Introduction to cad cam
Introduction to cad camIntroduction to cad cam
Introduction to cad cam
Babandeep Bajwa
 
Shaper machine
Shaper machineShaper machine
Shaper machine
Ramesh Kumar A
 
Sheet metal-forming-processes
Sheet metal-forming-processesSheet metal-forming-processes
Sheet metal-forming-processessahilslideshare
 
Topic 2 machining 160214
Topic 2 machining 160214Topic 2 machining 160214
Topic 2 machining 160214
Huai123
 
Metal cutting 1
Metal cutting 1Metal cutting 1
Metal cutting 1
Naman Dave
 
Unit 1
Unit   1Unit   1
Unit 1
dinesh babu
 

What's hot (20)

Manufacturing Proecesses
Manufacturing ProecessesManufacturing Proecesses
Manufacturing Proecesses
 
Theory of Metal Cutting
Theory of Metal CuttingTheory of Metal Cutting
Theory of Metal Cutting
 
Ch 21 sand casting
Ch 21 sand castingCh 21 sand casting
Ch 21 sand casting
 
sheet metal
sheet metalsheet metal
sheet metal
 
Fundamentals of metal forming processes
Fundamentals of metal forming processesFundamentals of metal forming processes
Fundamentals of metal forming processes
 
prakash agrawal rapid tooling presentation
prakash agrawal   rapid tooling presentationprakash agrawal   rapid tooling presentation
prakash agrawal rapid tooling presentation
 
Reciprocating machine tools shaper
Reciprocating machine tools shaperReciprocating machine tools shaper
Reciprocating machine tools shaper
 
Shafts and Shafts Components
Shafts and Shafts ComponentsShafts and Shafts Components
Shafts and Shafts Components
 
3D printing research
3D printing research3D printing research
3D printing research
 
Metal forming processes
Metal forming processesMetal forming processes
Metal forming processes
 
press operation
press operationpress operation
press operation
 
06.forging
06.forging06.forging
06.forging
 
Unit 5.2 Welded joints
Unit 5.2 Welded jointsUnit 5.2 Welded joints
Unit 5.2 Welded joints
 
ADDITIVE MANUFACTURING
ADDITIVE MANUFACTURINGADDITIVE MANUFACTURING
ADDITIVE MANUFACTURING
 
Introduction to cad cam
Introduction to cad camIntroduction to cad cam
Introduction to cad cam
 
Shaper machine
Shaper machineShaper machine
Shaper machine
 
Sheet metal-forming-processes
Sheet metal-forming-processesSheet metal-forming-processes
Sheet metal-forming-processes
 
Topic 2 machining 160214
Topic 2 machining 160214Topic 2 machining 160214
Topic 2 machining 160214
 
Metal cutting 1
Metal cutting 1Metal cutting 1
Metal cutting 1
 
Unit 1
Unit   1Unit   1
Unit 1
 

Viewers also liked

Ch23 turning Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch23 turning Erdi Karaçal Mechanical Engineer University of GaziantepCh23 turning Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch23 turning Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ppt of gear manufacturing
Ppt of gear manufacturingPpt of gear manufacturing
Ppt of gear manufacturing
indreshswt
 
How it is made Plastic Chair? Erdi Karaçal Mechanical Engineer
How it is made Plastic Chair? Erdi Karaçal Mechanical EngineerHow it is made Plastic Chair? Erdi Karaçal Mechanical Engineer
How it is made Plastic Chair? Erdi Karaçal Mechanical Engineer
Erdi Karaçal
 
GEARS
GEARSGEARS
GEARS
NISHANT552
 
afm of Ti6Al4V
afm of Ti6Al4V afm of Ti6Al4V
afm of Ti6Al4V
Erdi Karaçal
 
Ch38 computer aided
Ch38 computer aidedCh38 computer aided
Ch38 computer aided
Erdi Karaçal
 
Ch37 automation
Ch37 automationCh37 automation
Ch37 automation
Erdi Karaçal
 
Met ch0
Met ch0Met ch0
Met ch0
Erdi Karaçal
 
Met ch1
Met ch1Met ch1
Met ch1
Erdi Karaçal
 
Ch39 computer aided manufacturing
Ch39 computer aided manufacturingCh39 computer aided manufacturing
Ch39 computer aided manufacturing
Erdi Karaçal
 
Ch34 coating
Ch34 coatingCh34 coating
Ch34 coating
Erdi Karaçal
 
Ch32 brazing soldering
Ch32 brazing solderingCh32 brazing soldering
Ch32 brazing soldering
Erdi Karaçal
 
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Erdi Karaçal
 
Manufacturing gears
Manufacturing gearsManufacturing gears
Manufacturing gears
SlideShop.com
 
Ch35 measurement
Ch35 measurementCh35 measurement
Ch35 measurement
Erdi Karaçal
 
Ch36 quality
Ch36 qualityCh36 quality
Ch36 quality
Erdi Karaçal
 
Ch40 design selection
Ch40 design selectionCh40 design selection
Ch40 design selection
Erdi Karaçal
 
machining operations and machine tools.
machining operations and machine tools.machining operations and machine tools.
machining operations and machine tools.
Mihir Dixit
 

Viewers also liked (20)

Ch23 turning Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch23 turning Erdi Karaçal Mechanical Engineer University of GaziantepCh23 turning Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch23 turning Erdi Karaçal Mechanical Engineer University of Gaziantep
 
4. gear manufacturing
4. gear manufacturing4. gear manufacturing
4. gear manufacturing
 
Ppt of gear manufacturing
Ppt of gear manufacturingPpt of gear manufacturing
Ppt of gear manufacturing
 
How it is made Plastic Chair? Erdi Karaçal Mechanical Engineer
How it is made Plastic Chair? Erdi Karaçal Mechanical EngineerHow it is made Plastic Chair? Erdi Karaçal Mechanical Engineer
How it is made Plastic Chair? Erdi Karaçal Mechanical Engineer
 
GEARS
GEARSGEARS
GEARS
 
afm of Ti6Al4V
afm of Ti6Al4V afm of Ti6Al4V
afm of Ti6Al4V
 
Ch38 computer aided
Ch38 computer aidedCh38 computer aided
Ch38 computer aided
 
Ch37 automation
Ch37 automationCh37 automation
Ch37 automation
 
Met ch0
Met ch0Met ch0
Met ch0
 
Nilkamal plastics
Nilkamal plasticsNilkamal plastics
Nilkamal plastics
 
Met ch1
Met ch1Met ch1
Met ch1
 
Ch39 computer aided manufacturing
Ch39 computer aided manufacturingCh39 computer aided manufacturing
Ch39 computer aided manufacturing
 
Ch34 coating
Ch34 coatingCh34 coating
Ch34 coating
 
Ch32 brazing soldering
Ch32 brazing solderingCh32 brazing soldering
Ch32 brazing soldering
 
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
 
Manufacturing gears
Manufacturing gearsManufacturing gears
Manufacturing gears
 
Ch35 measurement
Ch35 measurementCh35 measurement
Ch35 measurement
 
Ch36 quality
Ch36 qualityCh36 quality
Ch36 quality
 
Ch40 design selection
Ch40 design selectionCh40 design selection
Ch40 design selection
 
machining operations and machine tools.
machining operations and machine tools.machining operations and machine tools.
machining operations and machine tools.
 

Similar to Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep

Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...
Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...
Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...
Erdi Karaçal
 
Ch13 rolling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch13 rolling Erdi Karaçal Mechanical Engineer University of GaziantepCh13 rolling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch13 rolling Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Erdi Karaçal
 
Ch20 rapid prototype Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch20 rapid prototype Erdi Karaçal Mechanical Engineer University of GaziantepCh20 rapid prototype Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch20 rapid prototype Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch15 extrusion drawing Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch15 extrusion drawing Erdi Karaçal Mechanical Engineer University of GaziantepCh15 extrusion drawing Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch15 extrusion drawing Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Erdi Karaçal
 
Ch-12-Metal-Casting-Design-Materials-and-Economics1 (1).ppt
Ch-12-Metal-Casting-Design-Materials-and-Economics1 (1).pptCh-12-Metal-Casting-Design-Materials-and-Economics1 (1).ppt
Ch-12-Metal-Casting-Design-Materials-and-Economics1 (1).ppt
Jeevanantham Kannan
 
Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...
Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...
Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...
Erdi Karaçal
 
Ch19 forming shaping Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch19 forming shaping Erdi Karaçal Mechanical Engineer University of GaziantepCh19 forming shaping Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch19 forming shaping Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch11 casting process Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch11 casting process Erdi Karaçal Mechanical Engineer University of GaziantepCh11 casting process Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch11 casting process Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepCh30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch0.ppt
Ch0.pptCh0.ppt
Ch0.ppt
ssuserb006f21
 
Ch18 ceramics Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch18 ceramics Erdi Karaçal Mechanical Engineer University of GaziantepCh18 ceramics Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch18 ceramics Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Ch23 (1)
Ch23 (1)Ch23 (1)
Ch08
Ch08Ch08
Ch08
Ab Halim
 
Machining Processes- Milling, Broaching and Gear Manufacturing.ppt
Machining Processes- Milling, Broaching and Gear Manufacturing.pptMachining Processes- Milling, Broaching and Gear Manufacturing.ppt
Machining Processes- Milling, Broaching and Gear Manufacturing.ppt
sadanand50
 
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Erdi Karaçal
 
MACHINING OPERATIONS AND MACHINE TOOLS.pptx
MACHINING OPERATIONS AND MACHINE TOOLS.pptxMACHINING OPERATIONS AND MACHINE TOOLS.pptx
MACHINING OPERATIONS AND MACHINE TOOLS.pptx
JiaJunWang17
 

Similar to Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep (20)

Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...
Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...
Ch21 machining fundamentals Erdi Karaçal Mechanical Engineer University of Ga...
 
Ch13 rolling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch13 rolling Erdi Karaçal Mechanical Engineer University of GaziantepCh13 rolling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch13 rolling Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
 
Ch20 rapid prototype Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch20 rapid prototype Erdi Karaçal Mechanical Engineer University of GaziantepCh20 rapid prototype Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch20 rapid prototype Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch15 extrusion drawing Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch15 extrusion drawing Erdi Karaçal Mechanical Engineer University of GaziantepCh15 extrusion drawing Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch15 extrusion drawing Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
 
Ch-12-Metal-Casting-Design-Materials-and-Economics1 (1).ppt
Ch-12-Metal-Casting-Design-Materials-and-Economics1 (1).pptCh-12-Metal-Casting-Design-Materials-and-Economics1 (1).ppt
Ch-12-Metal-Casting-Design-Materials-and-Economics1 (1).ppt
 
Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...
Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...
Ch21 cutting tool cutting fluids Erdi Karaçal Mechanical Engineer University ...
 
Ch19 forming shaping Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch19 forming shaping Erdi Karaçal Mechanical Engineer University of GaziantepCh19 forming shaping Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch19 forming shaping Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch26
Ch26Ch26
Ch26
 
Ch11 casting process Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch11 casting process Erdi Karaçal Mechanical Engineer University of GaziantepCh11 casting process Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch11 casting process Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepCh30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch0.ppt
Ch0.pptCh0.ppt
Ch0.ppt
 
Ch18 ceramics Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch18 ceramics Erdi Karaçal Mechanical Engineer University of GaziantepCh18 ceramics Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch18 ceramics Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch23 (1)
Ch23 (1)Ch23 (1)
Ch23 (1)
 
Ch23
Ch23Ch23
Ch23
 
Ch08
Ch08Ch08
Ch08
 
Machining Processes- Milling, Broaching and Gear Manufacturing.ppt
Machining Processes- Milling, Broaching and Gear Manufacturing.pptMachining Processes- Milling, Broaching and Gear Manufacturing.ppt
Machining Processes- Milling, Broaching and Gear Manufacturing.ppt
 
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
Sheet metal forming processes Erdi Karaçal Mechanical Engineer University of ...
 
MACHINING OPERATIONS AND MACHINE TOOLS.pptx
MACHINING OPERATIONS AND MACHINE TOOLS.pptxMACHINING OPERATIONS AND MACHINE TOOLS.pptx
MACHINING OPERATIONS AND MACHINE TOOLS.pptx
 

Recently uploaded

HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 

Recently uploaded (20)

HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 

Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep

  • 1. Chapter 24 Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 2. Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and shapes that can be produced with the machining processes described in this chapter. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 3. Milling Cutters and Milling Operations Figure 24.2 Some basic types of milling cutters and milling operations. (a) Peripheral milling. (b) Face milling. (c) End milling. (d) Ball-end mill with indexable coated-carbide inserts machining a cavity in a die block. (e) Milling a sculptured surface with an end mill, using a five-axis numerical control machine. Source: (d) Courtesy of Iscar. (e) Courtesy of The Ingersoll Milling Machine Co. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 4. Milling Operations Figure 24.3 (a) Schematic illustration of conventional milling and climb milling. (b) lab-milling operation showing depth-of-cut, d; feed per tooth, f; chip depth-of-cut, tc; and workpiece speed, v. (c) Schematic illustration of cutter travel distance, lc, to reach full depth-of-cut. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 5. Face-Milling Operation Figure 24.4 Face-milling operation showing (a) action of an insert in face milling; (b) climb milling; (c) conventional milling; (d) dimensions in face milling. The width of cut, w, is not necessarily the same as the cutter radius. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 6. Summary of Peripheral Milling Parameters and Formulas Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 7. Face-Milling Cutter with Indexable Inserts Figure 24.5 A face-milling cutter with indexable inserts. Source: Courtesy of Ingersoll Cutting Tool Company. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 8. Effect of Insert Shape on Feed Marks on a Face- Milled Surface Figure 24.6 Schematic illustration of the effect of insert shape on feed marks on a face-milled surface: (a) small corner radius, (b) corner flat on insert, and (c) wiper, consisting of small radius followed by a large radius which leaves smoother feed marks. (d) Feed marks due to various insert shapes. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 9. Face-Milling Cutter Figure 24.7 Terminology for a face-milling cutter. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 10. Effect of Lead Angle on Undeformed Chip Thickness in Face Milling Figure 24.8 The effect of the lead angle on the undeformed chip thickness in face milling. Note that as the lead angle increases, the chip thickness decreases, but the length of contact (i.e., chip width) increases. The edges of the insert must be sufficiently large to accommodate the contact length increase. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 11. Position of Cutter and Insert in Face Milling Figure 24.9 (a) Relative position of the cutter and insert as it first engages the workpiece in face milling. (b) Insert positions towards the end of cut. (c) Examples of exit angles of insert, showing desirable (positive or negative angle) and undesirable (zero angle) positions. In all figures, the cutter spindle is perpendicular to the page and rotates clockwise. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 12. Ball Nose End Mills Figure 24.10 Ball nose end mills. These cutters are able to produce elaborate contours and are often used in the machining of dies and molds. (See also Fig. 24.2d.) Source: Courtesy of Dijet, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 13. Cutters Figure 24.11 Cutters for (a) straddle milling, (b) form milling, (c) slotting, and (d) slitting with a milling cutter. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 14. T-Slot Cutting and Shell Mill Figure 24.12 (a) T-slot cutting with a milling cutter. (b) A shell mill. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 15. General Recommendations for Milling Operations Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 16. Troubleshooting Guide for Milling Operations Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 17. Machined Surface Features in Face Milling Figure 24.13 Machined surface features in face milling. See also Fig. 24.6. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 18. Edge Defects in Face Milling Figure 24.14 Edge defects in face milling: (a) burr formation along workpiece edge, (b) breakout along workpiece edge, and (c) how it can be avoided by increasing the lead angle (see also last row in Table 24.4). Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 19. Column-and-Knee Type Milling Machines Figure 24.15 Schematic illustration of (a) a horizontal-spindle column-and-knee type milling machine and (b) vertical-spindle column-and-knee type milling machine. Source: After G. Boothroyd. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 20. CNC Vertical-Spindle Milling Machine Figure 24.17 A computer numerical-control (CNC) vertical-spindle milling machine. This machine is one of the most versatile machine tools. The original vertical-spindle milling machine iused in job shops is still referred to as a “Bridgeport”, after its manufacturer in Bridgeport, Connecticut. Source: Courtesy of Bridgeport Machines Dibision, Textron Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 21. Five-Axis Profile Milling Machine Figure 24.18 Schematic illustration of a five-axis profile milling machine. Note that there are three principal linear and two angular movements of machine components. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 22. Parts Made on a Planer Figure 24,19 Typical parts that can be made on a planer. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 23. Broaching Figure 24.20 (a) Typical parts made by internal broaching. (b) Parts made by surface broaching. Heavy lines indicate broached surfaces. (c) Vertical broaching machine. Source: (a) and (b) Courtesy of General Broach and Engineering Company. (c) Courtesy of Ty Miles, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 24. Broach Geometry Figure 24.21 (a) Cutting action of a broach showing various features. (b) Terminology for a broach. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 25. Chipbreaker Features on Broaches Figure 24.22 Chipbreaker features on (a) a flat broach and (b) a round broach. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 26. Pull-Types Internal Broach Figure 24.23 Terminology for a pull-type internal broach used for enlarging long holes. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 27. Part with Internal Splines Made by Broaching Figure 24.24 Example of a part with internal splines produced by broaching. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 28. Sawing Operations Figure 24.25 Examples of various sawing operations. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 29. Saw Teeth Figure 24.26 (a) Terminology for saw teeth. (b) Types of tooth sets on saw teeth staggered to provide clearance for the saw blade to prevent binding during sawing. Figure 24.27 (a) High-speed- steel teeth welded on a steel blade. (b) Carbide inserts brazed to blade teeth. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 30. Types of Burs Figure 24.28 Types of burs used in burring operations. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 31. Involute Spur Gear Figure 24.29 Nomenclature for an involute spur gear. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 32. Gear Generating with Various Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. Cutters Figure 24.30 (a) Producing gear teeth on a blank by form cutting. (b) Schematic illustration of gear generating with a pinion-shaped gear cutter. (c) and (d) Gear generating on a gear shaper using a pinion-shaped cutter. Note that the cutter reciprocates vertically. (e) Gear generating with rack-shaped cutter. Source: (d) Schafer Gear Works, Inc.
  • 33. Hobbing Figure 24.31 (a) Schematic illustration of gear cutting with a hob. (b) Production of worm gear through hobbing. Source: Courtesy of Schafer Gear Works, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 34. Bevel Gears Figure 24.32 (a) Cutting a straight bevel-gear blank with two cutter. (b) Cutting a helical bevel gear. Source: Courtesy of Schafer Gear Works, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
  • 35. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. Finishing Gears by Grinding Figure 24.33 Finishing gears by grinding: (a) form grinding with shaped grinding wheels; (b) grinding by generating with two wheels.
  • 36. Gear Manufacturing Cost as a Function of Gear Quantity Figure 24.34 Gear manufacturing cost as a function of gear quality. The numbers along the vertical lines indicate tolerances. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.